Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Publications


Open list in Research Information System

2023

Integrating Prospective Scenarios in Life Cycle Engineering: Case Study of Lightweight Structures

M. Ostermann, J. Grenz, M. Triebus, F. Cerdas, T. Marten, T. Tröster, C. Herrmann, Energies (2023), 16(8), 3371

<jats:p>Lightweight design is a common approach to reduce energy demand in the use stage of vehicles. The production of lightweight materials is usually associated with an increase in energy demand, so the environmental impacts of lightweight structures need to be assessed holistically using a life cycle assessment. To estimate the life cycle environmental impacts of a product in its developmental stage, for example, by life cycle engineering, future changes in relevant influencing factors must be considered. Prospective life cycle assessment provides methods for integrating future scenarios into life cycle assessment studies. However, approaches for integrating prospective life cycle assessment into product development are limited. The objective of this work is to provide the methodological foundation for integrating future scenarios of relevant influencing factors in the development of lightweight structures. The applicability of the novel methodology is demonstrated by a case study of a structural component in a steel, aluminium, and hybrid design. The results show that appropriate decarbonisation measures can reduce the life cycle greenhouse gas emissions by up to 95 percent until 2050. We also found that shifts in the environmentally optimal design are possible in future scenarios. Therefore, the methodology and data provided contribute to improved decision-making in product development.</jats:p>


NeMo.bil - Dekarbonisierung des Verkehrs mithilfe von Leichtbau-Fahrzeugschwärmen

M. Ostermann, J. Behm, T. Marten, T. Tröster. NeMo.bil - Dekarbonisierung des Verkehrs mithilfe von Leichtbau-Fahrzeugschwärmen. In: WerkstoffPlus Auto 13. Fachtagung für neue Fahrzeug- und Werkstoffkonzepte, Stuttgart, 2023.


Feasibility Study of Compression Molding for Large Reinforcement Structures in the Commercial Vehicle Sector

J. Lückenkötter, J. Leimbach, T. Stallmeister, T. Marten, T. Tröster, in: Materials Research Proceedings, Materials Research Forum LLC, 2023, pp. 249-258

<jats:p>Abstract. Due to an increasing volume of shipments, there is a significant need for more delivery vehicles. One approach to reduce the associated increase in carbon dioxide (CO2) emissions is a new light weight design approach involving the substitution of conventional materials with glass fiber mat-reinforced thermoplastics (GMT) based on polypropylene (PP). The application of GMT by compression molding is a widely used process in the automotive industry. However, application in the commercial vehicle sector requires much larger dimensions, making it necessary to clarify whether the manufacturing process and material are suitable for semi-structural applications on this scale. To find this out, two replacement geometries are abstracted in this study and manufactured by varying the main manufacturing parameters. The feasibility can be demonstrated by recording and analyzing the resulting process variables and measuring the formed fiber distribution. At the end of the paper, recommendations are given for the production of GMT structures on the scale of commercial vehicles. </jats:p>


Individualization of Public Transport – Integration of Technical and Social Dimensions of Sustainable Mobility

M. Ostermann, J. Behm, T. Marten, T. Tröster, J. Weyer, K. Cepera, F. Adelt, in: Towards the New Normal in Mobility, Springer Fachmedien Wiesbaden, 2023

In order to follow the 1.5 degree path of the Paris Climate Agreement, drastic greenhouse gas reduction measures are needed in the transport sector. The potential of public transport and new mobility services to reduce transport-related greenhouse gas emissions cannot yet be fully exploited, especially in rural regions. This paper presents the concept of an innovative mobility system, called NeMo.bil, that intends to fill the gap between individual and public transport to create a demand-oriented and sustainable mobility offer. The concept is based on convoy formation of autonomously driving lightweight vehicles serving the first and last mile and a larger towing vehicle carrying enough power and energy to move the convoy over longer distances at higher speeds. This combination of two different vehicles, intelligently controlled by a digital ecosystem, aims to significantly increasing energy, resource and cost efficiency. Based on an analysis of previous approaches for innovative mobility solutions, the concept is derived from a technical and sociological perspective and its potential for reducing energy demand is calculated.


Comparative Study of the Influence of Heat Treatment and Additive Manufacturing Process (LMD &amp; L-PBF) on the Mechanical Properties of Specimens Manufactured from 1.2709

S. Gnaase, D. Niggemeyer, D. Lehnert, C. Bödger, T. Tröster, Crystals (2023), 13(2), 157

<jats:p>(1) This work answers the question of whether and to what extent there is a significant difference in mechanical properties when different additive manufacturing processes are applied to the material 1.2709. The Laser-Powder-Bed-Fusion (L-PBF) and Laser-Metal-Deposition (LMD) processes are considered, as they differ fundamentally in the way a part is manufactured. (2) Known process parameters for low-porosity parts were used to fabricate tensile strength specimens. Half of the specimens were heat-treated, and all specimens were tested for mechanical properties in a quasi-static tensile test. In addition, the material hardness was determined. (3) It was found that, firstly, heat treatment resulted in a sharp increase in mechanical properties such as hardness, elastic modulus, yield strength and ultimate strength. In addition to the increase in these properties, the elongation at break also decreases significantly after heat treatment. The choice of process, on the other hand, does not give either process a clear advantage in terms of mechanical properties but shows that it is necessary to consider the essential mechanical properties for a desired application.</jats:p>


2022

Testing and modeling blast loading of a sandwich structure cored with a bio-inspired (balanus) core

F. Tuzgel, E.F. Akbulut Irmak, E. Guzel, A. Yucesoy, S. Sahin, A. Tasdemirci, M. Guden, Thin-Walled Structures (2022), 175, 109185

DOI


Sauber recyceln- Innovative Verfahrenskombination mit Ultraschall ermöglicht sicheren Umgang mit recycelten Carbonfasern

C. Linnig, T. Tröster. Sauber recyceln- Innovative Verfahrenskombination mit Ultraschall ermöglicht sicheren Umgang mit recycelten Carbonfasern. 2022.


