
Equation of state for 1,2-dichloroethane based on a hybrid data set 

A fundamental equation of state in terms of the Helmholtz energy is presented for 

1,2-dichloroethane. Due to a narrow experimental database, not only laboratory 

measurements but also molecular simulation data are applied to the fitting 

procedure. The present equation of state is valid from the triple point up to 560 K 

for pressures of up to 100 MPa. The accuracy of the equation is assessed in 

detail. Furthermore, a reasonable extrapolation behaviour is verified. 
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1 Introduction 

In modern process engineering, chemical industry, and academy research, there is an 

increasing demand for accurate thermodynamic properties. Nowadays, such information 

is provided by equations of state. Due to their fundamental nature, most accurate 

equations of state are given in terms of the Helmholtz energy with temperature and 

density as independent variables. Only less than ten substances are modelled in 

reference quality and an additional 120 substances are described by less accurate 

industrial equations of state. The thermodynamic properties of all other substances have 

to be calculated by means of, e.g., cubic equations of state such as those by Peng and 

Robinson [1] or Redlich and Kwong [2], physically based equations of state according 

to Statistical Associating Fluid Theory (SAFT) [3], the BACKONE equation of state [4, 

5], or others like the Lee-Kesler equation of state [6]. The accuracy of correlation 

equations is highly dependent on the availability of experimental data, which are used 

for their fitting. Unfortunately, for many industrial fluids, there are insufficient 

experimental data available because experiments are time-consuming and expensive. 

Furthermore, many fluids exhibit challenging properties, such as toxicity, flammability, 

or corrosiveness, which render experiments in the laboratory particularly difficult. 
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Applying hybrid data sets (from experiments and molecular simulation) to the fitting 

procedure recently became a promising alternative. In the last years, significant progress 

was made in the field of molecular modelling and simulation so that the available 

experimental data sets can now be supplemented by molecular simulation data. An 

important advantage is that simulations are cheap and fast, and there are no restrictions 

with respect to challenging fluid properties. Furthermore, limitations of the 

experimental setup in terms of maximum temperatures or pressures do not apply. 

However, the accuracy of the simulation data are critically dependent on the quality of 

the underlying molecular model. 

In this work, a fundamental equation of state for 1,2-dichloroethane (CAS No. 

107-06-2) was developed. It is an oily and colourless fluid under standard conditions, 

slightly flammable, and toxic. When handling this substance, its narcotic, mutagenic, 

and carcinogenic properties have to be taken into account. It is used in numerous 

technical processes, e.g., it serves as an extracting agent for fats and oils as well as a 

solvent for resin and bitumen. The main application is the manufacturing of vinyl 

chloride, which is the basic product for polyvinyl chloride [7]. Up to date, there is no 

Helmholtz energy model for 1,2-dichloroethane available in the literature. Due to the 

limited database, the equation of state was fitted to experimental data from the literature 

[8–81] as well as molecular simulation data presented in this work. 
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2 Equation of state 

The present equation of state is written in terms of the molar Helmholtz energy 

a, which is reduced by the universal gas constant R = 8.3144621 J∙mol−1 K−1 according 

to Mohr and Taylor [82] and the temperature T 

    ,
,

a T

RT



   . (1) 

For the calculation of specific properties, the molar mass M = 98.9597 g∙mol−1 

[83] has to be applied. The Helmholtz energy is additively composed of an ideal gas 

(superscript o) and a residual (superscript r) contribution 

      o r, , ,          , (2) 

where τ = Tc/T and δ = ρ/ρc with Tc and ρc being the critical values of temperature and 

density. The critical temperature Tc = 561.6 K was taken from Garcia-Sanchez and 

Trejo [16]. The critical density ρc = 4.33 mol∙dm−3 was determined during the fit so that 

the best representation of the experimental data was achieved, while a linear trend of the 

rectilinear diameter in the critical region and a distinct saddle point of the critical 

isotherm (  
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The Helmholtz energy of the hypothetical ideal gas αo can be derived from an 

equation for the isobaric heat capacity of the ideal gas 
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The constant n0 refers to the temperature limit T → 0 K, taking translation and rotation 

of the molecule into account. This simplified approach presumes that both effects are 

fully activated so that at least six degrees of freedom exist, leading to a zero temperature 

