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Abstract

The accuracy of water models derived from ab-initio molecular dynamics simula-
tions by means on an improved force-matching scheme is assessed for various thermo-
dynamic, transport and structural properties. It is found that although the resulting
force-matched water models are typically less accurate than fully empirical force fields
in predicting thermodynamic properties, they are nevertheless much more accurate
than generally appreciated in reproducing the structure of liquid water and in fact
superseding most of the commonly used empirical water models. This development
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dictive potential energy functions based on accurate ab-initio MD simulations for a
large variety of different systems.
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The accuracy of water models derived from ab-initio molecular
dynamics simulations by means on an improved force-matching scheme is assessed for a
large variety of different thermodynamic, transport and structural properties. It is found
that although the resulting force-matched water models are typically less accurate than fully
empirical force fields in predicting thermodynamic properties, they are nevertheless much
more accurate than generally appreciated in reproducing the structure of liquid water.
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1 Introduction

Since the very first application of molecular dynamics (MD) to realistic systems1, liquid

water has been one of the most thoroughly studied systems and is arguably the most im-

portant liquid because of its role in chemistry, physics and biology2,3. In fact, the chemistry

of living things crucially depends on the interplay of its unusual properties and anomalous

behaviour and it is hard hard to imagine life without it4. It is also a desirable “green”

solvent that offers great economic, safety and environmental benefits, since it is inexpensive,

non-flammable and nontoxic at the same time5. Yet, in synthetic organic chemistry, water

is generally not a popular choice of solvent. On the one hand because the oxygen atom of

water molecules are rather reactive and may themselves react with the organic compounds,

and, on the other hand, since most organic molecules are nonpolar and thus hydrophobic,

which causes that the reactant are insoluble in liquid water. However, rather recently, the

use of water as a solvent for organic synthesis was popularized by Sharpless and coworkers,

who recognized that many important organic reactions exhibit greatly enhanced selectivity,

improved yields and dramatically reduced reaction time when floating “on-water”6–8. There-

fore, the behavior and properties of liquid water have been the subject of extensive scientific

investigation9–11. Nevertheless, a detailed understanding of liquid water is still lacking2,12,13.

This is a consequence that studying liquid water in silico is rather challenging, which is due

to the difficulties in accurately modeling the numerous physical phenomena that conspire

to make water unique, such as the cooperativity of the hydrogen bond (HB) network14,15,

strong permanent dipole moment, large polarizability effects and sizeable nuclear quantum

effects9.

Ab-Initio molecular dynamics (AIMD)16–18, where the interatomic forces are calculated

on-the-fly by accurate electronic structure calculations, has become widespread in computa-

tional studies of liquid water19–42. Despite constant advances in high-performance comput-

ing, the computational cost of AIMD has limited the attainable length- and timescales in

defiance of substantial progress17,43. Therefore, great effort has been spent into developing

empirical water potentials, which are fitted so as to reproduce experimental data, such as

the structure factor, radial distribution function (RDF), heat of vaporization, vapor-liquid
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equilibria (VLE), as well as the density maximum of liquid water44–50. Despite the fact that

these force fields are typically remarkably successful in reproducing the underlying experi-

ments, the transferability to regions of the phase diagram that are different from those in

which they have been fitted is restricted.

Nevertheless, it is possible to circumvent the latter by deriving water potentials from

parameter-free electronic structure calculations51–57. Apart from the trivial finite differ-

ence scheme50, there a various different techniques to parameterize water models to match

ab-initio data such as inverse Monte Carlo58,59, iterative Boltzmann inversion60 or force-

matching61 approaches. In this work, we assess the general accuracy, with a specific emphasis

on thermodynamic quantities, of force-matched water potentials derived from first-principles

electronic structure calculations as obtained by the recently devised improved force-matching

method of Spura et al.62.

The remainder of this paper in organized as follows. In section 2, we revisit the force-

matching scheme to derive the parameters of a rigid, non-polarizable TIP4P-like water model.

The computational details are described in Section 3, whereas in Section 4, the results as

obtained by MD and Monte Carlo (MC) simulations are discussed. Section 5 is devoted to

conclusion.

2 Force Matching

The force-matching technique of Ercolessi and Adams61, where the interaction potential

is derived so as to mimic the forces of accurate reference calculations, not only includes

many-body environmental effects, but also allows to employ a rather high level of theory

since in general relatively few electronic structure calculations are required. At variance to

parametrization schemes that rely on Henderson’s theorem63, no computationally expensive

generation of reference RDF from first-principle by means of ab-initio MD is required19–42.