The environmental impact on the strain rate dependent energy absorption capability of a hybrid crash absorber element

S. Haller, S.R. Tinkloh, T. Tröster, R. Brandt. The environmental impact on the strain rate dependent energy absorption capability of a hybrid crash absorber element. In: 5th International Conference Hybrid 2022 Material & Structures, 2022.


Investigation on hot sheet metal forming by means of a longitudinal flux inductor

F. Pfeifer, T. Tröster, T. Marten, A. Dietrich, B. Nacke, G. Grundmeier, in: Proceedings of the 6th International Conference on Steels in Cars and Trucks, 2022


Ein Beitrag zur Etablierung von Holzwerkstoffen im strukturellen Automobilbau anhand der Vorentwicklung zweier Karosseriebauteile aus Rotbuche

S. Schweizer, LibreCat University, 2022

The predominant use of renewable raw materials is a substantial aspect of sustainablemanagement. The utilization of wood-based materials in the automotive industry is hampereddue to numerous gaps in our knowledge of the material and the structural behaviorunder dynamic loads. To increase the level of knowledge and to illustrate the potentialof wood-based materials as a sustainable alternative to established materials, two demonstratorsof vehicle body components made of beech laminated veneer lumber (LVL)were developed and tested here. The selected crash box and the seat backpanel weredesigned taking into account the loads and the material parameters. The focus for thecrash box was to absorb as much crash energy as possible and for the backpanel themanufacturing aspects of veneer forming into a complex geometry. The developed demonstratorssatisfactorily met the requirements placed on them in the context of thestudy. Furthermore, they exhibited considerable lightweight design potential comparedto the metallic reference structures in some designed experimental cases. In the currentstudy, fundamental knowledge on the deformation and failure behaviour of LVL structureswas gained under quasi-static and dynamic loading to expand the application ofthis wood-based material in several fields.



Integrating Future Energy, Material and Production Scenarios in Life Cycle Engineering of Automotive Lightweight Structures

M. Ostermann, J. Grenz, M. Triebus, F. Cerdas, T. Marten, T. Tröster, C. Herrmann. Integrating Future Energy, Material and Production Scenarios in Life Cycle Engineering of Automotive Lightweight Structures. In: 17th Conference on Sustainable Development of Energy, Water and Environment Systems, Paphos, Cyprus, 2022.


Individualisierung des ÖPNV - Integration technischer und sozialer Dimensionen nachhaltiger Mobilität

M. Ostermann, J. Behm, T. Marten, T. Tröster, J. Weyer, K. Cepera, F. Adelt. Individualisierung des ÖPNV - Integration technischer und sozialer Dimensionen nachhaltiger Mobilität. In: 14. Wissenschaftsforum Mobilität, Duisburg, 2022.


Co-bonding of carbon fibre-reinforced epoxy and galvanised steel with laser structured interface for automotive applications

D. Voswinkel, J.A. Striewe, O. Grydin, D. Meinderink, G. Grundmeier, M. Schaper, T. Tröster, Advanced Composite Materials (2022), pp. 1-16

DOI


Experimental Analysis of Residual Stresses in CFRPs through Hole-Drilling Method: The Role of Stacking Sequence, Thickness, and Defects

T. Wu, R. Kruse, S.R. Tinkloh, T. Tröster, W. Zinn, C. Lauhoff, T. Niendorf, Journal of Composites Science (2022), 6(5), 138

<jats:p>Carbon fiber reinforced plastics (CFRPs) gained high interest in industrial applications because of their excellent strength and low specific weight. The stacking sequence of the unidirectional plies forming a CFRP laminate, and their thicknesses, primarily determine the mechanical performance. However, during manufacturing, defects, e.g., pores and residual stresses, are induced, both affecting the mechanical properties. The objective of the present work is to accurately measure residual stresses in CFRPs as well as to investigate the effects of stacking sequence, overall laminate thickness, and the presence of pores on the residual stress state. Residual stresses were measured through the incremental hole-drilling method (HDM). Adequate procedures have been applied to evaluate the residual stresses for orthotropic materials, including calculating the calibration coefficients through finite element analysis (FEA) based on stacking sequence, laminate thickness and mechanical properties. Using optical microscopy (OM) and computed tomography (CT), profound insights into the cross-sectional and three-dimensional microstructure, e.g., location and shape of process-induced pores, were obtained. This microstructural information allowed for a comprehensive understanding of the experimentally determined strain and stress results, particularly at the transition zone between the individual plies. The effect of pores on residual stresses was investigated by considering pores to calculate the calibration coefficients at a depth of 0.06 mm to 0.12 mm in the model and utilizing these results for residual stress evaluation. A maximum difference of 46% in stress between defect-free and porous material sample conditions was observed at a hole depth of 0.65 mm. The significance of employing correctly calculated coefficients for the residual stress evaluation is highlighted by mechanical validation tests.</jats:p>


Characterization of residual stresses in fiber metal laminate interfaces - A combined approach applying hole-drilling method and energy-dispersive X-ray diffraction

T. Wu, S. Degener, S.R. Tinkloh, A. Liehr, W. Zinn, J. Nobre, T. Tröster, T. Niendorf, Composite Structures (2022), 116071

DOI


Numerical investigation of the clinched joint loadings considering the initial pre-strain in the joining area

