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Abstract

For the design and optimization of CO2 recovery from alcoholic fermentation pro-

cesses by distillation, models for vapor-liquid equilibria (VLE) are needed. Two such

thermodynamic models, the Peng-Robinson equation of state (EOS) and a model

based on Henry’s law constants, are proposed for the ternary mixture N2+O2+CO2.

Pure substance parameters of the Peng-Robinson EOS are taken from the litera-

ture, whereas the binary parameters of the Van der Waals one-fluid mixing rule

are adjusted to experimental binary VLE data. The Peng-Robinson EOS describes

both binary and ternary experimental data well, except at high pressures approach-

ing the critical region. A molecular model is validated by simulation using binary

and ternary experimental VLE data. On the basis of this model, the Henry’s law

constants of N2 and O2 in CO2 are predicted by molecular simulation. An easy-to-

use thermodynamic model, based on those Henry’s law constants, is developed to

reliably describe the VLE in the CO2-rich region.
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1 Introduction

The recovery of CO2, produced during alcoholic fermentation, is an economically and

ecologically interesting process for breweries. CO2, which is the main component of the

fermentation flue gas, can be collected and purified to be used as an auxiliary material

during the production process or for other purposes. E.g., CO2 is used to avoid contact of

the beer product with O2 from the atmosphere to minimize oxidation processes and flavor

derogation. It is needed in this case with a high purity, particularly the O2 concentration

has to be below 5 ppm [1, 2].

CO2 originates from the anaerobic metabolism of yeast during fermentation processes.

Yeast, mostly saccharomyces cerevisiae uvarum varians carlsbergensis, ferments the hex-

oses glucose and fructose as well as the disaccharides saccharose and maltose and the

trisaccharides maltotriose. The fermentation produces per liter of beer about 42 g CO2.

Wort solves about 4 g/l, thus 38 g/l are released and may predominantly be recovered.

Fermentation by-products and components from the atmosphere in the fermentation tank

contaminate the emerging CO2 and can be separated by different cleaning steps via acti-

vated carbons and silica gels [3]. The permanent gases N2 and O2 from the atmosphere,

however, are the main obstacles in the recovery of CO2. Available experimental data in-

dicates low solubilities of O2 and N2 in liquid CO2 at temperatures below −35 ◦C, which

allow a sufficiently high purification [4].

N2 and O2 can be separated from CO2 by distillation, recovering up to 66 % (i.e. 25

g/l) of the produced CO2. Common one-stage cooling devices used in breweries, mostly

with NH3 as working agent, are unable to provide the required low temperatures down to

−55 ◦C [5]. Therefore, an additional low temperature stage has to be considered. CO2

itself is an appropriate cooling agent for such devices due to its volumetric refrigerating
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capacity and the optimal pressure range at the required temperatures. In a pilot plant

at the Flensburger Brauerei, Emil Petersen GmbH & Co. KG (Germany), which is dis-

cussed in [6], a cascade cooling device was added. After liquefaction and super-cooling,

the recovered CO2-rich liquid is stored into an interim tank. Subsequently, the liquid

mixture is heated by three heating sections to remove the super-cooling and to boil out

the permanent gases N2 and O2. The gaseous fraction is dissipated to avoid a re-solution.

For the design and optimization of such recovery and cleaning processes, vapor-liquid

equilibrium (VLE) data for the ternary mixture O2+N2+CO2 at temperatures between

−55 and −20 ◦C are needed. The focus of the present work is the assessment of the

available experimental VLE data and the development of two thermodynamic models for

that purpose. Particular attention is given to the CO2-rich region. Beside the classi-

cal approach with the Peng-Robinson equation of state (EOS), molecular modelling and

simulation were used to develop an easy-to-use model based on Henry’s law constants.

It should be noted that the molecular approach is very much suitable to predict mixing

properties for a wide variety of fluids.