Specifically, to determine the parameters of an arbitrary interaction potential based on first-

principles force calculations for a set of given configurations, we minimize the normalized L1
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force distance

‖δF ‖1 =
1

3

〈
N∑
i=1

∑
α∈(x,y,z)

[
|FQM

i,α − F FF
i,α |

σi

]〉
, (1)

where N is the number of atoms and σi for the standard deviation of the force distribution

Fi,α of atom i in directions α ∈ (x, y, z), while 〈· · ·〉 implies the ensemble average of the

selected configurations. The quantum mechanical reference forces are denoted as FQM
i,α ,

while F FF
i,α are the nuclear forces of the classical interaction potential, respectively.

However, the minimization of Eq. 1 with respect to the variational parameters of F FF
i,α

represents an ill-posed problem, in particular when including atomic partial charges in the

optimization procedure. As a consequence, the optimization may not be stable for small

variations of the corresponding parameters. This is reflected in an error landscape with

many saddle points and flat areas, where the Hessian matrix is nearly singular, which leads

to numerical inaccuracies because of the limited precision of floating point arithmetic. Thus,

an important problem of gradient-based minimization methods is the particular form of the

objective function, whose derivative with respect to partial charges is often found to be

ill-conditioned.

Although it is possible to ameliorate this difficulty by augmenting the penalty function

with additional properties, such as the total force or torque with its respective weights64–66,

this is circumvented here by means of the sequential least-squares quadratic programming

method (SLSQP) together with physically-sensible bound constraints67. The SLSQP scheme

treats the original problem as a sequence of constrained least-squares problems, which is

equivalent to a quadratic programming algorithm for nonlinearly-constrained gradient-based

optimization, hence its name. More precisely, each SLSQP step involves solving a quadratic

approximation of the original objective function, where the linear term is the gradient and

the quadratic term is an approximate Hessian, with first-order affine approximations of the

nonlinear constraints. The approximate Hessian, which is initialized to the identity matrix,

is continuously updated, while maintaining it positive definite, based on the gradients and

function values at subsequent steps similar to the BFGS quasi-Newton scheme68. Therefore,

like any quasi-Newton method, the true Hessian is only approached in the limit of many

iterations close to the minimum. Because of the ill-posed nature of the problem, we search
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for the minimum along the direction of the modified quasi-Newton scheme by first bracketing

the minimum and then using Brent’s method69. Contrary to more elaborate techniques that

exploit gradient information, the availability of the function’s derivative is not required here.

However, it should be noted that this procedure offers no guarantee about whether the global

minimum of the optimization function is indeed found.

3 Computational Details

For the purpose to generate first-principles-based water models from ab-initio MD simula-

tions that are as transferable as possible, we have extracted 1500 decorrelated snapshots from

path-integral MD simulations70 consisting of 125 water molecules in the isobaric-isothermal

(NpT ) ensemble using the q-TIP4P/F water potential of Habershon et al.71. More precisely,

we have selected 125 different configurations at 1 bar pressure for each temperature over

the whole liquid temperature range between 248 K to 358 K. Therefore, the resulting water

model was not just parametrized to a single state point at ambient conditions, but over a

wide range of state points from undercooled to nearly saturated liquid water.

Force matching, as alluded to above, was conducted using reference forces from density

functional theory (DFT) calculations72,73. Specifically, the mixed Gaussian and plane wave

approach74, as implemented in the CP2K/Quickstep code, was employed75. In this ap-

proach the Kohn-Sham orbitals are represented by a TZV2P Gaussian basis set76, while

the charge density is expanded by plane waves using a density cutoff of 320 Ry. The ex-

change and correlation (XC) energy was described by the Tao-Perdew-Staroverov-Scuseria

(TPSS) meta-generalized gradient approximation77, and norm-conserving Goedecker-Teter-

Hutter pseudopotentials were used to describe the interactions between the valence electrons

and the ionic cores78,79. Van der Waals interactions, which are typically neglected by com-

mon local and semi-local XC functionals, were approximated by an additional, attractive

pair-potential80,81. In its most recent and elaborate form, the latter is referred to as D3

correction82.

