Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Das Versuchsfeld des LUF Show image information
Temperaturüberwachung der Ölhydraulik einer Umformpresse Show image information
Thermomechanische Behandlung einer Stahlprobe (Presshärten) Show image information
Reibdrücken: Verschließen eines Rohres Show image information
Werkzeug zum Innendrückwalzen Show image information
Spanende Bearbeitung eines Umformwerkzeuges (Vorlesung Werkzeugtechnologie) Show image information

Das Versuchsfeld des LUF

Temperaturüberwachung der Ölhydraulik einer Umformpresse

Thermomechanische Behandlung einer Stahlprobe (Presshärten)

Reibdrücken: Verschließen eines Rohres

Werkzeug zum Innendrückwalzen

Spanende Bearbeitung eines Umformwerkzeuges (Vorlesung Werkzeugtechnologie)

LUF Staff

Bahman Arian, M.Sc.

Contact
Publications
 Bahman Arian, M.Sc.

Umformende und Spanende Fertigungstechnik

Research Associate

Phone:
+49 5251 60-5341
Office:
IW1.860
Visitor:
Pohlweg 53
33098 Paderborn

Open list in Research Information System

2023

Echtzeitfähige Modellierung eines innovativen Drückwalzprozesses für die eigenschaftsgeregelte Bauteilfertigung

L. Kersting, B. Arian, J. Rozo Vasquez, A. Trächtler, W. Homberg, F. Walther, at - Automatisierungstechnik (2023), 71(1), pp. 68-81

<jats:title>Zusammenfassung</jats:title> <jats:p>Aufgrund aktueller Transformationsprozesse kommt der automatisierten und ressourceneffizienten Fertigung hochfester Leichtbauteile eine steigende Bedeutung zu, beispielsweise im Flugzeug- und Fahrzeugbau. Für kleine Losgrößen bietet sich hier insbesondere das Fertigungsverfahren des Drückwalzens an. Der konventionelle, industriell genutzte Drückwalzprozess stößt allerdings aufgrund der Prozesskomplexität hinsichtlich der Reproduzierbarkeit an seine Grenzen. Dies wird in der Praxis teilweise durch personengebundenes Erfahrungswissen kompensiert. Auch ist es nicht möglich, Bauteileigenschaften definiert einzustellen. Aus diesem Grund bietet der Einsatz einer neuartigen Eigenschaftsregelung Chancen zur Weiterentwicklung des Fertigungsprozesses und die Möglichkeit zur Prozessautomatisierung. Hier werden die Werkzeugbahnen abhängig einer Online-Eigenschaftsmessung über eine zusätzliche Reglerkaskade manipuliert. Die Entwicklung einer solchen Eigenschaftsregelung erfordert den Einsatz geeigneter, modellbasierter Entwurfsmethoden. In diesem Beitrag wird daher ein regelungstechnisches Systemmodell für das Drückwalzen metastabiler austenitischer Edelstähle vorgestellt. Das Simulationsmodell weist aufgrund seiner Echtzeitfähigkeit neben dem Einsatz als reines Entwurfsmodell weitere Nutzungsmöglichkeiten z.B. in Beobachtern auf und grenzt sich somit von domänenspezifischen Simulationstools wie der FEM ab.</jats:p>


Control strategy for angular gradations by means of the flow forming process

L. Kersting, B. Arian, J. Rozo Vasquez, A. Trächtler, W. Homberg, F. Walther, in: Materials Research Proceedings, Materials Research Forum LLC, 2023

<jats:p>Abstract. Climate change, rare resources and industrial transformation processes lead to a rising demand of multi-complex lightweight forming parts, especially in aerospace and automotive sectors. In these industries, flow forming is often used to produce cylindrical forming parts by reducing the wall thickness of tubular semifinished parts, e.g. for the production of hydraulic cylinders or gear shafts. The complexity and functionality of flow forming workpieces could be significantly increased by locally graded microstructure and geometry structures. This enables customized complex hardness distributions at wear surfaces or magnetic QR codes for a unique, tamper-proof product identification. The production of those complex, 2D (axial and angular) graded forming parts currently depicts a great challenge for the process and requires new solutions and strategies. Hence, this paper proposes a novel control strategy that includes online measurements from an absolute encoder to determine the angular workpiece position. Workpieces of AISI 304L stainless steel with 2D-graded structures are successfully manufactured using this new strategy and analyzed regarding the possible accuracy and resolution of the gradation. At this point, a dependency of the gradations on the sensor and actuator dynamics, accuracy and geometry could be noted. It is further evaluated how the control strategy could be extended by an observer-based closed-loop property control approach to enhance the accuracy of the suggested strategy. </jats:p>