2 Experimental Data

Experimental VLE data of the ternary mixture N2+O2+CO2 are available only from two

publications, Zenner et al. [7] and Muirbrook et al. [8]. The later [8] deals exclusively with

the 0 ◦C isotherm, thus Zenner et al. [7] is the only ternary source within the regarded

temperature range. In [7], the VLE has been measured at the temperature −40.3 ◦C and

pressures of 5.17, 6.90 and 12.69 MPa with CO2 liquid mole fractions ranging from 0.73

to 0.92. At −55 ◦C pressures of 6.90, 10.35, and 13.10 MPa have been investigated with

CO2 liquid mole fractions ranging from 0.69 to 0.87. These are high pressure VLE so that

the very CO2-rich region is not covered.
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Regarding the three binary subsystems, the available experimental data base is much

better and extensive VLE data can be found. For N2+O2, which consists of the two

lower boiling components of the present ternary mixture, 15 publications are available

[8-22]. Both components have very low critical temperatures, i.e. −147.05 ◦C (N2) and

−118.57 ◦C (O2), so that the binary VLE lies considerably lower than the temperature

range of interest as well.

The VLE of the binary subsystem N2+CO2 has been investigated in 21 publications

[6,7,23-41]. CO2 has a much higher critical temperature of 30.98 ◦C and experimental

binary VLE data can be found in the regarded temperature range in 12 publications

[25-36].

Also for the third subsystem, i.e. O2+CO2, sufficient VLE data is available [6,31,42-

44]. In this case, numerous data points are known in the relevant temperature range from

−55 to −20 ◦C [7, 43, 44] as well.

In the following, a subset of the experimental data was used to adjust and validate

the thermodynamic models developed in this work, i.e. [12, 17, 21] for N2+O2, [7] for

N2+CO2, [43] for O2+CO2, and [7] for the ternary mixture N2+O2+CO2. For N2+O2

and N2+CO2 those data sets were selected, which contain a larger number of data points.

3 Molecular Model

To describe the intermolecular interactions in the ternary mixture, effective state inde-

pendent pair potentials were used here, which implies that many-body interactions were

neglected. For this purpose, the two-centre Lennard-Jones plus point quadrupole (2CLJQ)

pair potential was employed [46]. It is composed of two identical Lennard-Jones sites a

distance L apart (2CLJ) and an axial point-quadrupole of momentum Q placed in the
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geometric centre of the molecule. The intermolecular potential writes as

u2CLJQ(rij,ωi,ωj) =
2
∑

a=1

2
∑

b=1

4ε

[

(

σ

rab

)12

−
(

σ

rab

)6
]

+
3

4

QiQj

|rij |5
fQ (ωi,ωj) . (1)

Herein, rij is the centre-centre distance vector of two molecules i and j, rab is one of the

four Lennard-Jones site-site distances; a counts the two sites of molecule i, b counts those

of molecule j. The vectors ωi and ωj represent the orientations of the two molecules

i and j. fQ is a trigonometrical function depending on these molecular orientations, cf.

Gray and Gubbins [47]. The Lennard-Jones parameters σ and ε represent size and energy,

respectively. In total, the 2CLJQ model has four model parameters: σ, ε, L, and Q. These

parameters have been adjusted to VLE for numerous pure fluids in prior work [46]. Table

1 summarizes the parameters of the three pure fluid molecular models considered here.

On the basis of existing models for pure fluids, molecular modelling of mixtures reduces

to specifying the interaction between unlike molecules. Following prior work [48], a mod-

ified Lorentz-Berthelot combining rule with one adjustable binary interaction parameter

ξ was used for each unlike Lennard-Jones interaction

σAB =
σA + σB

2
, (2)

εAB = ξ· √εA· εB. (3)

Table 2 summarizes the three binary interaction parameters needed for the ternary mix-

ture model that were taken from [48]. The interaction between the quadrupolar sites

is treated in a physically straightforward way without the use of binary parameters. It

was shown in [48] that this ternary model yields an accurate description of the thermo-

dynamic properties of this mixture. It can readily be used to predict a wide range of

thermodynamic properties such as Henry’s law constants as discussed below.
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To calculate the VLE on the basis of this molecular model by simulation, the Grand