S. Martin, C.R. Bielak, M. Bobbert, T. Tröster, G. Meschut, Production Engineering (2022)

The components of a body in white consist of many individual thin-walled sheet metal parts, which usually are manufactured in deep-drawing processes. In general, the conditions in a deep-drawing process change due to changing tribology conditions, varying degrees of spring back, or scattering material properties in the sheet blanks, which affects the resulting pre-strain. Mechanical joining processes, especially clinching, are influenced by these process-related pre-strains. The final geometric shape of a clinched joint is affected to a significant level by the prior material deformation when joining with constant process parameters. That leads to a change in the stiffness and force transmission in the clinched joint due to the different geometric dimensions, such as interlock, neck thickness and bottom thickness, which directly affect the load bearing capacity. Here, the influence of the pre-straining in the deep drawing process on the force distribution in clinch points in an automotive assembly is investigated by finite-element models numerically. In further studies, the results are implemented in an optimization tool for designing clinched components. The methodology starts with a pre-straining of metal sheets. This step is followed by 2D rotationally symmetric forming simulations of the joining process. The resulting mesh of each forming simulation is rotated and 3D models are obtained. The clinched joint solid model with pre-strains is used further to determine the joint stiffnesses. With the simulation of the same test set-up with an equivalent point-connector model, the equivalent stiffness for each pre-strain combination is determined. Simulations are performed on a clinched component to assess the influence of pre-strain and sheet thinning on the clinched joint loadings by using the equivalent stiffnesses. The investigations clearly show that for the selected component, the loadings at the clinch points are dependent on the sheet thinning and the stiffnesses due to pre-strain. The magnitude of the influence varies depending on the quantity considered. For example, the shear force is more sensitive to the joint stiffness than to the sheet thinning.</jats:p>


Influence of the Surrounding Sheet Geometry on a Clinched Joint

S. Martin, K. Kurtusic, T. Tröster, Key Engineering Materials (2022), 927


In-Mold-Assembly of Hybrid Bending Structures by Compression Molding

T. Stallmeister, T. Tröster, Key Engineering Materials (2022), 926, pp. 1457-1467

<jats:p>The further development of in-mold-assembly (IMA) technologies for structural hybrid components is of great importance for increasing the economic efficiency and thus the application potential. This paper presents an innovative IMA process concept for the manufacturing of bending loaded hybrid components consisting of two outer metal belts and an inner core structure made of glass mat reinforced thermoplastic (GMT). In this process, the core structure, which is provided with stiffening ribs and functional elements, is formed and joined to two metal belts in one single step. For experimental validation of the concept, the development of a prototypic molding tool and the manufacturing of hybrid beams including process parameters are described. Three-point bending tests and optical measurement technologies are used to characterize the failure behavior and mechanical properties of the produced hybrid beams. It was found that the innovative IMA process enables the manufacturing of hybrid components with high energy absorption and low weight in one step. The mass-specific energy absorption is increased by 693 % compared to pure GMT beams.</jats:p>


Advanced Automotive Components by Fiber-Metal-Laminates

M. Triebus, M. Ostermann, T. Tröster, I. Horwath. Advanced Automotive Components by Fiber-Metal-Laminates. In: Materials in Car Body Engineering 2022, Bad Nauheim, 2022.


2021

Forming Simulation of Tailored Press Hardened Parts

M. Triebus, A. Reitz, O. Grydin, J. Grenz, A. Schneidt, R. Erhardt, T. Tröster, M. Schaper, in: 13th European LS-DYNA Conference 2021, 2021


Großserientaugliche induktive Platinenerwärmung für den Warmformprozess

T. Tröster, F. Pfeifer, B. Nacke, A. Dietrich, Forschungsvereinigung Stahlanwendung e.V., 2021


Development of a submodel technique for FFT-based solvers in micromechanical analysis

S.R. Tinkloh, T. Wu, T. Tröster, T. Niendorf. Development of a submodel technique for FFT-based solvers in micromechanical analysis. In: 2nd International Conference on Theoretical, Analytical and Computational Methods for Composite Materials and Composite Structures (online), 2021.




A new Device for Determination of Forming-Limit-Curves under Hot-Forming Conditions

M. Triebus, J. Gierse, T. Marten, T. Tröster, IOP Conference Series: Materials Science and Engineering (2021), 012052


Entwicklung eines neuartigen Reinigungsverfahrens für recycelte Kohlenstofffasern

C. Linnig, T. Tröster, Deutsche Bundesstiftung Umwelt (DBU), 2021


Measurement and Analysis of Residual Stresses and Warpage in Fiber Reinforced Plastic and Hybrid Components

T. Wu, S.R. Tinkloh, T. Tröster, W. Zinn, T. Niendorf, Metals (2021), 335

<jats:p>Glass/carbon fiber reinforced plastic (GFRP/CFRP) and hybrid components have attracted increasing attention in lightweight applications. However, residual stresses induced in the manufacturing process of these components can result in warpage and, eventually, negatively affect the mechanical performance of the composite structures. In the present work, GFRP, CFRP, GFRP/steel and CFRP/steel hybrid components were manufactured through the prepreg-press-technology always employing the same process parameters. The residual stresses of these components were measured through the hole drilling method (HDM), based on an adequate formalism to evaluate the residual stresses for orthotropic materials including the calculation of the calibration coefficients via finite element analysis (FEA). In FEA, the real material lay-up and mechanical properties of the samples were considered. The warpage induced by residual stresses was measured after the samples were removed from the tool. The measured residual stresses and warpage of four different types of samples were compared and results were analyzed in depth. The results obtained can be extended to other hybrid materials and even could be used for designing multi-stable laminates for application in adaptive structures. Moreover, the effects of the drilling process parameters of HDM, e.g., the drilling speed, the drilling increment and the zero-depth setting, on the resulting residual stresses of GFRP were investigated. The reliability of residual stress measurements in GFRP using HDM was validated through mechanical bending tests. The conclusions concerning the choice of optimal drilling parameters for GFRP could be directly applied for other types of samples considered in the present work.</jats:p>


The Effect of Fiber Waviness on the Residual Stress State and Its Prediction by the Hole Drilling Method in Fiber Metal Laminates: A Global-Local Finite Element Analysis

S.R. Tinkloh, T. Wu, T. Tröster, T. Niendorf, Metals (2021), 156

DOI


On the reliability of residual stress measurements in unidirectional carbon fibre reinforced epoxy composites

A. Magnier, T. Wu, S.R. Tinkloh, T. Tröster, B. Scholtes, T. Niendorf, Polymer Testing (2021), 107146

DOI


HyOpt - Optimization-Based Development of Hybrid Materials

M. Triebus, T. Tröster. HyOpt - Optimization-Based Development of Hybrid Materials. In: 9th NRW Nano Conference - Innovations in Materials and Applications, Web, 2021.