Cryogenic reverse flow forming of AISI 304L

B. Arian, W. Homberg, L. Kersting, A. Trächtler, J. Rozo Vasquez, F. Walther, in: Materials Research Proceedings, Materials Research Forum LLC, 2023

<jats:p>Abstract. Workpiece property-control permits the application-oriented and time-efficient production of components. In reverse flow forming, for example, a control of the microstructure profile is not yet part of the state of the art, in contrast to the geometry control. This is, due to several reasons, particularly challenging when forming seamless tubes made of metastable austenitic stainless AISI 304L steel. Inducing mechanical and/or thermal energy can cause a phase transformation from austenite to martensite within this steel. The resulting α’-martensite has different mechanical and micromagnetic properties, which can be advantageous depending on the application. For purposes of local property control, the resulting α’-martensite content should be measured and controlled online during the forming process. This paper presents results from the usage of a custom developed cryo-system and different application strategies to use liquid nitrogen as a coolant for local enhancement of the forming-temperature depending α’-martensite content. </jats:p>


Softsensor model of phase transformation during flow forming of metastable austenitic steel AISI 304L

J. Rozo Vasquez, B. Arian, L. Kersting, F. Walther, W. Homberg, A. Trächtler, 2023


Detection of phase transformation during plastic deformation of metastable austenitic steel AISI 304L by means of X-ray diffraction pattern analysis

J. Rozo Vasquez, B. Arian, L. Kersting, F. Walther, W. Homberg, A. Trächtler, Metals (2023)


2022

Coupled microscopic and micromagnetic depth-specific analysis of plastic deformation and phase transformation of metastable austenitic steel AISI 304L by flow forming

J. Rozo Vasquez, H. Kanagarajah, B. Arian, L. Kersting, W. Homberg, A. Trächtler, F. Walther, Practical Metallography (2022), 59(11), pp. 660-675

<jats:title>Abstract</jats:title> <jats:p>This paper presents the characterization of the microstructure evolution during flow forming of austenitic stainless steel AISI 304L. Due to plastic deformation of metastable austenitic steel, phase transformation from γ-austenite into α’-martensite occurs. This is initiated by the formation of shear bands as product of the external stresses. By means of coupled microscopic and micromagnetic investigations, a characterization of the microstructure was carried out. In particular, this study shows the distribution of the strain-induced α’-martensite and its influence on material properties like hardness at different depths. The microstructural analyses by means of electron backscattered diffraction (EBSD) technique, evidence a higher amount of α’-martensite (ca. 23 %) close to the outer specimen surface, where the plastic deformation and the direct contact with the forming tool take place. In the middle area (ca. 1.5 mm depth from the outer surface), the portion of transformed α’-martensite drops to 7 % and in the inner surface to 2 %. These results are well correlated with microhardness and micromagnetic measurements at different depths. EBSD and atomic force microscopy (AFM) were used to make a detailed characterization of the topography and degree of deformation of the shear bands. Likewise, the mechanisms of nucleation of α’-martensite were discussed. This research contributes to the development of micromagnetic sensors to monitor the evolution of properties during flow forming. This makes them more suitable for closed-loop property control, which offers possibilities for an application-oriented and more efficient production.</jats:p>


Innovative Online Measurement and Modelling Approach for Property-Controlled Flow Forming Processes

L. Kersting, B. Arian, J.R. Vasquez, A. Trächtler, W. Homberg, F. Walther, Key Engineering Materials (2022), 926, pp. 862-874

<jats:p>The production of complex multi-functional, high-strength parts is becoming increasingly important in the industry. Especially with small batch size, the incremental flow forming processes can be advantageous. The production of parts with complex geometry and locally graded material properties currently depicts a great challenge in the flow forming process. At this point, the usage of closed-loop control for the shape and properties could be a feasible new solution. The overall aim in this project is to establish an intelligent closed-loop control system for the wall thickness as well as the α’-martensite content of AISI 304L-workpieces in a flow forming process. To reach this goal, a novel sensor concept for online measurements of the wall thickness reduction and the martensite content during forming process is proposed. It includes the setup of a modified flow forming machine and the integration of the sensor system in the machine control. Additionally, a simulation model for the flow forming process is presented which describes the forming process with regard to the plastic workpiece deformation, the induced α’-martensite fraction, and the sensor behavior. This model was used for designing a closed-loop process control of the wall thickness reduction that was subsequently realized at the real plant including online measured feedback from the sensor system.</jats:p>


Soft sensor concept for micromagnetic depth-specific analysis of phase transformation during flow forming of AISI 304L steel.