Equilibrium method was applied here. The description of this method can be found

elsewhere [49] and is not repeated. Only the technical details of the present calculations

are concisely given in the following. Molecular dynamics simulations for the liquid phase

were performed in the isobaric isothermal (NpT ) ensemble, using Anderson’s barostat [50]

and isokinetic velocity scaling [51]. A total of 864 molecules were placed initially in a fcc

lattice configuration in a cubic simulation volume. Depending upon the density of the

state point, the reduced membrane mass parameter for the barostat Mm/σ4 was chosen

from 10−3 to 10−6, where m is the molecular mass. The intermolecular interactions were

evaluated explicitly up to a cut-off radius of 5σ and standard long range corrections were

used, employing angle averaging as proposed by Lustig [52].

For the vapor phase, pseudo-grand canonical (p-µV T ) Monte-Carlo simulations were

performed. The cut-off radius was also rc = 5σ and the long range corrections were

considered. The maximum displacement was set to 5% of the simulation box length, which

was chosen to yield on average 300 to 400 molecules in the volume. After 1 000 initial

cycles in the canonical (NV T ) ensemble starting from a fcc lattice, 9 000 equilibration

cycles in the p-µV T ensemble were performed. One cycle is defined here to be a number

of attempts to displace and rotate molecules equal to two times the actual number of

molecules plus three insertion and three deletion attempts. The length of the production

run was 100 000 cycles. In this way, VLE data on the basis of the molecular model

were generated. The results from simulation are presented in section 6 and validated by

comparison to experimental data.
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4 Peng-Robinson Equation of State

Cubic EOS offer a compromise between generality and simplicity that is suitable for

numerous purposes. They are excellent tools to correlate experimental data and are

therefore often used for many technical applications. In the present work, the Peng-

Robinson EOS with the Van der Waals one-fluid mixing rule was adjusted to binary

experimental data and validated regarding the ternary mixture. The Peng-Robinson

EOS [53] is defined by

p =
RT

v − b
− a

v(v + b) + b(v − b)
, (4)

where the temperature dependent parameter a is defined by

a =

(

0.45724
R2Tc

2

pc

)

[

1 +
(

0.37464 + 1.54226 ω − 0.26992 ω2
)

(

1 −
√

T

Tc

)]2

. (5)

The constant parameter b is

b = 0.07780
RTc

pc

. (6)

Therein, critical temperature Tc, critical pressure pc, acentric factor ω, and the ideal gas

constant R of the pure substances are needed, cf. Table 3. The values were taken from

[54].

To apply the Peng-Robinson EOS to mixtures, mixed parameters am and bm have to

be defined. For this purpose a variety of mixing rules can be found in the literature.

Here, the Van der Waals one-fluid mixing rule [53] was chosen. It defines the temperature

dependent parameter of the mixture as

am =
∑

i

∑

j

xixjaij . (7)

The indices i and j denote the components, with

aij =
√
aiaj(1 − kij), (8)
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where kij is an adjustable binary parameter. The constant parameter of the mixture is

defined as

bm =
∑

i

xibi. (9)

This classical thermodynamic model was used to fit the experimental VLE data of the

three binary subsystems, i.e. N2+O2, O2+CO2, and N2+CO2. The three binary param-

eters kij were adjusted to the same experimental data as the binary parameters of the

molecular model ξ. It turned out that temperature independent kij values are sufficient

in all cases in the regarded range of states, cf. Table 4. The results of the Peng-Robinson

EOS are presented in section 6 and validated by comparison to experimental data.

