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Abstract

An automatized procedure for the parameterization of fundamental equations of state (EOS) that are explicit in

terms of the Helmholtz energy and are based on molecular simulation data is presented. The simulation runs

are carried out via a cloud-based framework that combines multiple, distributed computing resources. A user-

friendly graphical user interface ensures that minimal knowledge about the background operations is required.

In order to exemplify the capabilities of this approach an EOS for ethylene oxide is created and compared to data

from the literature.
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1. Introduction

Thermodynamic data are essential for the design and optimization of chemical engineering processes. Typ-

ically, the chemical industry is relying on experimental investigations to generate such data. Depending on the

type of fluid, this undertaking is difficult to conduct or in the case of hazardous substances, e.g. being explo-

sive, toxic or mutagenic, this might even be practically impossible. As an attractive alternative route, molecular

modelling and simulation on the basis of classical force fields has been proven to be an adequate method due

to the steady developments of the last decades. Along with its powerful predictive capabilities, large datasets of

thermophysical data can be rapidly produced with considerably less effort than laboratory measurements.

It has recently been shown that molecular simulation data are useful for the construction of empirical funda-

mental equation of state (EOS) correlations that are explicit in terms of a thermodynamic potential [1, 2, 3, 4],

which is most often the Helmholtz energy [5]. Thermodynamic potentials are essential building blocks of ther-

modynamics, because every other time-independent thermodynamic property can be obtained as a combination

of their partial derivatives with respect to their independent variables. Unfortunately, the exact mathematical

expression of a thermodynamic potential, with the exception of very simple systems (e.g. ideal gas or some hard-

body fluids), is unknown. The construction of an EOS therefore necessarily means that the mathematical form

of such a correlation has to be fitted to thermodynamic data. Once the parameterized correlation is available, it
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provides thermodynamic data in a consistent manner and can be used to inter- and extrapolate between or beyond

the underlying data points. More importantly, EOS have the ability to yield all thermodynamic data, and not just

the ones considered in their fitting process. Naturally, the more thermodynamically independent properties are

considered during the construction of EOS, the better the representation of other properties. Therefore, in or-

der to create such a correlation, a large number of independent thermodynamic data points has to be available.

This scenario is the application field for the statistical mechanical formalism proposed by Lustig [6, 7]. With

this formalism, the derivatives of the Helmholtz energy up to arbitrary order can be obtained at a given state

point by a single canonical (NVT) ensemble molecular simulation run [6, 7]. This formalism also exists for the

entropy derivatives in the microcanonical (NVE) ensemble [6, 7]. Since any thermodynamic property is just a

combination of these derivatives, this represents the full set of thermodynamically independent data. Due to this

improvement on availability, reliable EOS can very efficiently be fitted on the basis of molecular simulation data

only.

However, setting up molecular simulation runs and fitting EOS requires considerable manual effort and ex-

pertise. Maginn [8] pointed out that molecular simulation has to overcome some barriers in order to become

a mainstream tool in chemical engineering. One of these barriers is the time which is necessary to set up and

analyze a molecular simulation run compared to its actual runtime. Furthermore, there are few software packages

which are able to yield all properties that are important for the chemical industry (e.g. phase equilibria, gas sol-

ubility, heat capacity, density, etc.) [8]. Hence, the goal of this work is to automatize and optimize this workflow

by combining the molecular simulation tool ms2 [9] with an EOS fitting algorithm and embedding this into a

cloud-based simulation framework which requires minimal knowledge about the background operations, and has

a simple graphical user interface (GUI) for creating the necessary input for simulations. In the background, a job

manager efficiently allocates the molecular simulation runs to the available high performance computing (HPC)

resources. Once the simulation runs are terminated and the results are ready, the empirical EOS correlation is

fitted and its parameters are returned, along with the quality of representation of the simulation data. Thus, the

development of EOS is essentially becoming an automatic process. In this work, the capabilities of this approach

and the resulting EOS are compared for ethylene oxide with experimental data from the literature and with the

recently published EOS by Thol et al. [4] for this fluid, that we consider as a reference here.