The parameters of the q-TIP4P/F-like water potentials were obtained by minimizing

Eq. 1 using the SLSQP algorithm of Kraft with a convergence tolerance of 10−6 between the
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individual iterations67. Gradients with respect to the various variational parameters were

computed using finite differences with a displacement of 10−8. The initial parameters were

taken from the original q-TIP4P/F water model71. The resulting DFT-based water model

is denoted as TIP4P/TPSS-D3 in the following62. The usage of the TPSS XC functional is

due to the observation that, when combined with Grimme’s D3 correction82, the resulting

TPSS-D3 level of theory is remarkable accurate in reproducing the structure of liquid wa-

ter62. In fact, as will demonstrated in the present paper, when comparing with the recently

revised experimental x-ray and neutron measurements83,84, the present TIP4P/TPSS-D3

water model is even more accurate than most of the commonly used empirical water poten-

tials. Nevertheless, we find it important to note that the present fixed point-charge water

model is neither polarizable nor able to mimic cooperativity effects and chemical reactions

that may take place in liquid water. Even though these many-body effects are explicitly

taken into account by DFT, in this way it is generally only possible to simulate liquid water

in qualitative, but not in quantitative agreement with experiment40,42,85,86.

For comparison, two empirical water potentials, i.e. TIP4P/2005 by Abascal and Vega48

and another one of Huang et al.87, were employed in this work. Being one of the most

important ”general purpose” water potentials, TIP4P/2005 is an obvious choice for this task

and performs rather well for a large variety of different thermodynamic properties48,50. In

contrast, the potential of Huang et al. was mainly optimized to reproduce the vapor-liquid

equilibrium87. To that extent, the intramolecular OH distance is chosen to be 40 % larger to

yield a more localized hydrogen bond network. However, the magnitude of the point charges

is significantly smaller than that of other TIP4P-like water models, while the attractive force

is compensated by a relatively high LJ energy parameter.

All water models used in the present work consist of two positive charge sites of magnitude

q/2 on the hydrogen atoms and a negative charge of magnitude q positioned at rM = γrO +

(1 − γ)(rH1 − rH2)/2 to ensure local charge neutrality of each water molecule. These so-

called M-sites and the hydrogen atoms on different water molecules interact with each other

through a simple Coulomb potential. Together with a Lennard-Jones potential between the
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oxygen atoms, this constitutes the following pairwise-additive intermolecular potential

Vinter =
∑
i

∑
j>i

4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

+
∑
m∈i

∑
n∈j

qmqn
rmn

,

where rij is the distance between the oxygen atoms and rmn the distance between the partial

charges in molecules i and j. All molecular interaction parameters are listed in table 1.

Table 1: Parameters of the molecular interaction models for water.

Interaction model rOH rOM θHOH σ ε/kB qM qH

Å Å deg Å K e e

TIP4P-TPSS62 0.9662 0.1654 107.21 3.2081 64.95 -1.0552 0.5276

TIP4P-TPSS-D362 0.9666 0.1547 107.38 3.1625 79.37 -1.0318 0.5159

TIP4P/200548 0.9572 0.1546 104.52 3.1589 93.20 -1.1128 0.5564

Huang et al.87 1.3338 0.2048 104.52 3.1183 208.08 -0.8391 0.4196

All simulations in the present work were carried out with the molecular simulation tool

ms288. Except for the transport property calculations with the Green-Kubo formalism89,90,

where MD is mandatory91,92, all results were generated by MC sampling93,94. In the case of

the latter, a cubic simulation volume consisting of 864 water molecules was considered. The

Lennard-Jones interactions beyond a cut-off radius of 12.25 Å were corrected as proposed by

Lustig95, while the long-range electrostatic interactions were taken into account by means of

the reaction field method96. Each MC move in the NpT ensemble consisted 864 displacement,

864 rotation and one volume move. For the MD simulations to compute the transport

properties, a simulation volume of 3000 water molecules together with a Lennard-Jones cut-

off of 17.5 Å was considered. The equations of motion were discretized by a timestep of 0.87 fs

and solved numerically by employing a fifth-order Gear predictor-corrector integrator96. The

temperature was kept constant by means of an isokinetic rescaling of the velocities, while

the pressure was controlled with the piston method of Andersen97.
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4 Results and discussion

In order to validate the present results, they were compared to a highly accurate fundamental

equation of state (EOS), to experimental data and a correlation thereof. In the case of time

independent thermodynamic properties, the reference class98 EOS of Wagner and Pruß99 was

used as recommended by the International Association for the Properties of Water and Steam