A Generalized Stress State and Temperature Dependent Damage Indicator Framework for Ductile Failure Prediction in Heat-Assisted Forming Operations

A.A. Camberg, T. Erhart, T. Tröster, Materials (2021), 14(17), 5106

<jats:p>Heat-assisted forming processes are becoming increasingly important in the manufacturing of sheet metal parts for body-in-white applications. However, the non-isothermal nature of these processes leads to challenges in evaluating the forming limits, since established methods such as Forming Limit Curves (FLCs) only allow the assessment of critical forming strains for steady temperatures. For this reason, a temperature-dependent extension of the well-established GISSMO (Generalized Incremental Stress State Dependent Damage Model) fracture indicator framework is developed by the authors to predict forming failures under non-isothermal conditions. In this paper, a general approach to combine several isothermal FLCs within the temperature-extended GISSMO model into a temperature-dependent forming limit surface is investigated. The general capabilities of the model are tested in a coupled thermo-mechanical FEA using the example of warm forming of an AA5182-O sheet metal cross-die cup. The obtained results are then compared with state of the art of evaluation methods. By taking the strain and temperature path into account, GISSMO predicts greater drawing depths by up to 20% than established methods. In this way the forming and so the lightweight potential of sheet metal parts can by fully exploited. Moreover, the risk and locus of failure can be evaluated directly on the part geometry by a contour plot. An additional advantage of the GISSMO model is the applicability for low triaxialities as well as the possibility to predict the materials behavior beyond necking up to ductile fracture.</jats:p>


Festigkeitssteigerung von Aluminiumblechformteilen der 5000-Serie durch Erweiterung der Formgebungsgrenzen stark kaltverfestigter Ausgangswerkstoffe

A.A. Camberg, Shaker Verlag, 2021

Leichtmetalle mit einem breiten Eigenschaftsspektrum gewährleisten die Realisierung ressourcenschonender Produkte und ermöglichen die Intensivierung sortenreiner Kreislaufwirtschaften. Die vorliegende Arbeit untersucht einen wärmeunterstützten Ansatz zur Erhöhung der Formgebungsgrenzen stark kaltverfestigter AlMg4,5 Blechwerkstoffe bei gleichzeitiger Beschränkung des Festigkeitsverlustes durch Erholungseffekte. Experimentelle Untersuchungen stellen eine wissenschaftlich fundierte Erkenntnisbasis über die werkstofftechnischen Wirkzusammenhänge des untersuchten Prozesses dar. Gepaart mit an realen Bauteilgeometrien validierten numerischen Simulationsmodellen legt diese Arbeit einen methodischen Grundstein für die industrielle Umsetzung des hier untersuchten Blechumformprozesses. Die erzielte mittlere Dehngrenze des exemplarisch untersuchten Bauteils übersteigt die Dehngrenze eines konventionellen AlMg4,5 Werkstoffes um 190 %. Mit 320 MPa entspricht sie dem Festigkeitsniveau des walzharten Blechhalbzeuges im Lieferzustand, ein Wert, der nach dem aktuellen Stand der Technik auf Bauteilebene ausschließlich mit aushärtbaren AlMgSi Legierungen darstellbar ist.


Beitrag zur Reduzierung der Fehlerhäufigkeit bei der Online-Lackierung von SMC-Außenhautbauteilen

J. Huber, Shaker Verlag, 2021

Der Verbau von Sheet Moulding Compounds im automobilen Außenhautbereich führt in der industriellen Praxis regelmäßig zu abnehmenden Direktläuferquoten in der Technologie Oberfläche, denn neben bekannten Lackierfehlern ergeben sich auch werkstoff-spezifische Oberflächendefekte, welche einen Bauteilwechsel bedingen. Die hier vorliegende Arbeit soll einen aktiven Beitrag zur Reduzierung von Ausschuss und Nacharbeit entlang der Lackierprozesskette leisten. Zu Beginn werden die erfolgskritischen Oberflächendefekte identifiziert und die zugehörigen Fehlerursachen ermittelt, ehe anschließend die Entwicklung der Fehlstellengrößen in Folge der Temperaturbelastung während der Trocknerdurchfahrten untersucht wird. Ferner soll die Auswirkung einer zusätzlich applizierten Oberflächengrundierung auf die Fehlerhäufigkeit sowie die Oberflächengüte im decklackierten Zustand geprüft werden. Als weitere Möglichkeit zur Problemlösung wird eine in den Prozessablauf integrierte Qualitätskontrolle gesehen, weshalb in dieser Arbeit ebenso die Eignung bekannter zerstörungsfreier Prüfmethoden für die präventive Fehlererkennung überprüft und ein zweistufiges Prüfkonzept erarbeitet wird. Das Aufzeigen möglicher Handlungsalternativen sowie die kostentechnische Gegenüberstellung der verschiedenen Anbauvarianten runden die Arbeit ab.