2. Fundamental equation of state correlation

The present EOS correlation is explicit in terms of the Helmholtz energy a. It is common to separate a into

an ideal contribution ao and a residual contribution ar

α(T, ρ) =
ao(T, ρ) + ar(T, ρ)

RT
= αo(T, ρ) + αr(T, ρ) = αo(τ, δ) + αr(τ, δ), (1)

with the inverse reduced temperature τ = Tc/T , the reduced density δ = ρ/ρc and the molar gas constant

R = 8.3144621 J · mol−1 · K−1 [10], where Tc is the critical temperature and ρc is the critical density. The

ideal contribution ao, which only depends on the properties of single molecules, can usually be obtained from
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spectroscopic data or ab initio calculations, whereas the much more demanding residual contribution is the

target of molecular simulation because it depends on the interactions between the molecules. The empirical

equation that represents the residual contribution to the reduced Helmholtz energy αr consists of polynomial and

exponential terms

αr(τ, δ) =

Npol∑
k=1

nkτ
tkδdk +

Nexp∑
k=Npol+1

nkτ
tkδdk exp(−δlk). (2)

In general, the simultaneous optimization of coefficients nk, exponents tk, dk, lk as well as the number and

type of polynomial and exponential terms requires expert use of complex non-linear fitting algorithms [5, 11].

Assuming that a sufficient amount of thermodynamic data is available, such an effort usually takes months or

years, requiring a high level of human intervention and experience. The recently published EOS of Thol et

al. [4] for ethylene oxide is such a model, and was therefore chosen as a reference in the present work. In

the fitting process of that EOS [4], both experimental and molecular simulation data were used. Nonetheless,

such an approach is currently not feasible in an automatized EOS development process. There are, however,

recommendations in the literature for the functional form and the values of the exponents tk, dk, lk of correlations

that have proven to be a good choice for a large number of fluids. These are for example the 10- and 12-term EOS

by Span and Wagner [5, 12], the 14-term EOS by Sun and Ely [13] and the MBWR EOS [14], which consists of

40 terms when transformed into the Helmholtz energy representation [5]. In this work the MBWR EOS [14] was

chosen to represent the molecular simulation data set. Such generalized EOS have the advantage that, since the

exponents tk, dk, lk in Eq. (2) are known, the task at hand reduces to the fitting of the coefficients nk, which can

be done in a fully automatized manner and has a response time of seconds, e.g., with the algorithm for weighted

multiproperty fits of Hust and McCarty [15], in which the weight corresponds to the statistical uncertainty of the

underlying molecular simulation data. The values of the coefficients tk, dk, lk and nk for the present EOS can

be found in table 1.

3. Software Architecture

Due to the volume of calculations in the field of molecular simulation, researchers typically rely on large

computing infrastructure. Here, a single molecular simulation run is relatively time intensive and the database

required to parameterize an EOS should contain results from a large number of independent simulation runs at

different state points that cover a large part of the fluid region. Thus, the total computational effort is extensive.

However, besides the scalability of an individual simulation run, multiple instances for the different state points

can be executed in an embarrassingly parallel fashion. Therefore, the simulation can be scaled both in horizontal

and vertical direction, i.e. with respect to number of instances and parallel execution of a single instance.

A highly accurate calculation of thermodynamic properties at a given state point with ms2 currently requires

approximately 20 hours on 32 cores. For one EOS, between 100 and 1’000 state points need to be evaluated.