(IAPWS). This equation was parameterized to around 6000 carefully selected experimental

data points. The uncertainty for most properties is below 0.1 % over a large temperature

and pressure range. Uncertainties for the vapor pressure and the saturated liquid density

are even below 0.0025 %. The shear viscosity was compared to the correlation of Huber et

al.100 which has an uncertainty of 1 % in the temperature range considered here. Relative

deviations between the simulation results and the reference EOS were quantified by

∆X = 100

(
XSIM −XEOS

XEOS

)
. (2)

Based on this definition, the average absolute (unsigned) deviation (AAD) was defined as

AAD =
1

N

N∑
i=1

|∆Xi| . (3)

The corresponding results of the considered water models are listed in Table 2.

4.1 Second virial coefficient

Over a temperature range from 263 K to 1200 K, the second virial coefficient B was calculated

by evaluating Mayer’s f -function as described e.g. by Eckl et al.101. Results for the four

water potentials are presented in Fig. 1 and compared to the reference EOS99, as well as

to a correlation of experimental data from the DIPPR database102. Above 600 K, the

agreement between the reference data and the various potentials is very good, while for

lower temperatures the second virial coefficient is generally underestimated. The latter is

particularly true for the TIP4P/2005 force field, whereas the deviation is systematically

smaller for the potential of Huang et al., as well as for the DFT-derived TIP4P-TPSS and

TIP4P-TPSS-D3 water models, which are of comparable quality.
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Table 2: Average absolute (unsigned) deviations (AAD) of four water potentials in compar-

ison to the reference fundamental equation of state by Wagner and Pruß99. Vapor-liquid

equilibrium properties were evaluated between 300 K and 525 K.

Thermodynamic Molecular interaction model

property TIP4P-TPSS62 TIP4P-TPSS-D362 TIP4P/200548 Huang et al.87

AAD / %

Vapor pressure pv 234.8 162.6 55.4 12.3

Saturated liquid density ρ’ 14.0 10.0 0.5 1.5

Saturated vapor density ρ” 309.0 205.8 54.2 11.9

Enthalpy of vaporization ∆hv 23.2 18.8 11.7 2.4

Res. isochoric heat capacity cresv 7.1 7.2 22.1 11.0

Res. isobaric heat capacity cresp 16.8 15.1 18.8 6.8

Pressure p 50.9 38.5 5.2 30.2

Isothermal compressibility βT 16.4 15.6 7.3 26.0

Residual enthalpy hres 19.7 15.5 24.0 11.4

Speed of sound w 7.0 6.1 2.6 19.7

4.2 Vapor-liquid equilibrium

VLE were determined with the grand equilibrium method103. In this two-step procedure, the

coexisting phases are simulated independently. First, at a specified temperature one molec-

ular simulation run in the liquid phase is carried out in the NpT ensemble to obtain the

chemical potential as a function of pressure. This was done here using the gradual insertion

method104,105. The second step includes one pseudo-grand canonical (µV T ) ensemble simu-

lation for the vapor phase and yields the saturated vapor state point. A detailed description

of this method can be found elsewhere103.

In Figs. 2 and 3, the representation of the vapor pressure as determined by the four

considered water potentials is shown and compared to the reference EOS99. The TIP4P/2005

force field yields a vapor pressure that is throughout too low with decreasing deviations

at higher temperatures resulting in an AAD of 55 %, cf. Table 2. In contrast, the two

DFT-derived water models TIP4P-TPSS and TIP4P-TPSS-D3 throughout overestimate the

experimental data by at least 100 %. The potential of Huang et al., however, overestimates
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Figure 1: Second virial coefficient of water: (—) Reference fundamental equation of state by

Wagner and Pruß99. (- -) DIPPR correlation of experimental data102. Computational data:

(•) TIP4P/2005; (�) Huang et al.; (�) TIP4P-TPSS; (4) TIP4P-TPSS-D3.

the vapor pressure at low temperatures by about 30 %, while underestimating it at 625 K

by around 10 %, which results in an AAD of only 12 %.

The coexisting liquid and vapor densities are presented in Fig. 4. With an AAD of 0.5

%, the TIP4P/2005 force field shows the best agreement with the reference EOS99 on the

liquid side, whereas the potential of Huang et al. yields a slope that is slightly too steep.

