Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Experiments with the bonding machine Show image information
Quality evaluation of bonded interconnects using a shear tester. Show image information
Reliability analysis of a friction clutch. Show image information
Lab work in teaching. Show image information
Transport of fine powder using ultrasonic vibrations Show image information

Experiments with the bonding machine

Quality evaluation of bonded interconnects using a shear tester.

Reliability analysis of a friction clutch.

Lab work in teaching.

Transport of fine powder using ultrasonic vibrations

Dynamics and Mechatronics (LDM)

Members of the Chair of Dynamics and Mechatronics

Paul Dunst

Contact
Publications
 Paul Dunst

Dynamics and Mechatronics (LDM)

Research Assistant

Phone:
+49 5251 60-1806
Fax:
+49 5251 60-1803
Office:
P1.3.31.3
Office hours:

Nach Vereinbarung

Web:
Visitor:
Pohlweg 47-49
33098 Paderborn


Open list in Research Information System

2019

Modellbasierte und experimentelle Charakterisierung von intensiven Ultraschall-Stehwellenfeldern für die Zerstäubung hochviskoser Flüssigkeiten

P. Dunst, T. Hemsel, P. Bornmann, W.. Littmann, W. Sextro, in: DAGA 2019, 2019

Für die Zerstäubung hochviskoser Flüssigkeiten werden neben Düsenzerstäubern vor allem UltraschallStehwellenzerstäuber angewendet [1]. Diese ermöglichen ohne weitere Maßnahmen zwar keine gerichtete Zerstäubung, benötigen jedoch im Gegensatz zu Düsenzerstäubern keine hohen Drücke und haben keine hohen Austrittsgeschwindigkeiten. Zur Erzeugung der Ultraschallwellen werden typischerweise piezoelektrische, mit Bolzen verschraubte LangevinWandler verwendet [1-4], die eine starke Schallabstrahlung bei einer elektrischen Eingangsleistung von bis zu einigen Kilowatt erzeugen können. Wie bei jedem anderen schwingenden System emittiert der Ultraschallwandler zunächst eine Wanderwelle. Mit einem Reflektor, der gegenüber der Sonotrode angeordnet ist, wird eine stehende Welle erzeugt. Im Resonanzabstand zwischen Reflektor und Wandler werden abgestrahlte und reflektierte Wellen so überlagert, dass höhere Schalldruckamplituden erzielt werden. Ein einfacher Ansatz zur Maximierung des Schallpegels im Stehwellenfeld ist die Erhöhung der Schwingungsamplituden des Wandlers, die jedoch zu Schäden oder zumindest zu einer Verringerung der Lebensdauer führen kann. Hohe Schalldrücke werden auch bei geringen Abständen zwischen Wandler und Reflektor erreicht. Das Volumen des Schallfeldes ist in diesem Fall jedoch für die meisten Prozesse zu klein. Ein weiterer Ansatz ist die Verwendung zweier entgegengesetzt angeordneter Wandler [5]. In diesem Fall erfordert jedoch die Erzeugung einer stehenden Welle eine genaue Abstimmung von Frequenz und Phase beider Wandler, was eine komplexe Steuerung erfordert. Ebenso ist es möglich, geometrische Randbedingungen des Stehwellensystems zu optimieren, sodass es zu optimaler Interferenz der Wellen kommt. Im Folgenden wird der Anschaulichkeit halber vereinfachend angenommen, dass der Wandler an seiner Sonotrodenoberfläche einzelne Schallstrahlen aussendet, die in Nähe des Wandlers nahezu parallel verlaufen und sich mit zunehmender Entfernung vom Wandler auffächern. Ein einfaches Stehwellensystem, bestehend aus ebener Sonotrode und ebenem Reflektor, erzeugt bei kleinem Abstand zwischen Sonotrode und Reflektor sehr hohe Schallpegel, da nahezu sämtliche ausgesandten Schallstrahlen in Richtung der Sonotrode reflektiert werden positive Interferenz entsteht. Erhöht man jedoch den Abstand zwischen Sonotrode und Reflektor, so nehmen die Verluste durch Schallstrahlen, die den Prozessraum verlassen, zu. Wie Abbildung 1 gezeigt, werden nur Schallstrahlen, die in etwa parallel zur Rotationsachse verlaufen, zum Wandler zurück reflektiert und tragen zum Stehwellenfeld bei. Die Strahlen haben zudem abhängig vom Abstrahlwinkel unterschiedliche Weglängen. Die Stehwellenbedingung ist demnach nur für Strahlen in der Nähe der Rotationsachse exakt erfüllt. Um dies zu vermeiden, müssen die Geometrien von Wandler und Reflektor optimiert werden. In den folgenden Abschnitten wird zunächst ein Optimierungsansatz vorgestellt. Mithilfe eines FiniteElemente-Modells werden die Auswirkungen einer optimierten Geometrie auf den maximalen Schalldruckpegel untersucht. Ergebnisse werden durch Messungen an einem experimentellen Aufbau eines Stehwellensystems validiert. Es wird gezeigt, wie sich die Optimierung der geometrischen Randbedingungen auf die Zerstäubung hochviskoser Flüssigkeiten auswirkt.