Thus, even with exclusive access to a small compute cluster, the calculation can take months. At the same
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Table 1: Parameters for the residual part of the reduced Helmholtz energy αr(τ, δ) according to Eq. (2). Note that only the coefficients nk

were fitted in the automatized procedure, the exponents tk , dk , lk were taken from the literature [14].
k nk tk dk lk
1 -0.444761941 0 1 0
2 4.295500322 0.5 1 0
3 -6.304073590 1 1 0
4 2.495663889 2 1 0
5 -1.413871625 3 1 0
6 0.122634301 0 2 0
7 -0.403993247 1 2 0
8 0.953802102 2 2 0
9 3.626258062 3 2 0

10 -0.005286229 0 3 0
11 0.167724139 1 3 0
12 -0.261302669 2 3 0
13 0.037473360 1 4 0
14 -0.148085338 2 5 0
15 -0.112161698 3 5 0
16 0.056427170 2 6 0
17 -0.005390223 2 7 0
18 0.010228306 3 7 0
19 -0.001370416 3 8 0
20 -15.487760440 3 0 0
21 -0.079331908 4 0 0
22 0.006185345 5 0 0
23 15.486057470 3 0 2
24 0.081647538 4 0 2
25 -0.007000321 5 0 2
26 10.769184560 3 2 2
27 1.108403574 4 2 2
28 -0.210854465 5 2 2
29 3.440671002 3 4 2
30 0.841327903 4 4 2
31 -0.256828769 5 4 2
32 0.416506137 3 6 2
33 0.492487787 4 6 2
34 -0.007594133 5 6 2
35 0.123791118 3 8 2
36 0.027697626 4 8 2
37 -0.042799502 5 8 2
38 -0.005719867 3 10 2
39 0.022433309 4 10 2
40 0.002604667 5 10 2
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Figure 1: Distributed execution of molecular simulation runs through the High Performance Computing (HPC) cloud. SSH: Secure Shell;
SCP: Secure Copy Protocol; JMS: Java Messaging Service.

time, filling a HPC machine with relatively small computing jobs is not viable, because these machines are

intended for large scale jobs. Typically, a limited number of small jobs is welcomed, as this facilitates charging

HPC machines to capacity. Therefore, distributing the work load across multiple machines is the most sensible

approach, cf Figure 1.

To enable the execution of such a large scale simulation workflow, a significant amount of heterogeneous

compute resources needs to be allocated dynamically. Here, the simulation workflow was concurrently deployed

across multiple HPC systems on a cloud infrastructure. This cloud-based molecular simulation framework is

aware of the available resources, initiates the simulations automatically and adapts dynamically to the actual

execution time of individual simulation runs. A web browser interface allows for straightforward deployment

from a regular workstation. The user is guided through the simulation setup with explanations, requiring minimal

expertise.

Besides integrating the simulation software ms2, the framework introduces an additional user-controlled

cloud environment, offering personalized and isolated front-ends with more flexibility in comparison to tradi-

tional HPC login nodes. Custom images can be deployed, root access be granted and additional services (e.g.

MySQL, license server) as well as infrastructures (virtual machine internal networks, persistent/shared storage,

external firewalls, etc.) can be operated directly. Another advantage is that users can submit their jobs to different

HPC systems through a single application programming interface (API), since the ff-Middleware layer provides

an abstraction of the actual batch-system. The present system architecture introduces a three-layer structure, i.e.

web user interface, web application/service and calculation layer, cf. Figure 2.

Web User Interface: The web-based GUI runs as a part of the web browser on e.g. a desktop computer using
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Figure 2: Components of the ms2 Job Manager.

advanced HTML5 and JavaScript techniques in order to provide a dynamic user interface, which allows users to

configure, execute, monitor and view the results of the molecular simulation instances running in the cloud.

Job Manager: On the middle layer, a software component called ms2 Job Manager was designed to provide

a set of services, implementing a Service Oriented Architecture (SOA), which is exploited both from internal

and external components and allows for better scalability, maintainability and availability. The provided services

allow to:

• Prepare and upload/download input/output files to/from the HPC systems in the background (Data Man-

ager)

• Submit the simulation jobs to the portable batch system (PBS) queue on HPC systems (Execution Manager)

• Monitor the job execution (Job Monitor)

• Store the history data in terms of simulation configurations, input/output data, provenance and tracking

information (MySQL database)

Thus, users can perform complex simulation workflows on distributed computing resources by simply click-

ing a few buttons. Therefore, many of the obstacles that currently confound the delivery, accessibility and

usability of traditional, non-service-oriented simulation applications are avoided.
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Figure 3: Web interface of the cloud-enabled molecular simulation. First step: specification of simulation conditions.