Konzeptionierung und Auslegung eines Vorderachsträgers in hybrider Leichtbauweise im C-Segment

S. Pöhler, Shaker Verlag, 2021

Im Rahmen dieser Arbeit wurde ein neuartiger Achsträger in hybrider Bauweise entwickelt und untersucht. Dieser besteht aus einer metallischen Oberschalenstruktur und einer mit Rippen ausgeformten glasfaserverstärkten thermoplastischen Unterschale (GMT), welche zur Einstellung der optimalen Steifigkeit dient. Die Rippen und Unterschale werden hierzu in einem Fließpressverfahren entweder gemeinsam als ein Bauteil oder als separate Einzelteile hergestellt. Durch den lokalen Einsatz von Faserverbundwerkstoffen in der Unterschale und der Rippenstruktur wird ein signifikanter Gewichtsvorteil gegenüber einer Referenzstruktur aus Stahl erzielt. Durch die Verwendung des GMT-Unterbodenschutzes konnten zudem die akustischen Eigenschaften des Fahrwerks hinsichtlich der Dämpfung positiv beeinflusst werden. Die hohen Anforderungen bzgl. Steifigkeit, Festigkeit und Beständigkeit der sicherheitsrelevanten Fahrwerkskomponente konnten unter Einhaltung des Bauraums erfüllt werden. Gleichzeitig konnte das Gesamtgewicht der Komponente im Vergleich zur klassischen Referenzstruktur um 30 % reduziert werden.


Soft-magnetic behavior of laser beam melted FeSi3 alloy with graded cross-section

A. Andreiev, K. Hoyer, D. Dula, F. Hengsbach, M. Haase, J. Gierse, D. Zimmer, T. Tröster, M. Schaper, Journal of Materials Processing Technology (2021), 117183

DOI


Load Path Transmission in Joining Elements

C. Steinfelder, S. Martin, A. Brosius, T. Tröster, Key Engineering Materials (2021), pp. 73-80

<jats:p>The mechanical properties of joined structures are determined considerably by the chosen joining technology. With the aim of providing a method that enables a faster and more profound decision-making in the spatial distribution of joining points during product development, a new method for the load path analysis of joining points is presented. For an exemplary car body, the load type in the joining elements, i.e. pure tensile, shear and combined tensile-shear loads, is determined using finite element analysis (FEA). Based on the evaluated loads, the resulting load paths in selected joining points are analyzed using a 2D FE-model of a clinching point. State of the art methods for load path analysis are dependent on the selected coordinate system or the existing stress state. Thus, a general statement about the load transmission path is not possible at this time. Here, a novel method for the analysis of load paths is used, which is independent of the alignment of the analyzed geometry. The basic assumption of the new load path analysis method was confirmed by using a simple specimen with a square hole in different orientations. The results presented here show a possibility to display the load transmission path invariantly. In further steps, the method will be extended for 3D analysis and the investigation of more complex assemblies. The primary goal of this methodical approach is an even load distribution over the joining elements and the component. This will provide a basis for future design approaches aimed at reducing the number of joining elements in joined structures.</jats:p>


Joint point loadings in car bodies – the influence of manufacturing tolerances and scatter in material properties

S. Martin, T. Tröster, ESAFORM 2021 (2021)



A Generalized Stress State and Temperature Dependent Damage Indicator Framework for Ductile Failure Prediction in Heat-Assisted Forming Operations

A.A. Camberg, T. Erhart, T. Tröster, Materials (2021), 5106

<jats:p>Heat-assisted forming processes are becoming increasingly important in the manufacturing of sheet metal parts for body-in-white applications. However, the non-isothermal nature of these processes leads to challenges in evaluating the forming limits, since established methods such as Forming Limit Curves (FLCs) only allow the assessment of critical forming strains for steady temperatures. For this reason, a temperature-dependent extension of the well-established GISSMO (Generalized Incremental Stress State Dependent Damage Model) fracture indicator framework is developed by the authors to predict forming failures under non-isothermal conditions. In this paper, a general approach to combine several isothermal FLCs within the temperature-extended GISSMO model into a temperature-dependent forming limit surface is investigated. The general capabilities of the model are tested in a coupled thermo-mechanical FEA using the example of warm forming of an AA5182-O sheet metal cross-die cup. The obtained results are then compared with state of the art of evaluation methods. By taking the strain and temperature path into account, GISSMO predicts greater drawing depths by up to 20% than established methods. In this way the forming and so the lightweight potential of sheet metal parts can by fully exploited. Moreover, the risk and locus of failure can be evaluated directly on the part geometry by a contour plot. An additional advantage of the GISSMO model is the applicability for low triaxialities as well as the possibility to predict the materials behavior beyond necking up to ductile fracture.</jats:p>


2020

Parameter- und Prozessoptimierung für den additiven Fertigungsprozess im Pulverbett am Beispiel der Legierung Ti6Al4V

D. Ahlers, Shaker, 2020

Die additive Fertigung mittels Laser Powderbed Fusion Verfahren (L-PBF) von Metallen wird zunehmend genutzt, um Funktionsbauteile endkonturnah zu fertigen. Die in der vor-liegenden Arbeit untersuchte Parameter- und Prozessoptimierung liefert einen Beitrag zur wirtschaftlichen Nutzung des L-PBF und zeigt, dass höhere Aufbauraten bei der ganzheit-lichen Betrachtung des Prozesses realisierbar sind. Die Parameter- und Prozessoptimierung erfordert eine Untersuchung des Einflusses der Fertigungs- und Nachbearbeitungsparameter auf das erzeugte Volumen sowie auf die Mikrostruktur und die resultierenden Materialeigenschaften. Das Ziel der vorliegenden Arbeit ist die Entwicklung einer optimierten Prozessführung mit abschließender Bewer-tung der Wirtschaftlichkeit. Mit dem entwickelten Gesamtprozess wird eine um den Faktor 1,6 höhere Aufbaurate erzielt. Des Weiteren wird die Methodik zur Erarbeitung des opti-mierten Prozessfensters beschrieben, sodass die Herangehensweise auf weitere Werk-stoffe angewendet werden kann. Die mechanischen Eigenschaften werden für den stati-schen und dynamischen Lastfall untersucht und mit der Mikrostruktur korreliert. Abschlie-ßend wird die Prozessoptimierung zur Fertigung eines Demonstrators eingesetzt und wirtschaftlich validiert. Die Ergebnisse zeigen, dass durch das hier angewendete Vorge-hen eine Prozesszeitreduktion von 22,5% und eine Kostenreduktion von 11% realisiert werden kann.