contribution o 4pc R . The Planck-Einstein terms represent the vibrational modes, which 

have to be considered for every molecule consisting of more than one atom. Since 

vibration frequencies and the anharmonicities are not known with sufficient precision, a 

simplified approach according to Span [84] is applied. The parameters mi and θi are 

treated as adjustable parameters here. In this case, a 2-vibration model is sufficient to 

represent the available data within the required accuracy. For the determination of the 

parameters, ideal gas heat capacity data of Gwinn and Pitzer [72] were the only data set 

available for this fluid. Their experimental measurements were carried out with a flow 

calorimeter described by Pitzer and co-workers [85–87]. No information on sample 

purity or experimental uncertainty is given. Therefore, comparisons were made to 

isobaric heat capacity data of cyclohexane and cyclopentane in the ideal gas state, 

which were measured with the same apparatus. These data sets scatter within 

approximately 1 % around the equations of Zhou et al. [88] and Gedanitz et al. [89], 

respectively. Therefore, a similar uncertainty is expected for the data for 1,2-

dichloroethane. In the paper by Gwinn and Pitzer [72] four different data sets are 

presented, which were determined by different modifications of the apparatus. Except 

for one data point at 335 K, all measurements agree with the present equation of state 

within the expected uncertainty (cf. Figure 1). Additional data of Gwinn and Pitzer [72], 

which were determined by theory, are reproduced within 1 % between 350 K and 

1000 K (range of validity: T > 200 K). Outside of this region, deviations increase. 

During the fitting procedure, it turned out that the representation of these data cannot be 

improved without compromising the accuracy of other thermodynamic properties like 
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the speed of sound or the isobaric heat capacity. Since these measurements are expected 

to be more accurate than the o
pc  data, the main focus was on a reasonable description of 

the speed of sound or the isobaric heat capacity and the deviations of the isobaric heat 

capacity of the ideal gas were accepted. Therefore, the uncertainty of the present 

equation of state is expected to be 1 % within the temperature range 

T = 350 K to 1000 K. The underlying parameters for Eq. (3) are m1 = 5.35, m2 = 10.05, 

θ1 = 22.5 K, and θ2 = 2015 K. For the application in the present Helmholtz energy 

model, a two-fold integration with respect to the temperature has to be carried out. The 

resulting reduced Helmholtz energy of the ideal gas is 

         
2

o II I
c

1

, 3ln ln 1 exp lni i
i

c c m T


              . (4) 

The integration constants were determined such that h0 = 0 J·kg−1 and s0 = 0 J·kg−1·K−1 

at the normal boiling point temperature TNBP(pv = 1 atm) and saturated liquid density 

ρʹ(pv = 1 atm): cI = 0.972870308 and cII = 15.963798537. 

The residual contribution to the Helmholtz energy considers the intermolecular 

interactions in a real fluid. In contrast to the ideal gas, this contribution was described 

with an empirical expression that contains five polynomial, five exponential, and five 

Gaussian bell-shaped terms: 
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  (5) 

The corresponding parameters are listed in Table 1. For the determination of the 

required parameters, a non-linear algorithm provided by the National Institute of 

Standards and Technology was employed [90]. A brief description of the algorithm is 
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outlined in Lemmon and Jacobsen [91]. A non-published 14-terms equation for propane 

was used as initial solution for the fitting procedure. For a sufficiently accurate 

description of all available experimental data of 1,2-dichloroethane, one additional term 

was added here. 

3 Comparison with experimental literature data 

The accuracy of the present equation of state was established by 

comparison to the available experimental data from the literature. The statistical 

analysis was carried out by means of relative deviations according to 

 DATA EOS

DATA

100
X X

X
X


  , (6) 

and the average absolute relative deviation  

 
1

1 N

i
i

AAD X
N 

  . (7) 

For homogeneous states, the AAD is discussed for gaseous and fluid state regions 

separately. Measurements in the supercritical state or in the critical region are not 

available. The thermal vapour-liquid equilibrium is divided into three temperature 

ranges: low temperature (LT: T/Tc < 0.6), medium temperature (MT: 0.6 ≤ T/Tc ≤ 0.98), 

and high temperature (HT: T/Tc > 0.98). 