4. Workflow

The procedure of the cloud-based EOS creation is briefly described in the following. In a first step, the

molecular force field model and the state points are specified, cf. Figure 3. This can be done by defining a grid

or by clicking into the temperature-density plane. It is important to distribute the state points relatively evenly,

covering the entire homogeneous fluid region of interest. In a preceding publication [2], it was shown that at

least 100 state points should be specified for that purpose. Although vapor-liquid equilibrium (VLE) data are

generally employed in EOS fitting, they are not necessarily required here if the homogeneous region is very well

sampled. Additionally, some simulation settings, like the number of simulation steps and the number of compute

nodes, have to be supplied. When the start button is activated, the calculations are distributed to the available

resources and the status of each simulation is indicated by the color of the particular state point (grey: pending,

yellow: queued, blue: running, green: successfully terminated).

When the simulations are completed, the fitting GUI can be opened, cf. Figure 4. In addition to some basic

options, like type of EOS or number of iterations, some fluid specific settings, e.g. a rough estimate of the fluid’s

critical point for EOS fitting, have to be specified. If the critical point is not known, it is important to initially

start fitting with an isotherm which is likely to be higher than the critical temperature. Otherwise, the isotherm

could contain state points in the vapor-liquid two-phase region.

As a result of this procedure, the saturated liquid and saturated vapor density curves are displayed, cf. Figure

5. It is possible to restart the fitting with adjusted parameters or return to the previous GUI to add further state

points.
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Figure 4: Web interface of the cloud-enabled molecular simulation. Second step: initial settings for EOS fitting.

Figure 5: Web interface of the cloud-enabled molecular simulation. Third step: adjustment of the fitting details.

8



Figure 6: Distribution of the molecular simulation state points in the homogeneous fluid region. The symbols represent different isotherms.

5. Underlying molecular simulation data

The automatized creation of the simulation data set is based on the statistical mechanical formalism proposed

by Lustig [6, 7] which was used here in its NVT ensemble form. This formalism was designed to yield any resid-

ual Helmholtz energy derivative Ar
mn (for m > 0 or n > 0) at a given state point, specified by its temperature

and density, from a single simulation run per state point. These derivatives are exactly the properties that can

be obtained by deriving eq. (2) with respect to its independent variables, i.e. reduced inverse temperature τ and

reduced density δ

Ar
mn = τmδn

∂m+nαr(τ, δ)

∂τm∂δn
= (1/T )mρn

∂m+nαr(1/T, ρ)

∂(1/T )m∂ρn
, (3)

because in τ = Tc/T and in δ = ρ/ρc the critical temperature Tc and the critical density ρc are constants.

Consequently, each Ar
mn result from a molecular simulation run represents a new analytical derivative of eq. (2)

and stands for a new equation. The complete set of such equations forms a system of linear equations that has to

be solved for the coefficients nk, which can be done with the algorithm of Hust and McCarty [15].

The dataset of the present work was generated using the molecular simulation toolms2 [9]. For each sampled

state point ms2 yields every of the following derivatives: Ar
10, Ar

01, Ar
20, Ar

11, Ar
02, Ar

30, Ar
21, Ar

12. However,

it is not always necessary to include all of them into the EOS fitting in order to have a good representation for

all of them. Here, only four derivatives Ar
10, Ar

01, Ar
20, Ar

11 at 205 state points in the homogeneous fluid region

were used, cf. Figure 6. Since all of these derivatives are thermodynamically independent, the database for the

EOS fitting process is large (820 independent data points).

