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The prediction of transport properties of liquids is of high interest in process design since experimental data is often lacking, especially for non-ambient conditions. Moreover, due to the complexity of the 

involved physical mechanisms, the presently available theoretical approaches often fail. In recent years molecular modeling and simulation has become a powerful tool to accurately predict the dynamic 

properties of model and real fluids. The present work intends to demonstrate the capabilities of molecular simulation in this sense. T

Furthermore, some transport properties of the binary mixtures containing short monohydric alcohols and water are also predicted in this work. The 

transport properties self- diffusion coefficients as well as the shear viscosity are determined using equilibrium molecular dynamics and the Green-Kubo formalism.  The thermal conductivity is obtained using 

reverse boundary driven non-equilibrium molecular dynamics.

ransport properties of highly polar and hydrogen bonding real fluids are 

predicted for a wide range of temperatures and pressures. 
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ØPrediction of transport coefficients of hydrogen-bonding fluids by EMD and NEMD using 

molecular models adjusted just to VLE data. 

The pure predictions from molecular simulation have in general a very good agreement with 

experimental data at a wide range of temperatures and pressures. 

The viscosity anomaly of the mixtures of water and short alcohols could be well reproduced.

Ø

Ø

Figure 1: Ammonia: temperature dependence of 

the self-diffusion coefficient

 at different 

pressures; temperature dependence of the 

thermal conductivity  at p = 50 Mpa (lower left). 

The bullets represent the simulation results, the 

crosses are experimental data [6], the solid lines 

show the correlations from REFPROP and the 

dashed lines are their uncertainties.

 (upper left) and the 

shear viscosity (upper right)
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Figure 2: Methylamine: Temperature 

dependence of the self-diffusion coefficient 

(upper left) at different pressures;  

temperature dependence of the shear 

viscosity (upper right) and the thermal 

conductivity (lower left) at p = 0.1 Mpa. The 

bullets represent the simulation results, the 

crosses are experimental data [7], the solid lines 

show the correlations from DIPPR and the 

dashed lines are their uncertainties.

Figure 3: Water + methanol: composition 

dependence of the individual self-diffusion 

coefficient in the mixture (right); composition 

dependence of the shear viscosity (upper left)  

at T = 298 K and at p = 0.1 Mpa. The bullets 

represent the simulation results, and the crosses 

are experimental data [8-9].

Figure 4: Water + ethanol: composition 

dependence of the individual self-diffusion 

coefficient in the mixture (right); composition 

dependence of the shear viscosity (upper left)  

at T = 298 K and at p = 0.1 Mpa. The bullets 

represent the simulation results, and the crosses 

are experimental data [8-9].
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The simulations were performed using rigid united-atom multicenter Lennard-Jones models.

Hydrogen bonding is modeled through superimposed point charges.

The molecular models for ammonia , ethanol , methanol  and methylamine were 

developed in our group. 

The TIP4P/2005 model from Abascal and Vega [5] was used for simulations with water. 

[1] [2] [3] [4] 

The parameters of these models were adjusted exclusively to 

experimental data on vapour-liquid equilibrium. No information on transport properties was used. 

Thermodynamics
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