3.1 Vapour-liquid equilibrium 

 Comparisons of the vapour pressure data from the literature and calculated 

values from the present equation of state are presented in Table 2 and Figure 2. 

Additionally, correlations of the TDE [92] and DIPPR [93] data banks are included in 

the figure. The table shows that the vapour pressure was extensively investigated, but 

most of the data are located in a restricted temperature range of 270 K to 400 K. An 
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overview on all available vapour pressure data is illustrated in Figure 2 (top) and only 

the most recent and reliable data sets are depicted in Figure 2 (bottom). The data of 

Amireche-Ziar et al. [8] were measured with a static apparatus as described by Blondel-

Telouk et al. [94]. The experimental uncertainties as specified by Amireche-Ziar et al. 

[8] yield a combined expanded uncertainty of (0.06 - 0.11) % and a sample purity of 

>99 % is stated. That agrees very well with the correlation of the data by the present 

equation of state up to 335 K (AAD = 0.080 %). The state points at T = 344.8 K and 

T = 354.9 K differ by more than 1 % from the present equation. Another accurate data 

set was published by Dohnal et al. [15], which is reproduced within 0.05 % 

(AAD = 0.021 %). A modified Dvořak-Boublík recirculation still (dynamic method) 

described by Boublíková and Lu [95] was used and the uncertainty analysis resulted in a 

temperature and pressure uncertainty of ∆T = 0.02 K and ∆p = 7 Pa, respectively. 

Deviations from the present equation of state and from other vapour pressure data from 

the literature show that the combined expanded uncertainty of 0.15 % to 0.2 % is 

probably too conservative. A third experimental data set was measured by 

Varushchenko et al. [37] with an ebulliometer in the same temperature range. The 

specified experimental uncertainties of ∆T = 0.004 K and ∆p = 13 Pa result in a 

combined expanded uncertainty of 0.03 % to 0.35 %. This is in good agreement with 

the present equation of state (AAD = 0.083 %). For T < 250 K, the data of Igoudjilene et 

al. [19] (AAD = 0.43 %) are underestimated by the present equation of state. During 

parametrisation, it was not possible to fit these data in a better way without 

compromising the representation of other properties. The correlation from the TDE [92] 

shows the same course as these data [19]. However, since other properties, such as 

density or speed of sound, were considered in addition to the vapour pressure, the 

course of the present equation of state is more meaningful than results from property-
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specific vapour pressure equations. The high temperature range (T > 400 K) was 

investigated by Stull [33] and Garcia-Sanchez and Trejo [16]. The data of Stull [33] 

were not measured but collected from the literature and exhibit a huge deviation with 

respect to the present equation of state. Similar results were found for other fluids, e.g., 

for hexamethyldisiloxane [96] or ethylene oxide [97]. Therefore, these data were not 

considered in the development of the present equation of state. The measurements of 

Garcia-Sanchez and Trejo [16] were carried out with a sample purity of 99.7 % in a 

thick-walled Pyrex capillary tube. This technique was originally proposed by Ambrose 

[98] and used by McLure and Dickinson [99] to carry out vapour pressure 

measurements of hexamethyldisiloxane. As discussed in detail by Thol et al. [96], the 

experimental arrangement was questionable and the resulting vapour pressure data of 

hexamethyldisiloxane could only be reproduced within 2 %. For 1,2-dichloroethane, the 

representation is even worse. The investigated temperature range overlaps with other 

literature data from, e.g., Patel et al. [24] (AAD = 0.55 %) or Rollet et al. [29] 

(AAD = 0.21 %), which allows a closer investigation of the accuracy of these data. 