A single NV T Monte Carlo simulation [16] was performed at each state point and then sampled according

to Lustig’s formalism [6, 7]. The simulations were based on the molecular interaction model of Eckl et al. [17]

that won the Fourth Industrial Fluid Properties Simulation Challenge in 2008 [18]. The model was optimized to

experimental vapor pressure, saturated liquid density and heat of vaporization data as functions of temperature,

which is a standard practice today. Its parameters and additional simulation details can be found in the appendix.
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It should be pointed out that the accuracy of the EOS with respect to experimental data depends in the present

context on two factors: (1) The quality of the molecular model that represents ethylene oxide here. (2) The

representation quality of the simulation data by the EOS.

The investigation of factor (2) is the subject of this paper. Factor (1), the quality and efficient optimization of

molecular models, is crucial when comparing molecular simulation data with experimental results, and this topic

is perhaps the most discussed issue in the simulation community. It is generally accepted, however, that molecular

models can, and often do, perform well for state points, properties and scenarios that were not considered during

their optimization. This assumption is supported by our previous findings, in which numerous EOS correlations

based on experimental data were compared with Ar
mn simulation results based on molecular models that were

optimized exclusively to experimental VLE data [1].

6. Results

In order to validate the automatically generated EOS, its representation of the input data from molecular

simulation was assessed. Furthermore, it was compared to experimental data from the literature, references

can be found in Table 2, and to correlations thereof [19, 20]. This comparison was done on the basis of VLE

properties, i.e. vapor pressure, saturated liquid density, saturated vapor density and heat of vaporization.

The agreement of the present EOS with the Helmholtz energy derivatives from molecular simulation can be

seen in terms of the relative deviation plots in Figure 7. The symbols refer to the isotherms introduced in Figure

6. Figure 7 shows that for an increasing order of the derivatives the representation of the molecular simulation

data gets worse, mostly due to the larger statistical uncertainties of the simulation data. Ar
10 andAr

01 agree mainly

within ± 2 %, whereas Ar
20 and Ar

02 agree mainly within ± 10 %. The other Helmholtz energy derivative (i.e.

Ar
11) deviates within ± 4 %. Deviation Data for Ar

30, Ar
21, Ar

12 are not shown, since their statistical uncertainties

are rather high compared to the other derivatives. Which is why the EOS always meets Ar
30, Ar

21, Ar
12 within

their uncertainties. Note that the numerical values for the residual reduced Helmholtz energy Ar
mn are rather

small, resulting in large relative deviations while the absolute deviations are small too, cf. Figure 8. It is apparent

from the deviation plots that the generalized MBWR EOS performs quite well to fit the entire dataset.

Figure 9 shows the relative deviations in terms of the vapor pressure. The baseline in all VLE deviation

plots represents the reference EOS by Thol et al. [4], which is more advanced and of higher quality than the

one automatically generated in this work. It can be seen that the agreement between the present EOS and the

experimental data below 260 K is poor. Between 290 and 470 K, the agreement gets more reasonable with

deviations of under 2.5 % compared to the EOS by Thol et al. [4] Since the EOS created in this work is based

exclusively on the molecular model by Eckl et al. [17], it coincides well with their simulation data. In Figure

10, comparisons for the saturated liquid density data are presented. In the range where most experimental data

are available, i.e. from 220 to 320 K, the present EOS agrees within 1 % to the reference EOS [4] and the

experimental data. At higher temperatures, the saturated liquid density is overestimated, yielding deviations of

up to +5 % at 440 K.
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Table 2: Experimental data for ethylene oxide from the literature. The units as given in the sources were converted into SI units and the
temperature is given in terms of the international temperature scale of the 1990 standard (ITS-90). Data points calculated from an ancillary
equation are marked with an asterisk.