Nonetheless, the AAD = 1.5 % of the potential of Huang et al. is not much larger than that

of the TIP4P/2005 force field. Both exhibit deviations of around 5 % at 625 K, which is close

to the critical point. However, the DFT-derived TIP4P-TPSS and TIP4P-TPSS-D3 water

models, systematically underestimate the saturated liquid density, yielding AAD values of

14 % and 10 %, respectively. As a consequence, the critical temperature of both potentials

is around 100 K below the experimental value.

Regarding the saturated vapor density, which is closely related to the vapor pressure,

the TIP4P/2005 force field underestimates the reference value by approximately 54 %. The

potential of Huang et al. exhibits the best agreement with the reference EOS99, i.e. AAD =
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Figure 2: Vapor pressure of water: (—) Reference fundamental equation of state by Wagner

and Pruß99. Computational data: (•) TIP4P/2005; (�) Huang et al.; (�) TIP4P-TPSS; (4)

TIP4P-TPSS-D3. The statistical simulation uncertainties are within symbol size.

12 %, while the TIP4P-TPSS and TIP4P-TPSS-D3 water models overestimate this property

on average by more than 200 %.

Similar to the representation of the vapor pressure and saturated vapor density, the

potential of Huang et al. also performs rather well in accurately in terms of the enthalpy of

vaporization and yields an AAD = 2.4 %, cf. Fig. 5. At temperatures above 575 K, in the

extended critical region, the TIP4P/2005 force field also shows a very good agreement with

the reference EOS99. At lower temperatures, however, the deviations increase up to 14 %,

which results in an AAD = 12 %. The two DFT-derived water models underestimate the

enthalpy of vaporization throughout with deviations of around 6 % for lower temperatures.

Over the whole sampled temperature range the DFT-derived TIP4P-TPSS and TIP4P-

TPSS-D3 water models yield an AAD of 23 and 19 %, respectively.
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Figure 3: Vapor pressure of water: (—) Reference fundamental equation of state by Wagner

and Pruß99. Computational data: (•) TIP4P/2005; (�) Huang et al.; (�) TIP4P-TPSS; (4)

TIP4P-TPSS-D3. The statistical simulation uncertainties are within symbol size.

4.3 Homogeneous properties

A wide range of different static properties in the homogeneous fluid region were generated

using the formalism proposed by Lustig106,107: Residual isobaric heat capacity cresp , residual

isochoric heat capacity cresv , residual enthalpy hres, pressure p, speed of sound w, isothermal

compressibility βT and Joule-Thomson coefficient µJT. For a given state point, this formalism

allows to calculate an arbitrary number of time independent thermodynamic properties from

a single simulation run within the canonical (NVT ) ensemble. More precisely, the method

was designed to directly yield the temperature and density derivatives

Amn = (1/T )mρn
∂m+n(ao + ar)/(RT )

∂(1/T )m∂ρn
, (4)

of the residual Helmholtz free energy a(T, ρ) = ao(T, ρ) + ar(T, ρ) for any m > 0 or n > 0,

where ρ is the molar density, R is the molar gas constant, while the factor 1/(RT ) renders

Amn dimensionless. The molar Helmholtz free energy a, and thus the derivatives Amn,

can be additively separated into an ideal and residual contribution. The ideal contribution
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Figure 4: Saturated densities of water: (—) Reference fundamental equation of state by

Wagner and Pruß99. Computational data: (•) TIP4P/2005; (�) Huang et al.; (�) TIP4P-

TPSS; (4) TIP4P-TPSS-D3. The statistical simulation uncertainties are within symbol

size.

ao(T, ρ) = ao(T ) + RT ln(ρ/ρref) by definition corresponds to the value of a(T, ρ) when no

intermolecular interactions are at work. The exclusively temperature dependent part of the

ideal contribution ao(T ) has a non-trivial temperature dependence and is directly related to

the isochoric heat capacity of the ideal gas Ao
20(T ) = −cov/R. However, not every derivative

Amn requires the knowledge of ao(T ) = RTAo
00(T ), namely

• Ao
mn(T, ρ) = 0, for m > 0 and n > 0,

• Ao
mn(T, ρ) = Ao

mn(T ) + 0, for m > 0 and n = 0,

• Ao
mn(T, ρ) = 0 + (−1)1+n, for m = 0 and n > 0.

The value of Ao
00(T ) = ao(T )/(RT ) is often determined by spectroscopy or ab-initio calcu-

lations, whereas the residual contribution is typically the target of molecular simulations.