5 Henry Model

Molecular simulation allows the prediction of Henry’s law constants on the basis of a

given molecular model straightforwardly. Different approaches have been proposed in the

literature, e.g. [55, 56]. The Henry’s law constant is related to the residual chemical

potential of the solute i at infinite dilution µi
∞ [57]

Hi = ρkBT exp (µi
∞/(kBT )), (10)

where kB is the Boltzmann constant, T the temperature, and ρ the density of the solvent.

For the calculation of Henry’s law constants, a series of simulations, ranging from 0 to

−55 ◦C, were performed with at intervals of 5 ◦C. To evaluate µi
∞, Widom’s test insertion

method [58] was used. Therefore, 3456 test molecules representing the solute i were

inserted after each time step at random positions into the liquid solvent and the potential

energy between the solute test molecule and all solvent molecules ψi was evaluated within

the cut-off radius

µi
∞ = kBT 〈V exp(−ψi/(kBT ))〉/〈V 〉, (11)
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where the brackets represent the ensemble average in the NpT ensemble. Note that

appropriate long range corrections [51] have to be applied. The residual chemical potential

at infinite dilution from this procedure is solely attributed to the unlike solvent-solute

interactions. The mole fraction of the solute in the solvent is exactly zero, as required for

infinite dilution, since the test molecules are instantly removed after the potential energy

calculation. Simulations were performed at a specified temperature and the according

pure substance vapor pressure of CO2. The results for the Henry’s law constants Hi are

given as functions of the temperature as shown in Figure 1. Linear functions were found

to be sufficient to fit the data. The resulting equations are for N2 in CO2

HN2/MPa = 178.21 − 0.47998 T/K, (12)

and for O2 in CO2

HO2/MPa = 104.26 − 0.23214 T/K. (13)

It can be seen in Figure 1 that the predicted Henry’s law constant of O2 in CO2 agrees

well with the experimental data [7, 24, 43], especially in the low temperature region. But

a considerable scatter of experimental data has to be noted. For N2 in CO2 systematic

deviations between simulation and experiment were found. At −55 ◦C the agreement is

very good, but with increasing temperature the data sets diverge, where simulation yields

higher values. The deviation is 14% at −40.3 ◦C.

The classical approach to model VLE on the basis of Henry’s law constants includes

the activity coefficient γi and the fugacity coefficient φi. The phase equilibrium condition

for the two low boiling components i = N2, O2 is then given by [53]

Hi exp

{

1

RT

∫ p

ps

CO2

v∞i dp

}

xi γi = p yi φi. (14)

Here, xi and yi are the mole fractions in the saturated liquid and vapor, respectively, and

v∞i is the partial molar volume of the solute at infinite dilution. The exponential term,
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known as Krichevski-Kasarnoski correction, accounts for the higher pressure of the liquid

mixture compared to the pure solvent vapor pressure. In the pressure range of interest,

its influence is small so that this correction term was set to unity.

For the solvent CO2, the equilibrium condition includes the pure substance vapor

pressure ps
CO2 instead of Henry’s law constant

ps
CO2 xCO2 γCO2 = p yCO2 φCO2. (15)

Therefore, a correlation for ps
CO2 [59] was taken from the literature

ln(ps
CO2/pc) =

4
∑

i=1

Ai(1 − (T/Tc))
ni/(T/Tc), (16)

where the parameters Ai and ni are listed in Table 5.

With the previously adjusted Peng-Robinson EOS, activity coefficients were calculated

in the temperature and composition range of interest. It was found that they are between

1 and 1.001 and were thus set to unity in the present Henry model.

The fugacity coefficients, which describe the non-ideality of the vapor phase, were

calculated with the Peng-Robinson EOS as well. The values do have a considerable

temperature dependence, cf. Figure 2, and were thus included in the present Henry

model. Quadratic fits were found to be sufficient for all components, i.e. for N2

φN2 = 5.5276 − 0.038326 T/K + 0.00008294 (T/K)2, (17)

for O2

φO2 = 0.54440 − 0.00053697 T/K + 0.00001082 (T/K)2, (18)

and for CO2

φCO2 = 0.51216 + 0.0046540 T/K − 0.00001082 (T/K)2. (19)

Equations (12) to (19) define the present Henry model to describe the VLE of the ternary

mixture in the CO2-rich region.
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6 Results and Discussion

In this section, present thermodynamic models are validated against experimental data. It

is started with the three binary subsystems and subsequently the ternary case is regarded.