Source Year Data Temperature Pressure
points range (K) range (MPa)

Homogeneous density
Lide [21] (1) 2005 1 273.15 0.101325
Walters & Smith [22] (1) 1952 81 294−428 0.006−3.448
Overall (3) 82 273−428 0.006−3.448
Vapor pressure
Calado et al. [23] 1996 1 182.33 0.0001
Chao et al. [24] 1986 1 283.71 0.101325
Coles & Popper [25] 1950 17 273−305 0.067−0.221
Giauque & Gordon [26] 1949 14 223−286 0.004−0.108
Giles & Wilson [27] 2006 2 298−349 0.174−0.767
Gillespie et al. [28] 1985 2 283−299 0.101−0.174
Hess & Tilton [29] 1950 1 293.14 0.1462
Kistiakowsky & Rice [30] 1940 1 283.84 0.101325
Lide [21] 2005 3 283−284 0.101−0.100
Maass & Boomer [31] 1922 21 216−286 0.002−0.110
McDonald et al. [32] 1959 11 284−239 0.103−0.012
Mock & Smith [33] 1950 10 322−423 0.379−3.827
Olson [34] 1977 3 273−324 0.065−0.394
Frenkel et al. [19]* 2013 17 160−469 0.000−7.207
Walters & Smith [22] 1952 12 294−469 0.151−7.192
Overall (3) 99 182−423 0.000−3.827
Saturated liquid density
Auwers [35] 1918 2 279.20 −
Comelli & Francesconi [36] 1991 11 288−304 −
Comelli & Francesconi [37] 1995 1 298.15 −
Comelli & Francesconi [38] 1996 2 298−314 −
Francesconi & Comelli [39] 1994 1 298.15 −
Francesconi & Comelli [40] 1995 1 298.15 −
Maass & Boomer [31] 1922 16 222−294 −
Olson [34] 1977 3 273−324 −
Perkinsen [41] 1893 1 280.15 −
Frenkel et al. [19]* 2013 17 160−469 −
Walters & Smith [22] 1952 12 294−469 −
Wurtz [42] 1863 1 273.15 −
Overall (3) 51 222−469
Saturated vapor density
Olson [34] 1977 3 273−324 −
Frenkel et al. [19]* 2013 20 377−469 −
Walters & Smith [22] 1952 12 294−469 −
Overall (3) 15 273−469
Speed of sound
Hurly [43] 2002 334 285−440 0.049−1.020
Overall (3) 334 285−440 0.049−1.020
Enthalpy of vaporization
Cox & Pilcher [44] 1970 1 298.10 −
Rowley et al. [20] * (2) 2006 30 160−423 −
Giauque & Gordon [26] 1949 1 283.65 −
Lange & Dean [45] 1973 1 283.75 −
Lide [21] 2005 2 283−299 −
Matheson [46] * 1980 5 233−294 −
Reid et al. [47] 1977 1 283.66 −
Timmermans [48] 1965 1 288.10 −
Walters & Smith [22] * 1952 11 294−461 −
Washburn [49] (1926−1933) 1 286.10 −
Yaws [50] * 1977 15 173−454 −
Overall (3) 8 283−299
(1) One of the data points is located in the two-phase region and was thus
neglected in the following.
(2) Calculated from the Clausius-Clapeyron equation.
(3) The overall values do not include any data derived from ancillary equations.
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For the saturated vapor density, only very little experimental data are available, cf. Figure 11. From 270

to 420 K, the deviations of the present EOS compared to the equation of Thol et al. [4] are within ±4 %. In

the vicinity of the critical point the agreement is worse. Figure 12 shows the deviations with respect to the

heat of vaporization. At temperatures below 335 K the experimental data and the EOS by Thol et al. [4] are

underestimated by the present EOS, above 335 K they are overestimated. Furthermore, the ancillary equation

from the DIPPR database is reproduced well at higher temperatures. The agreement between the simulation data

by Eckl et al. [17] and the present EOS is consistently good. Deviation plots for density and speed of sound in the

homogeneous fluid region can be found in Figures C.13 and C.14. At lower pressures, the present EOS and the

one by Thol et al. [4] agree similarly well with the experimental data for the speed of sound and the homogeneous

density. At higher pressures the representation of the present EOS gets worse, resulting in a maximum relative

deviation of around -0.4 % for the speed of sound and around +3.0 % for the homogeneous density.