Ansatz zur effizienteren Auslegung von Hybridbauteilen

C. Hielscher, J. Grenz, A.A. Camberg, N. Wingenbach, ATZ - Automobiltechnische Zeitschrift (2020), pp. 60-65

DOI


Approach to More Efficient Design of Hybrid Components

C. Hielscher, J. Grenz, A.A. Camberg, N. Wingenbach, ATZ worldwide (2020), pp. 58-61

DOI


Residual stress measurement in GFRP/steel hybrid components

T. Wu, S.R. Tinkloh, T. Tröster, W. Zinn, in: Proceedings of the 4th International Conference Hybrid 2020 Materials and Structures, 2020




Wood-based materials as a sustainable alternative for future car body construction

S. Schweizer, E.F. Akbulut Irmak, T. Tröster. Wood-based materials as a sustainable alternative for future car body construction. In: Future Materials, vitual, 2020.



Reduction of systematic measurement deviation in acoustic absorption measurement systems

L. Claes, E. Baumhögger, T. Rüther, J. Gierse, T. Tröster, B. Henning, in: Fortschritte der Akustik - DAGA 2020, 2020, pp. 1077-1080


Numerical investigation of the hole-drilling method applied to intrinsic manufactured metal-CFRP hybrids

S.R. Tinkloh, T. Wu, T. Tröster, T. Niendorf, in: Proceedings of the 4th International Conference Hybrid 2020 Materials and Structures, 2020


Determination and Validation of Residual Stresses in CFRP/Metal Hybrid Components Using the Incremental Hole Drilling Method

T. Wu, S.R. Tinkloh, T. Tröster, W. Zinn, T. Niendorf, Journal of Composites Science (2020), 143

DOI


Beitrag zur Qualitätssicherung in der additiven Fertigung individueller Produkte aus CoCr-Legierungen

A. Huxol, Shaker Verlag, 2020

Die additive Fertigung gewinnt zunehmend Bedeutung für die Herstellung finaler Bauteile. Ein Anwendungsgebiet liegt dabei in der Herstellung dentaler Restaurationen, bei denen die Metallgerüste für Kronen und Brücken mittels Laser-Strahlschmelzen hergestellt werden. Aufgrund des schichtweisen Aufbaus und der direkten digitalen Fertigung eignet sich die additive Fertigung in besonderem Maße für die Herstellung dieser Bauteile mit individueller Geometrie. Allerdings fehlt der Nachweis, dass die geforderte Teilequalität reproduzierbar erreicht wird. Im Rahmen der vorliegenden Arbeit wird ein Konzept zur Qualitätssicherung erarbeitet, das ein standardisiertes Prüfverfahren zum Nachweis der Maschinenqualifikation für den beschriebenen Anwendungsfall beinhaltet. Dazu werden Qualitätsanforderungen ermittelt und mit dem Stand der Technik abgeglichen. Basierend darauf erfolgen Untersuchungen zur Korrelation zwischen mechanischen und physikalischen Materialkennwerten, wofür durch Variation der Fertigungsparameter gezielt Bauteile mit unterschiedlicher Porosität erzeugt werden. In der Folge wird die Porosität als Prüfgröße festgelegt. Ausgehend von den definierten Qualitätsanforderungen und den Versuchsergebnissen wird ein Verfahren zum Nachweis der Maschinenqualifikation basierend auf der Berechnung des potenziellen Maschinenleistungsindexes erarbeitet und exemplarisch für das verwendete Fertigungssystem angewendet. Abschließend werden Ansätze zur Weiterentwicklung des Verfahrens sowie für weiterführende Forschungsthemen dargestellt.


A micromechanical-based finite element simulation of process-induced residual stresses in metal-CFRP-hybrid structures

S.R. Tinkloh, T. Wu, T. Tröster, T. Niendorf, Composite Structures (2020), 238, 111926

DOI


2019


Investigation on Inductive Heating of Sheet Metal for an Industrial Hot Stamping Process

F. Pfeifer, A. Dietrich, T. Marten, T. Tröster, B. Nacke, in: Proceedings of 7th International Conference on Hot Sheet Metal Forming of High-Performance Steel, 2019, pp. 585-593







Predicting plasticity and fracture of severe pre-strained EN AW-5182 by Yld2000 yield locus and Hosford-Coulomb fracture model in sheet forming applications

A.A. Camberg, T. Tröster, F. Bohner, J. Tölle, IOP Conference Series: Materials Science and Engineering (2019), 651, pp. 012057

DOI


Fracture prediction of additively manufactured AlSi10Mg materials

E.F. Akbulut Irmak, T. Tröster, Procedia Structural Integrity (2019), pp. 190-197

DOI


Modeling the Energy Absorption Characteristics of Wood Crash Elements

E.F. Akbulut Irmak, J. Hanses, S. Schweizer, T. Tröster, 2019


Einsatz neuartiger Stähle und Generierung gradierter Leichtbaustrukturen im Presshärteprozess

T. Marten, T. Tröster, Forschungsvereinigung Stahlanwendung e.V. im Stahl Zentrum, P920, Verlag und Vertriebsgesellschaft mbH, 2019