Particular attention is given to the molecular model as it was used to predict data for

development and validation of the Henry model.

6.1 Nitrogen+Oxygen

In Figure 3, molecular simulation results and the Peng-Robinson EOS are compared

to experimental VLE data [12, 17, 21] of N2+O2 at −153.15 ◦C. This temperature is

considerably lower than the target range of −55 to −20 ◦C due to the fact that both

components have very low critical temperatures. It can be seen that the Peng-Robinson

EOS correlates the experimental data well. By simulation, an equimolar composition

in the liquid phase was regarded, where the mixing effect is strongest. The agreement

between the three data sets is very good, which is also the case for other temperatures

(not shown here).

6.2 Nitrogen+Carbon Dioxide

Figure 4 depicts the VLE of N2+CO2 at −40.3 ◦C including experimental data [7], molec-

ular simulation results, Peng-Robinson EOS, and Henry model. The experimental data

shows some scatter, the simulation results are within this error bound. This also holds

for the Peng-Robinson EOS for pressures up to 8 MPa. Approaching the critical region

of the mixture, it is found that the Peng-Robinson EOS overshoots considerably which

is a well known problem of this thermodynamic model. The Henry model is insufficient

at 0 ◦C (not shown here), but for lower temperatures, e.g. cf. Figure 4, it agrees well in
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the CO2-rich region. By closer inspection of the data, which will be made below, some

deviations are found on the dew line that can hardly be seen with the resolution chosen

for Figure 4.

6.3 Oxygen+Carbon Dioxide

Figure 5 presents the VLE data of O2+CO2 at −40.3 ◦C from experiment [43], molecular

simulation, Peng-Robinson EOS, and Henry model. As before, the experimental data

shows some scatter, particularly on the dew line. Again, it can be seen that the Peng-

Robinson EOS overshoots in the critical region of the mixture. The agreement between

Peng-Robinson EOS and Henry model is good in the CO2-rich region. The molecular

model shows reliable results, also for other temperatures (not shown here). As for the

previous binary mixture, some deviations are observed on the dew line.

6.4 Nitrogen+Oxygen+Carbon Dioxide

In Figures 6 and 7 simulation results and the Peng-Robinson EOS are compared with

experimental ternary VLE data of the ternary system at −40.3 and −55 ◦C [7]. Due to

the fact that experimental data is available only at high pressures between 5.17 and 13.10

MPa, the Henry model is not included into this validation. The Peng-Robinson EOS

represents the VLE well at pressures of 6.9 MPa and below as depicted in Figures 6 and

7. But it shows larger deviations at higher pressures approaching the critical region (not

shown here). In the target region of state points, molecular simulation data is throughout

in very good agreement with the experimental data.
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6.5 Carbon Dioxide-Rich Region

The present Henry model is developed for the design of technical applications in the

CO2-rich composition range. Therefore, further validations in this region, at state points

where no experimental data is available, are presented here. The molecular model, being

validated on the basis of experimental mixture VLE as discussed above, was used as the

benchmark here.

Figure 8 presents the pressure over the vapor mole fractions of N2 and O2 in VLE

for constant liquid mole fractions xN2=xO2=0.01 in the temperature range from −55 to

−20 ◦C. Simulation data, Peng-Robinson EOS, and Henry model are compared. It can be

seen that simulation data and Peng-Robinson EOS agree very well, deviations are minor.

The Henry model deviates somewhat, yielding approximately 8% too low pressures and

5% too low vapor mole fractions.