Conclusion

The cloud-based molecular simulation framework developed here allows for the automatic execution of large-

scale simulation workflows across multiple, distributed computing resources. Simulations were concurrently

deployed across two HPC systems, a Cray supercomputer and a large compute cluster. Carrying out a full

workflow, i.e. defining the system, preparing and executing simulation runs and fitting the final EOS, is simplified

to a few clicks in a user-friendly interface, thus enabling non-expert users to create fundamental EOS in a matter

of days. The fully automatized generation of EOS on the basis of molecular modelling and simulation is a

valuable process that is well supported by the powerful capabilities of cloud computing. This avoids most of

the obstacles that currently confound the delivery, accessibility and usability of this non-service-oriented type of

simulation on state of the art computing resources. According to the proposals of Maginn [8] the present work

provides a contribution to making molecular simulation more accessible, hopefully encouraging more entities to

use such techniques.
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Figure 7: Relative deviation of the residual Helmholtz energy derivatives from molecular simulation to the present fundamental equation of
state (baseline). Symbols refer to different isotherms.
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Figure 8: Absolute deviation of the residual Helmholtz energy derivatives from molecular simulation to the present fundamental equation of
state. Symbols refer to different isotherms.
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at 340 K and 0.02 % at 235 K).
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Figure 11: Comparison of the present fundamental equation of state with the one by Thol et al. [4] (baseline) and experimental data for the
saturated vapor density. The asterisk marks an ancillary equation and the paragraph symbol indicates molecular simulation data by Eckl et
al. [17]. The statistical uncertainty of the molecular simulation data decreases gradually with decreasing temperature (0.5 % at 410 K, 0.3 %
at 340 K and 0.08 % at 270 K).
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Figure 12: Comparison of the present fundamental equation of state with the one by Thol et al. [4] (baseline) and experimental data for the
enthalpy of vaporization. The asterisk marks ancillary equations and the paragraph symbol indicates molecular simulation data by Eckl et al.
[17]. The statistical uncertainty of the molecular simulation data decreases gradually with decreasing temperature (0.2 % at 410 K, 0.04 %
at 340 K and 0.04 % at 235 K).
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Appendix A. Simulation details

At each state point 864 particles were sufficiently equilibrated and then sampled for 2 million production

cycles withNV T Monte Carlo simulations [16]. The cut-off radius was set to be half the length of the simulation

box. Electrostatic long-range corrections were approximated by the reaction field method [51].

Appendix B. Molecular model

The coordinates and parameters of the molecular model for ethylene oxide are given in Table B.3. The model

consists of three Lennard-Jones sites and one point dipole and was optimized to experimental data for vapor

pressure, saturated liquid density and enthalpy of vaporization.

Table B.3: Sigma (σ) and epsilon (ε) are the length and energy parameters of the Lennard-Jones (LJ) potential, respectively. kB is the
Boltzmann constant. µ denotes the dipole moment of the point dipole. All coordinates are given in a principal axes system with respect to
the center of mass. The orientation of the point dipole is defined with Euler angles: ϕ is the azimuthal angle with respect to the x-y-plane
and θ is the inclination angle with respect to the z-axis.

Site x/Å y/Å z/Å σ/Å ε/kB/K θ/deg ϕ/deg µ/D
CH2 0.78 0 -0.48431 3.5266 84.739
CH2 -0.78 0 -0.48431 3.5266 84.739

O 0 0 0.73569 3.0929 62.126
Dipole 0 0 0 0 0 2.459

Appendix C. Additional data
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Figure C.13: Comparison of the present fundamental equation of state (top) with the one by Thol et al. [4] (bottom) for the speed of sound
w. Experimental speed of sound data by Hurly [43] (C) are plotted.

17



3.0
2.0
1.0
0.0
1.0
2.0
3.0 Present work

10 2 10 1 100

 / MPa

3.0
2.0
1.0
0.0
1.0
2.0
3.0

(
)/

Thol  .

| |

Figure C.14: Comparison of the present fundamental equation of state (top) with the one by Thol et al. [4] (bottom) for density ρ in
homogeneous fluid states. Experimental data by Walters and Smith [22] (◦) are plotted.
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