Press Hardening Integrated Structuring for Hybrid Components

M. Triebus, S. Bienia, T. Marten, T. Tröster, K. Dröder, Verlag Wissenschaftliche Scripten, 2019


TAILORED STACKED HYBRIDS – AN OPTIMIZATION-BASED APPROACH IN MATERIAL DESIGN FOR FURTHER IMPROVEMENT IN LIGHTWEIGHT CAR BODY STRUCTURES

A.A. Camberg, I. Stratmann, T. Tröster, in: Technologies for economical and functional lightweight design, 2019

DOI


Self-sealing tool concept for RTM-processes

T. Stallmeister, D. Chalicheemalapalli Jayasankar, Z. Wang, T. Tröster, 2019


Selbstabdichtendes Werkzeugkonzept für RTM-Prozesse

T. Stallmeister, D. Chalicheemalapalli Jayasankar, Z. Wang, T. Tröster, 2019


Experimentelle Untersuchung einse modifzierten Nasspressverfahrens für die Herstellung von hybriden Metall-Faserverbundkunststoff-Bauteilen

H. Opdemom, Shaker Verlag, 2019

Das Nasspressverfahren ist ein Serienherstellungsprozess für Bauteile aus duroplastischen Faserverbundkunststoffen (FVK) mit einer geringen Geometriekomplexität. Im Rahmen dieser Arbeit wurde ein modifiziertes Nasspressverfahren untersucht, welches die Herstellung von hybriden Blech-FVK-Strukturen ermöglicht. Die stoffschlüssige Verbindung zwischen dem metallischen Trägerbauteil und einem lokalen FVK-Verstärkungselement wird durch Co-Bonding im Nasspresswerkzeug aufgebaut. Epoxidbasierte Matrixharze und Klebstoffe wurden mit Methoden der Klebtechnik sowie thermischen und rheometrischen Prüfungen charakterisiert, um ein materialspezifisches Fertigungsprozessfenster einzugrenzen. Experimentelle Untersuchungen zum Nasspressen von GFK-Laminaten und Stahl-GFK-Hybridstrukturen fokussierten die Mikrostruktur und das strukturelle Verhalten von stoffschlüssigen Hybridverbindungen. Unter anderem wurden Einflüsse von zeit-, temperatur- und druckabhängigen Fertigungsparametern sowie der Einsatz von Strukturklebstofffilmen und internen Trennmitteln analysiert. Anhand von Fallturmtests an hybriden Demonstratorkomponenten konnte das modifizierte Nasspressverfahren für die Herstellung crashrelevanter Karosseriebauteile qualifiziert werden.


Experimental Basis for an Orthotropic Failure Model for Application in Crash Simulation

M.P. Stolzenburg, 2019

Um das Verhalten von Strukturen frühzeitig im Entwicklungsprozess mittels numerischer Simulationen vorhersagen zu können, ist eine genaue Beschreibung der Materialeigen-schaften notwendig. Diese Arbeit fokussiert sich auf das orthotrope Versagen von hoch- und ultrahochfesten Stahlblechen. Das Materialverhalten wurde u.a. mittels optischer Dehnungsmessung untersucht und zeigte eine Abhängigkeit von dem Belastungszustand und der Probenorientierung. Zudem wurde für einen ausgewählten hochfesten Stahl der Einfluss der Materialdicke auf das Materialverhalten bestimmt.Auf Basis der lokalen Dehnungen wurde die plastische Instabilität, definiert als Beginn der makroskopischen Schädigung, experimentell bestimmt. Mittels der lokalen Dehnungen und eines Plastizitätsmodells wurden die Lastpfade der untersuchten Proben ermittelt, die Belastungszustände bei Versagen bestimmt und die Versagenskurven des Materialmodells definiert.Anhand der experimentellen Ergebnisse wurden die Materialien orthotrop charakterisiert. Um den Einfluss der Orthotropie zu bestimmen, wurde eine Robustheitsanalyse durchgeführt. Mittels der Materialmodelle konnte das Verhalten der Proben vorhergesagt werden. Allerdings zeigte das orthotrope Materialmodell einen nur geringen Einfluss auf das untersuchte Bauteil der Robustheitsanalyse.


Investigation of ductility and fracture behavior of EN AW-5182 H18 at non-isothermal forming conditions

A.A. Camberg, M. Striewe, T. Tröster, F. Bohner, J. Tölle, in: 5th MATFEM Conference, MATFEM, 2019


Analyse und Optimierung des Korrosions- und Alterungsverhaltens von hybriden Strukturen aus Metallen und CFK

J.A. Striewe, T. Tröster, J. Kowatz, G. Meschut, R. Grothe, G. Grundmeier, Europäische Forschungsgesellschaft für Blechverarbeitung, 2019


Analyse und Optimierung des Korrosions- und Alterungsverhaltens von hybriden Strukturen aus Metallen und CFK

R. Grothe, J.A. Striewe, J. Kowatz, G. Grundmeier, T. Tröster, G. Meschut, 2019


2018

Investigation of ductility and damage characteristics of EN AW-5182 H18 at non-isothermal forming conditions

A.A. Camberg, T. Tröster, N. Sotirov, J. Tölle, F. Bohner. Investigation of ductility and damage characteristics of EN AW-5182 H18 at non-isothermal forming conditions. In: Materials Science and Engineering (MSE) Congress 2018, Darmstadt, 2018.