Since a/(RT ) is a thermodynamic potential, any other time independent thermodynamic

property is a combination of its derivatives with respect to its independent variables106,107:
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Figure 5: Enthalpy of vaporization of water: (—) Reference fundamental equation of state by

Wagner and Pruß99. Computational data: (•) TIP4P/2005; (�) Huang et al.; (�) TIP4P-

TPSS; (4) TIP4P-TPSS-D3. The statistical simulation uncertainties are within symbol

size.

Numerous properties, such as the internal energy u, pressure p, enthalpy h, Gibbs energy g,

and isochoric heat capacity cv, are linear functions

u

RT
= Ao

10(T ) + Ar
10, (5)

p

ρRT
= 1 + Ar

01, (6)

1

RT

(
∂p

∂ρ

)
T

= 1 + 2Ar
01 + Ar

02, (7)

1

ρR

(
∂p

∂T

)
ρ

= 1 + Ar
01 − Ar

11, (8)

h

RT
= 1 + Ar

01 + Ao
10(T ) + Ar

10, (9)
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g

RT
= 1 + Ar

01 + Ao
00 + Ar

00, (10)

cv
R

= −Ao
20(T )− Ar

20, (11)

whereas the molar isobaric heat capacity cp, speed of sound w, and Joule-Thomson coefficient

µJT are non-linear combinations of derivatives

cp
R

= −Ao
20(T )− Ar

20 +
(1 + Ar

01 − Ar
11)

2

1 + 2Ar
01 + Ar

02

, (12)

Mw2

RT
= 1 + 2Ar

01 + Ar
02 −

(1 + Ar
01 − Ar

11)
2

Ao
20(T ) + Ar

20

, (13)

ρR

µJT

=
(Ao

20(T ) + Ar
20)(1 + 2Ar

01 + Ar
02)

Ar
01 + Ar

02 + Ar
11

− (1 + Ar
01 − Ar

11)
2

Ar
01 + Ar

02 + Ar
11

, (14)

where M is the molar mass. For properties that cannot be additively separated into ideal

and residual part, such as w and µJT, the ideal contribution Ao
20(T ) = −cov/R was taken

from the reference EOS99 because it does not depend on the intermolecular interactions.

Properties in the homogeneous fluid region were compared to the reference EOS99 along

four isochores (i.e. 6, 24, 42 and 58 mol/l) up to temperatures of 1000 K. The corresponding

state points are shown in Fig. 6.

The results of the four investigated water potentials for the residual isochoric heat capac-

ity (top) and the residual isobaric heat capacity (bottom) are shown in Fig. 7 and compared

to the reference EOS99. The residual isochoric heat capacity is throughout overestimated by

the TIP4P/2005 force field, which performs particularly poorly at low densities, leading to

an AAD of 22 %. On the contrary, the potential of Huang et al. underestimates the isochoric

heat capacity for densities above 6 mol/l by around 11 %. With an AAD of around 7 % over

the entire temperature and density range, both the TIP4P-TPSS and TIP4P-TPSS-D3 water

models perform quite well in comparison with the reference. However, regarding the residual

isobaric heat capacity, the agreement between the TIP4P/2005 force field and the reference

EOS99 is better than for the residual isochoric heat capacity. Again, the largest deviations

can be observed for lower densities resulting in an AAD = 19 %. With an AAD = 17 %

and 15 %, respectively, the DFT-derived TIP4P-TPSS and TIP4P-TPSS-D3 water models
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Figure 6: Studied state points in the homogeneous fluid region of water along four isochores.

The solid line indicates saturated states according to the reference equation of state for

water99.

are slightly superior. Nevertheless, both water models underestimate the residual isobaric

heat capacity along the 24 mol/l isochore by more than 25 %. The best agreement with the

reference was observed for the potential of Huang et al. with an AAD = 6.8 %. But it has

to be noted that the state point at 700 K and 24 mol/l is within the extended critical region,

which leads to relatively large statistical uncertainties of the simulations.

The pressure and the isothermal compressibility in the homogeneous fluid region are

shown in Fig. 8. In comparison to the reference EOS, the two DFT-derived water mod-

els TIP4P-TPSS and TIP4P-TPSS-D3 yield a too high pressure. With an AAD = 39

%, the TIP4P-TPSS-D3 water model is somewhat better than the TIP4P-TPSS potential

(AAD = 51 %). The potential of Huang et al. exhibits good agreement at lower tem-

peratures with increasing deviations for higher temperatures, leading to an AAD = 30 %.