J. Rozo Vasquez, F. Walther, B. Arian, W. Homberg, L. Kersting, A. Trächtler, in: Proceedings of the 14th International Conference on Barkhausen Noise and Micromagnetic Testing, 2022


Produktkennzeichnung durch lokal definierte Einstellung von ferromagnetischen Eigenschaften beim Drückwalzen von metastabilen Stahlwerkstoffen

B. Arian, W. Homberg, L. Kersting, A. Trächtler, J. Rozo Vasquez, in: 36. Aachener Stahlkolloquium – Umformtechnik “Ideen Form geben“, 2022, pp. 333-347


A flow forming process model to predict workpiece properties in AISI 304L

B. Arian, A. Oesterwinter, W. Homberg, J. Rozo Vasquez, F. Walther, L. Kersting, A. Trächtler, in: 19th Int. Conference on Metal Forming 2022, 2022


Echtzeitfähige Modellierung eines innovativen Drückwalzprozesses für die eigenschaftsgeregelte Herstellung gradierter Bauteile.

L. Kersting, A. Trächtler, B. Arian, W. Homberg, J. Rozo Vasquez, F. Walther, Diedrich, 2022


2021

Magnetic Barkhausen noise analysis for microstructural effects separation during flow forming of metastable austenite 304L.

J. Rozo Vasquez, B. Arian, M. Riepold, F. Walther, W. Homberg, A. Trächtler, in: Proceedings of the 11th International Work­shop NDT in Progress, 2021


Forming of metastable austenitic stainless steel tubes with axially graded martensite content by flow-forming

B. Arian, W. Homberg, M. Riepold, A. Trächtler, J. Rozo Vasquez, F. Walther, ULiège Library, 2021

One of the main objectives of production engineering is to reproducibly manufacture (complex) defect-free parts. To achieve this, it is necessary to employ an appropriate process or tool design. While this will generally prove successful, it cannot, however, offset stochastic defects with local variations in material properties. Closed-loop process control represents a promising approach for a solution in this context. The state of the art involves using this approach to control geometric parameters such as a length. So far, no research or applications have been conducted with closed-loop control for microstructure and product properties. In the project on which this paper is based, the local martensite content of parts is to be adjusted in a highly precise and reproducible manner. The forming process employed is a special, property-controlled flow-forming process. A model-based controller is thus to generate corresponding correction values for the tool-path geometry and tool-path velocity on the basis of online martensite content measurements. For the controller model, it is planned to use a special process or microstructure (correlation) model. The planned paper not only describes the experimental setup but also presents results of initial experimental investigations for subsequent use in the closed-loop control of α’-martensite content during flow-forming.


Model approaches for closed-loop property control for flow forming

M. Riepold, B. Arian, J.R. Vasquez, W. Homberg, F. Walther, A. Trächtler, Advances in Industrial and Manufacturing Engineering (2021), 100057

The implementation of control systems in metal forming processes improves product quality and productivity. By controlling workpiece properties during the process, beneficial effects caused by forming can be exploited and integrated in the product design. The overall goal of this investigation is to produce tailored tubular parts with a defined locally graded microstructure by means of reverse flow forming. For this purpose, the proposed system aims to control both the desired geometry of the workpiece and additionally the formation of strain-induced α′-martensite content in the metastable austenitic stainless steel AISI 304 L. The paper introduces an overall control scheme, a geometry model for describing the process and changes in the dimensions of the workpiece, as well as a material model for the process-induced formation of martensite, providing equations based on empirical data. Moreover, measurement systems providing a closed feedback loop are presented, including a novel softsensor for in-situ measurements of the martensite content.


Forming of Parts with Locally Defined Mechanical and Ferromagnetic Properties by Flow-Forming

E. Wiens, W. Homberg, B. Arian, K. Möhring, F. Walther, in: Forming the Future, Springer International Publishing, 2021

DOI


2020

Microstructural investigation on phase transformation during flow forming of the metastable austenite AISI 304

J. Rozo Vasquez, B. Arian, M. Riepold, W. Homberg, A. Trächtler, F. Walther, in: 54. Metallographie-Tagung, 2020, pp. 75-81


Open list in Research Information System

The University for the Information Society