Additiv gefertigte, akustische Diffusor-Strukturen für Ultraschallanwendungen

L. Claes, H. Zeipert, P. Koppa, T. Tröster, B. Henning, 2018


Top-down design of tailored fiber-metal laminates

A.A. Camberg, K. Engelkemeier, J. Dietrich, T. Heggemann, Lightweight Design worldwide (2018), 11(2), pp. 24-29

DOI


Forming limit curves of DP600 determined in high-speed Nakajima tests and predicted by two different strain-rate-sensitive models

N. Weiß-Borkowski, J. Lian, A.A. Camberg, T. Tröster, S. Münstermann, W. Bleck, H. Gese, H. Richter, 2018

DOI


Crushing behavior and energy absorption performance of a bio-inspired metallic structure: Experimental and numerical study

A. Tasdemirci, E.F. Akbulut Irmak, E. Guzel, F. Tuzgel, A. Yucesoy, S. Sahin, M. Guden, Thin-Walled Structures (2018), pp. 547-555

DOI


Optimization-based material design of tailored stacked hybrids for further improvement in lightweight car body structures

A.A. Camberg, T. Tröster, in: HYBRID - MATERIALS AND STRUCTURES 2018 - PROCEEDINGS, DGM - Deutsche Gesellschaft für Materialkunde e.V., 2018






Top-down-Entwicklung von Faser-Metall-Laminaten auf Grundlage von Gesamtfahrzeugsimulationen

A.A. Camberg, Carbon Composites Magazin (2018)(2), pp. 15-16


Holz als Werkstoff im Automobil

S. Schweizer, T. Tröster. Holz als Werkstoff im Automobil. In: 2. Siegener Leichtbaukolloquium, Siegen, 2018.



Formability enhancement of EN AW-5182 H18 aluminum alloy sheet metal parts in a flash forming process: testing, calibration and evaluation of fracture models

A.A. Camberg, F. Bohner, J. Tölle, A. Schneidt, S. Meiners, T. Tröster, IOP Conference Series: Materials Science and Engineering (2018), 012018

DOI


Processing Short Fiber-reinforced Polymers in the Fused Deposition Modeling Process

C. Schumacher, V. Schöppner, S. Gnaase, in: Proceedings of the 29th Annual InternationalSolid Freeform Fabrication Symposium – An Additive Manufacturing Conference, 2018

By adding fibers to a polymer matrix, a reinforcement of the material can be achieved. Shortfiber-reinforced polymers can easily be processed by the Fused Deposition Modeling (FDM)process without major modifications to the processing machine. For instance, short fiber-reinforcedfilaments can be processed to produce short fiber-reinforced components in the FDM process. Inmany other additive manufacturing processes this is not possible at this low cost. The choice of thematrix material, fiber type, fiber length and fiber orientation have a major influence on theproperties of the produced component. In this paper, short fiber-reinforced filaments are processedby the FDM process. The processing properties and the resulting part properties are investigatedwith regard to fiber-specific influences. Additionally, the effects of different strand geometries andthus changed flow fields on the fiber orientation and mechanical part properties are investigated.



Shear strength and failure behaviour of laser nano-structured and conventionally pre-treated interfaces in intrinsically manufactured CFRP-steel hybrids

C. Zinn, M. Bobbert, C. Dammann, Z. Wang, T. Tröster, R. Mahnken, G. Meschut, M. Schaper, Composites Part B: Engineering (2018), pp. 173-185

DOI


FROM EMPOWERMENT TO INNOVATION: INTER- AND TRANSDISCIPLINARY RESEARCH METHODS IN LIGHTWEIGHT ENGINEERING

I. Horwath, S. Dohmeier-Fischer, N. Weiß-Borkowski, T. Tröster, in: INTED2018 Proceedings, 2018

DOI


Inline additively manufactured functionally graded multi-materials: microstructural and mechanical characterization of 316L parts with H13 layers

F. Hengsbach, P. Koppa, M.J. Holzweissig, M.E. Aydinöz, A. Taube, K. Hoyer, O. Starykov, B. Tonn, T. Niendorf, T. Tröster, M. Schaper, Progress in Additive Manufacturing (2018), pp. 221-231

DOI


Selective Laser Melting of Ti6Al4V with High Build Rates and Following Hot Isostatic Pressing

D. Ahlers, T. Tröster, S. Hermann, P. Koppa, P. Gloetter, M. Schaper, M. Peters, M. Burns, F. Hengsbach, A. Altmann, in: Contributed Papers from MS&T17, 2018

DOI


NEW APPROACHES IN LIGHTWEIGHT DESIGN: V-MODEL OF LIGHTWEIGHT DESIGN BY COMPOSITES AS AN APPROACH OF INTER- AND TRANSDISCIPLINARY RESEARCH

N. Weiß-Borkowski, I. Horwath, A. Berscheid, S. Dohmeier-Fischer, T. Tröster, in: INTED2018 Proceedings, 2018

DOI


Design and Testing of Co-Cured Bonded CFRP-Steel Hybrids with Nanostructured Interfaces for Interlaminar Fracture Toughness

J.A. Striewe, R. Grothe, J. Kowatz, T. Tröster, G. Grundmeier, G. Meschut, 2018


LHYBS – Lightweight Design by Novel Hybrid Materials

A.A. Camberg, T. Tröster, T. Heggemann, H. Homberg, M. Schaper, J. Dietrich, W. Bremser, L. Achterberg, M. Kabst, M. Wille, V. Peckhaus, 2018



Inline additively manufactured functionally graded multi-materials: microstructural and mechanical characterization of 316L parts with H13 layers

F. Hengsbach, P. Koppa, M.J. Holzweissig, M.E. Aydinöz, A. Taube, K. Hoyer, O. Starykov, B. Tonn, T. Niendorf, T. Tröster, M. Schaper, Progress in Additive Manufacturing (2018), pp. 221-231

DOI


2017

Additively manufactured acoustic diffuser structures for ultrasonic measurement applications

L. Claes, H. Zeipert, P. Koppa, T. Tröster, B. Henning, in: Proceedings of Meetings on Acoustics, 2017, pp. 030004

DOI



Max number of publications reached - all publications can be found in our Research Infomation System.

Open list in Research Information System

The University for the Information Society