Yet, the best agreement with the reference EOS can be observed for the TIP4P/2005 force

field. This also applies to the isothermal compressibility βT with an AAD = 7.3 %. The

DFT-derived TIP4P-TPSS and TIP4P-TPSS-D3 water models tend to underestimate the
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isothermal compressibility, especially at lower densities. However, the largest AAD of 26

% is observed for the potential of Huang et al., which is mainly due to larger deviations at

higher densities. The rather large statistical uncertainties for the potential of Huang et al.

and the TIP4P/2005 force field at 700 K and 24 mol/l indicate the proximity to the critical

point.

The results for the residual enthalpy, speed of sound and Joule-Thomson coefficient can

be found in Fig. 9. Regarding the former, the TIP4P/2005 force field yields the largest

deviations from the reference EOS99 and underestimates it throughout. By contrast, both

the TIP4P-TPSS and TIP4P-TPSS-D3 water models overestimate the residual enthalpy. The

AAD of the DFT-derived TIP4P-TPSS and TIP4P-TPSS-D3 water models are 20 % and

16 %, respectively. Good agreement with the reference EOS, especially for higher densities,

can be found for the potential of Huang et al. with an AAD = 11 %. Regarding the speed

of sound, the TIP4P/2005 force field yields the best results, i.e. AAD = 2.6 %. The results

of the TIP4P-TPSS and TIP4P-TPSS-D3 water models are again very similar to each other

and lead to an AAD = 6 % to 7 %. It has to be noted that the agreement to the reference

EOS99 of those potentials at 58 mol/l is even better than the agreement of the TIP4P/2005

force field. The worst agreement with the reference for the speed of sound was found for

the potential of Huang et al. The deviations are between 20 and 30 % for the two highest

isochores.

In case of the Joule-Thomson coefficient, a relative evaluation of the simulation data in

comparison to the reference EOS is not applicable because this property changes its sign.

Therefore, absolute values were considered. Except for the 6 mol/l isochore, the TIP4P/2005

force field performs quite well, yielding an average deviation of 0.1 K/MPa. It can be seen

that the potential of Huang et al.87 shows a good agreement throughout. Here, average

deviations of 0.07 K/MPa can be found. The DFT-derived TIP4P-TPSS and TIP4P-TPSS-

D3 water models underestimate the Joule-Thomson coefficient throughout, yielding higher

average deviations, i.e. 0.2 K/MPa.
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4.4 Transport properties

Transport properties were calculated by MD in the NpT ensemble with the Green-Kubo for-

malism89,90. Simulation results for the translational self-diffusion coefficient and the shear

viscosity of the four discussed potentials are presented in Fig. 10 at 0.1 MPa for tempera-

tures between 280 K and 340 K, respectively. The results for the translational self-diffusion

coefficient were compared to experimental measurements by Harris and Woolf108, Dullien109,

Holz et al.110, and Easteal et al.111, whereas the shear viscosity data were compared to a

correlation of experimental data by Huber et al.100. The TIP4P/2005 force field results are

in good agreement with the references for both considered properties. The shear viscosity

is slightly overestimated, but nonetheless is, within the statistical uncertainties of the MD

simulations, in agreement with the correlation of Huber et al.100. However, it can be seen

that DFT-derived TIP4P-TPSS and TIP4P-TPSS-D3 water models, as well as the potential

of Huang et al. significantly overestimate the translational self-diffusion coefficient. As a

consequence, a significant underestimation of the shear viscosity is found for the latter three

potentials.

4.5 Radial distribution function

For the purpose to determine the liquid water structure, the RDF in the liquid state at 298 K

and 0.1 MPa were sampled in the NpT ensemble. The RDF g(r) relates the local particle

density ρL(r) around a position within a molecule to the overall density ρ = N/V

g(r) =
ρL(r)