2018

Vibration Assisted Dosing, Mixing and Transport of Dry Fine Powders

P. Dunst, P. Bornmann, T. Hemsel, W. Littmann, W. Sextro, ACTUATOR 2018; 16th International Conference on New Actuators (2018), pp. 142-145

The handling of fine powders is an important task in modern production processes. However, as fine powders strongly tend to adhesion and agglomeration, their processing with conventional methods is difficult or impossible. Especially when processing small amounts of highly sensitive fine powders, conventional methods reach their technical limits. In process steps such as dosing, transport, and especially mixing of fine powders new methods are required. Apart from the well-known method of manipulating powder properties by adding chemical additives, this contribution aims at improving the handling of dry fine powders by using vibrations at different frequencies. Modules are presented, which enable the continuous dosing, the homogeneous mixing and the transport of dry fine powders. Finally, these modules are combined for the production of a homogeneous mixture of two dry fine powders.


Vibration-Assisted Handling of Dry Fine Powders

P. Dunst, P. Bornmann, T. Hemsel, W. Sextro, Actuators 2018, 7(2). (2018), pp. 1-11

Abstract:Since fine powders tend strongly to adhesion and agglomeration, their processing withconventional methods is difficult or impossible. Typically, in order to enable the handling of finepowders, chemicals are added to increase the flowability and reduce adhesion. This contributionshows that instead of additives also vibrations can be used to increase the flowability, to reduceadhesion and cohesion, and thus to enable or improve processes such as precision dosing, mixing,and transport of very fine powders. The methods for manipulating powder properties are describedin detail and prototypes for experimental studies are presented. It is shown that the handling of finepowders can be improved by using low-frequency, high-frequency or a combination of low- andhigh-frequency vibration.


2017

Analysis of pipe vibration in an ultrasonic powder transportationsystem

P. Dunst, T. Hemsel, W. Sextro, elsevier (2017), Sensors and Actuators A 263, pp. 733-736

The transportation of dry fine powders is an emerging technologic task, as in biotechnology, pharmaceu-tical and coatings industry the particle sizes of processed powders get smaller and smaller. Fine powdersare primarily defined by the fact that adhesive and cohesive forces outweigh the weight forces, leadingto mostly unwanted agglomeration (clumping) and adhesion to surfaces. Thereby it gets more difficult touse conventional conveyor systems (e.g. pneumatic or vibratory conveyors) for transport. A rather newmethod for transporting these fine powders is based on ultrasonic vibrations, which are used to reducefriction between powder and substrate. Within this contribution an experimental set-up consisting of apipe, a solenoid actuator for axial vibration and an annular piezoelectric actuator for the high frequencyradial vibration of the pipe is described. Since amplitudes of the radial pipe vibration should be as large aspossible to get high effects of friction reduction, the pipe is excited to vibrate in resonance. To determinethe optimum excitation frequency and actuator position the vibration modes and resonance frequenciesof the pipe are calculated and measured. Results are in good accordance.


2016

Transportation of dry fine powders by coordinated friction manipulation

P. Dunst, W. Sextro, P. Bornmann, T. Hemsel, W. Littmann, in: PAMM Proc. Appl. Math. Mech. 16, 2016, pp. 635-636

The transportation of dry fine powders is an emerging technologic task, as in biotechnology, pharmaceutical or coatings industry particle sizes of processed powders are getting smaller and smaller. Fine powders are primarily defined by the fact that adhesive and cohesive forces outweigh the weight forces. This leads to mostly unwanted agglomeration (clumping) and adhesion to surfaces, what makes it more difficult to use conventional conveyor systems (e. g. pneumatic or vibratory conveyors) for transport. A rather new method for transporting these fine powders is based on ultrasonic vibrations, which are used to reduce friction and adhesion between powder and the substrate. One very effective set-up consists of a pipe, which vibrates harmoniously in axial direction at low frequency combined with a pulsed radial high frequency vibration. The high frequency vibration accelerates the particles perpendicular to the surface of the pipe, which in average leads to lower normal and thereby smaller friction force. With coordinated friction manipulation the powder acceleration can be varied so that the powder may be greatly accelerated and only slightly decelerated in each excitation period of the low frequency axial vibration of the pipe. The amount of powder flow is adjustable by vibration amplitudes, frequencies, and pulse rate, which makes the device versatile for comparable high volume and fine dosing using one setup. Within this contribution an experimental set-up consisting of a pipe, a solenoid actuator for axial vibration and a piezoelectric actuator for the radial high frequency vibration is described. An analytical model is shown, that simulates the powder velocity. Finally, simulation results are validated by experimental data for different driving parameters such as amplitude of low frequency vibration, pipe material and inclination angle.


Open list in Research Information System

The University for the Information Society