

Vapor-liquid equilibria measurements of binary mixtures CO₂ + Acetone, CO₂ + 3-methyl-2-butanone, and CO₂ + 2-pentanone

NIVERSITAT PADERBORI

Chieh-Ming Hsieh* Department of Chemical and Materials Engineering, National Central University, Jhongli, Taiwan Jadran Vrabec Thermodynamics and Energy Technology, University of Paderborn, Paderborn, Germany

1. Introduction

- Carbon dioxide (CO₂) is a popular solvent in industrial applications because it is nontoxic, nonflammable, and cheap and also has a moderate critical temperature and critical pressure.
- It is essential to have phase equilibrium data for systems containing CO₂ for the design and optimization of processes including CO₂.
- In this study, vapor-liquid equilibrium (VLE) data of the binary mixtures CO₂ + acetone, CO₂ + 3-methyl-2-butanone, and CO₂ + 2-pentanone are measured at 313.15 K, 333.15 K, and 373.15 K.
- All present data are compared to the available experimental data, predictions of the Peng–Robinson equation of state (PR EOS) with the van

3. Results

A. VLE measurements of CO₂ + acetone

Waals mixing rule, and the correlation of combining PR EOS with der **UNIQUAC** through the Huron–Vidal mixing rule.

2. Materials and Experiments P (MPa) A. Materials H₃C CH_3 from Sigma-Aldrich, H₃C CH_3 H₃C² CH_3 CH_3 Germany 3-methyl-2-butanone Acetone **2**-pentanone (purity ≥ 99.9%) (purity 99%) (purity 99.5%) Carbon dioxide (volume fraction 99.995%) **-** from Air Liquide, Germany All chemicals were used without further purification

- Both the prediction of PR+VDWmr and the correlation of PR+HV+UNIQUAC match the
- literature are reliable, e.g., JCED_2006_Han.

B. Experimental Apparatus and Procedure

B. VLE measurements of CO₂ + 3-methyl-2-butanone

- 1. The compressor A was cooled down to ~275 K and filled with CO_2 from the gas cylinder.
- 2. The compressor B was loaded with liquid ketone from the reservoir.
- The high pressure view cell was heated up to desired measurement temperature.
- 4. The desired quantity of ketone was added into the view cell from compressor B.
- 5. Using the compressor A to slowly load liquid CO_2 into the view cell until the CO_2 was completely solved in ketone. (The homogeneous liquid state in the view cell was maintained at least for 20 minutes.)
- 6. Starting from a homogeneous liquid state in the view cell, compressor A was used to decrease the pressure in the view cell in very small steps, until the first bubbles appeared and thus the saturated liquid state was reached.

C. Thermodynamic Models for Correlation and Prediction

Peng-Robinson (PR) EOS

Huron-Vidal mixing rule with UNIQUAC model (HV+UNIQUAC) $\frac{a(T,\underline{x})}{b(x)} = \sum_{i=1}^{n} x_{i} \frac{a_{i}}{b} + \frac{G^{ex}}{C}$ $b(\underline{x})$

- 0.2 0.4 0.8 0.2 0.4 $x_{\rm CO2}$ $x_{\rm CO2}$
- > The present measurement results at 313.15 K are in very good agreement with the experimental data by Aida et al.
- \succ Only the correlation of PR+HV+UNIQUAC matches with the experimental results.
- New experimental data at 333.15 K and 353.15 K were generated.

C. VLE measurements of CO₂ + 2-pentanone

- > The measurement results at 313.15 K from the apparatus are not consistent with Aida's experimental data. This is because the purity of 2-pentanone in their measurement was only 95% and these 5% heavy impurity components will lead to a lower vapor pressure.
- \succ The correlation of PR+HV+UNIQUAC matches the experimental results better.
- New experimental data at 333.15 K and 353.15 K were generated.

 $\int T_c$

 $b(\underline{x}) = \sum x_i b_i$

 $\kappa = 0.37464 + 1.54226\omega - 0.26992\omega^2$

 $b = 0.077796 \frac{RT_c}{T_c}$

Critical properties (T_c, P_c) and acentric factor (ω) were taken from literature > van der Waals mixing rule (VMDmr)

 $a(T,\underline{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j \sqrt{a_i a_j}$ $b(\underline{x}) = \sum x_i b_i$

 $\underline{G}^{ex} = RT \sum_{i} x_{i} \ln \gamma_{i}$

$\tau_{ii} = \exp(-\Delta u_{ii} / RT)$

 r_i and q_i are relative van der Waals volume and surface area of substance *i*. The values of binary interaction parameters Δu_{ii} and Δu_{ii} were obtained from regression.

Acknowledgements

• Financial Support from Ministry of Science and Technology of Taiwan (MOST 103-2218-E-008 -003 -MY2), National Central University, and Alexander von Humboldt Stiftung

4. Conclusions

- The apparatus was validated by measuring the VLE of CO₂ + acetone.
- New experimental VLE data for CO₂ + 3-methyl-2-butanone and CO₂ + 2-pentanone at 313.15, 333.15, and 353.15 were measured.
- The correlation PR+HV+UNIQUAC is in good agreement with the experiments.

5. References

- H.-Y. Chiu, M.-J. Lee, H.-M. Lin, J. Chem. Eng. Data 2008, 53, 2393.
- C.-Y. Day, C.J. Chang, C.-Y. Chen, J. Chem. Eng. Data 1996, 41, 839.
- W. Wu, J. Ke, M. Poliakoff, J. Chem. Eng. Data 2006, 51, 1398.
- T. Adrian, G. Maurer, J. Chem. Eng. Data 1997, 42, 668.
- M. Stievano, N. Elvassore, J. Supercrit. Fluids 2005, 33, 7.
- Y. Sato, et al., *Fluid Phase Equilib.* 2010, 296, 25.
- T. Aida T., et al., J. Supercrit. Fluids 2010, 55, 71.
- O. Pfohl, Fortschrittsber. VDI Reihe 3 1998, 1-295. • T. Katayama, et al., J. Chem. Eng. Jpn. 1975, 8, 89.
- P. Traub, K. Stephan, *Chem. Eng. Sci.* 1990, 45, 751. • F. Han, et al, J. Chem. Eng. Data 2005, 50, 36.