ρ
=

1

ρ

dN(r)

dV
=

1

4πr2ρ

dN(r)

dr
, (15)

where dN(r) is the differential number of atoms in a spherical shell volume element dV

with the width dr, which is located at a distance r from the regarded position within a

molecule112. For comparison, very recent experimental measurements from Skinner et al.83

and Soper84 were selected. In Fig. 11, the three partial RDF for O-H, O-O and H-H are

shown, which were calculated using the four considered water potentials. It is apparent

that the TIP4P/2005 force field as well as the two DFT-derived water models qualitatively

reproduce the structure of liquid water. The potential of Huang et al., however, is not

able to correctly yield the first maximum of the O-O RDF, failing one of the most crucial
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experimental tests of water models113. In addition, it also incapable to reproduce all further

solvation shells of liquid water. This is most likely a result of the intramolecular O-H bond

length rOH of this potential, which is roughly 0.4 Å longer than the O-H bond length of

the other potentials. In the light of the recent revision of the experimental RDF83,84, it

is particularly impressive that the DFT-derived water models exhibit the best agreement

with the experimental reference, despite the fact that they have not been considered during

their parametrization. In fact, they are even able to reproduce the correct ordering of the

relative O-H peak heights. As such, they even outperform the well-established TIP4P/2005

force field, which is arguably the current benchmark among rigid, non-polarizable water

potentials50.

5 Conclusion

To summarize, in this paper we have assessed the accuracy of DFT-derived water models,

which were recently developed based on an improved force-matching method62. To that

extent the resulting water models are compared with the potential of Huang, which was op-

timized to reproduce the vapor-liquid equilibrium87, and the well-appreciated TIP4P/2005

force field48 as well as experimental measurements and a reference class EOS99,100. Specif-

ically, it is found that the TIP4P/2005 force field exhibits a rather well-balanced accuracy

for a large variety of different observables, in particular various thermodynamic properties.

The potential of Huang et al. is indeed also an accurate interaction potential for multiple

thermodynamic properties, but falls short of qualitatively reproducing the structure of liquid

water. As opposed to this, both DFT-derived water models are only able to qualitatively

reproduce thermodynamic quantities, but more importantly are in best agreement with the

most recent experimental RDF, even superseding the TIP4P/2005 force field. Nevertheless,

there are many improvements that could be made to built on this study. In particular, the

TIP4P/TPSS-D3 water model developed here is not polarizable, an effect which has the

potential to further improve the agreement with experiment and that in the future could be

easily incorporated into the current force-matching scheme.

We conclude by noting that the present force-matching scheme will facilitate to routinely
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parametrize computationally efficient yet predictive potential energy functions based on ac-

curate ab-initio MD simulations for a large variety of different systems. The development of

transferable interaction potentials for more complex liquids, which are in good qualitative

agreement with the experiment, is work in progress and will be reported elsewhere.
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Figure 7: Residual isochoric (top) and residual isobaric heat capacity (bottom) along four

isochores in the homogeneous fluid region of water: (—) Reference fundamental equation

of state by Wagner and Pruß99. Computational data: (•) TIP4P/2005; (�) Huang et al.;

(�) TIP4P-TPSS; (4) TIP4P-TPSS-D3. The statistical uncertainties of the simulations are

shown if they exceed symbol size.
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Figure 8: Pressure (top) and isothermal compressibility (bottom) along four isochores in the

homogeneous fluid region of water: (—) Reference fundamental equation of state by Wagner

and Pruß99. Computational data: (•) TIP4P/2005; (�) Huang et al.; (�) TIP4P-TPSS; (4)

TIP4P-TPSS-D3. The statistical simulation uncertainties are shown if they exceed symbol

size.
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Figure 9: Residual enthalpy (top), speed of sound (center) and Joule-Thomson coefficient

(bottom) along four isochores in the homogeneous fluid region of water: (—) Reference fun-

damental equation of state by Wagner and Pruß99. Computational data: (•) TIP4P/2005;

(�) Huang et al.; (�) TIP4P-TPSS; (4) TIP4P-TPSS-D3. The statistical simulation uncer-

tainties are within symbol size.
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Figure 10: Self-diffusion coefficient (top) and shear viscosity (bottom) of liquid water at 0.1

MPa. (+) Experimental data108–111. (—) Shear viscosity correlation of experimental data by

Huber et al.100. Computational data: (•) TIP4P/2005; (�) Huang et al.; (�) TIP4P-TPSS;

(4) TIP4P-TPSS-D3. The statistical uncertainties of the MD simulations are shown only if

they exceed symbol size.
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Figure 11: Radial distribution functions in the liquid state at 298 K and 0.1 MPa: (—)

Skinner et al.83; (...) Soper84; (—) TIP4P-TPSS; (—) TIP4P-TPSS-D3; (—) TIP4P/2005;

(—) Huang et al.
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