The limits, where the Henry model shows deviations of less than 2% from molecular

model and Peng-Robinson EOS, were investigated. Table 6 shows that the Henry model

is reliable for CO2 liquid mole fractions above 0.995. This limit is examined in Figure 9,

where the pressure over the vapor mole fractions of N2 and O2 in VLE for constant liquid

mole fractions xN2=xO2=0.0025 is shown in the temperature range from −55 to −20 ◦C.

The results from all three models agree well, proving the reliability of the thermodynamic

models presented in this work.

7 Conclusion

In this work three thermodynamic approaches, i.e. a molecular model, the Peng-Robinson

EOS, and a model based on Henry’s law constants, were used to investigate the VLE

of the ternary mixture N2+O2+CO2 in the temperature range from −55 to −20 ◦C. A
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thorough validation by comparison to experimental VLE data was made, where possible.

The molecular model and the Peng-Robinson EOS are appropriate throughout, except

in the critical region. For the very CO2-rich region, which is important for purification

processes, the computationally convenient Henry model can be used reliably.
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List of symbols

Latin Letters

a parameter of Peng-Robinson equation of state

A coefficients of correlation

b parameter of Peng-Robinson equation of state

fQ trigonometrical function depending on molecular orientations

H Henry’s law constant

i molecule index

j molecule index

kB Boltzmann’s constant, kB = 1.38066·1023 J/K

kij binary parameter of Peng-Robinson equation of state

L elongation

m molecular mass

M membrane mass parameter

n exponent of correlation

p pressure

Q quadrupolar momentum

R ideal gas constant

T temperature

u pair potential

v molar volume

V extensive volume

x mole fraction in liquid phase

y mole fraction in vapor phase
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Greek Letters

γ activity coefficient

ε Lennard-Jones energy parameter

ξ binary interaction parameter

µ chemical potential

ρ number density

σ Lennard-Jones size parameter

φ fugacity coefficient

ψ potential energy of test molecule

ω acentric factor

Subscripts

a count variable for molecule sites

A related to component A

b count variable for molecule sites

B related to component B

c critical value

i related to component i

ij related to components i and j

j related to component j

m mixture

Q quadrupole
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Superscripts

∞ at infinite dilution

s saturated

Abbreviations

2CLJ two-center Lennard-Jones

2CLJQ two-center Lennard-Jones plus point quadrupole

EOS equation of state

NpT isobaric-isothermal ensemble

NV T canonic ensemble

µV T grand canonical ensemble

VLE vapor-liquid equilibria

Vector properties

rij center-center distance vector between two molecules i and j

ω orientation vector of a molecule
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Table 1: Parameters of the molecular models for the pure fluids, taken from [46].

Fluid σ/Å (ε/kB) /K L/Å Q/DÅ
N2 3.3211 34.897 1.0464 1.4397
O2 3.1062 43.183 0.9699 0.8081
CO2 2.9847 133.22 2.4176 3.7938

Table 2: Binary interaction parameters of the molecular model, taken from [48].

Mixture ξ
N2 + O2 1.007
N2 + CO2 1.041
O2 + CO2 0.979

Table 3: Pure substance parameters of the Peng-Robinson EOS, taken from [54].

Fluid Tc/K pc/MPa ω
N2 126.19 3.3958 0.0372
O2 154.58 5.0430 0.0222
CO2 304.13 7.3773 0.2239
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Table 4: Binary parameters of the Van der Waals one-fluid mixing rule adjusted in the
present work.

Mixture kij

N2 + O2 −0.0119
N2 + CO2 0.0015
O2 + CO2 0.124

Table 5: Parameters of the vapor pressure correlation for CO2, taken from [59].

i Ai ni

1 −6.95626 1
2 1.19695 3/2
3 −3.12614 3
4 2.99448 6

Table 6: Minimum mole fractions of CO2 in the liquid and vapor where the Henry model
deviates by less than 2 % from the molecular model and the Peng-Robinson EOS.

T/◦C xCO2 yCO2

−20 0.994 0.872
−35 0.995 0.811
−55 0.996 0.706
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