Figure 3 shows that the data of Patel et al. [24] and Rollet et al. [29] are in line with the 

accurate measurements of Amireche-Ziar et al. [8] and Dohnal et al. [15]. In the 

overlapping region, the data of Garcia-Sanchez and Trejo [16] systematically deviate by 

4 % from other literature data and the present equation of state. Furthermore, a stepwise 

course of the data in the deviation plot is noticeable, cf. Figure 2 (bottom). This could 

be a consequence of the chosen calibration procedure: Nine chromel-to-alumel 

thermocouples, which were installed in the experimental setup, were calibrated to the 

critical temperatures of seven different alkanes reported by Ambrose [100]. Since these 

critical points significantly differ from each other, the stepwise course of the data is not 

surprising. Additionally, the uncertainty of the critical parameters increases with 
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increasing chain length of the alkanes. Finally, the specified uncertainties of 0.2 K and 

10 kPa yield a combined expanded uncertainty of (0.5 - 13) %. Therefore, these data 

were not used to set up the present equation of state. Since these data were the only high 

temperature measurements, they were monitored during the fit so that they did not 

exceed a 4 % deviation. Therefore, the expected uncertainty of vapour pressure data 

calculated with the present equation of state is 0.1 % for T < 400 K and 4 % for higher 

temperatures. 

 The relative deviations of experimental saturated liquid density data from the 

present equation of state are illustrated in Figure 4. Measurements are only available 

between 293 K and 400 K. Since there are several different data sets of high accuracy 

available for homogeneous density data at atmospheric pressure, the saturated liquid 

density data were not applied to the fit. Nonetheless, all of the experimental data are 

represented within 0.5 %. Similar to the vapour pressure measurements, the data of 

Varushchenko et al. [50] (AAD = 0.036 %) are of very high accuracy and are 

reproduced within 0.06 %. Joshi et al. [44] (AAD = 0.015 %) determined their data by 

means of a pycnometer. Not much information is given on the purification grade or 

experimental uncertainties. However, their data are reproduced within 0.04 %. 

Considering possible irritations caused by sample impurities, this deviation is in good 

agreement with the specified overall experimental uncertainty of 0.0002 g∙cm−3 as 

stated by the authors. The experimental data for cyclohexane from the same publication 

as for 1,2-dichloroethane are reproduced with the equation of Zhou et al. [88] within 

0.08 % (AAD = 0.04 %) although they were not considered during the development of 

the equation. Therefore, it can be assumed that the data are of high accuracy. Another 

data set was published by Klofutar et al. [45] (AAD = 0.066 %) and represented within 

0.15 % by the present equation of state. No information is given on the measurement 
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device or experimental uncertainties. From the calibration fluids mentioned in Ref. [45] 

it can be concluded that an Anton Paar densimeter was used, which can yield very 

accurate results. Additionally, comparisons of their benzene measurements were made 

with the equation of Thol et al. [101]. For T ≤ 313 K, these data agree with the equation 

within ±0.02 %. For higher temperatures, the deviations increase up to −0.32 %. The 

same trend is observed for 1,2-dichloroethane. For T ≤ 313 K, the data are reproduced 

within ±0.06 %, whereas deviations increase up to −0.14 % for higher temperatures. An 

opposing trend was found for the saturated liquid density data of Kumagai and 

Takahashi [46] (AAD = 0.20 %). For increasing temperatures, the relative deviations 

from the present equation of state increase up to 0.45 %. Since these data are the only 

measurements between T = 345 K and 400 K, they cannot be confirmed. 

The temperature range covered by experimental data is restricted so that it is 

difficult to assess the uncertainty of the present equation for this property. At least 

within T = 285 K and 400 K, deviations are 0.1 % to 0.45 %.  

For the saturated vapour density, only one single state point is available and no 

statement on the accuracy of the present equation of state can be made. To ensure at 

least a correct qualitative behaviour, this line was adjusted by means of the rectilinear 

diameter  RD 0.5 ' ''     [102]. 

If a fundamental equation of state is available, the vapour-liquid equilibrium can 

be calculated by means of the thermal, mechanical, and chemical equilibrium 

conditions. However, for computer calculations, it is helpful to use ancillary equations 

to generate initial values for density iterations. In this work, ancillary equations for 

vapour pressure, saturated liquid density, and saturated vapour density were developed: 
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The corresponding parameters are given in Table 3. 

3.2 Density of homogeneous states and thermal virial coefficients 

The representation of homogeneous density data with the present equation of 

state is summarized in Table 4 and illustrated in Figures 5 and 6. Only two data sets of 

Kumagai and Takahashi [46] and García-Giménez et al. [55] could be used to model the 

pressure dependence of the present equation of state. The measurements of Kumagai 

and Takahashi [46] are reproduced within 0.02 % to  0.37 % (AAD = 0.19 %). A 

systematic increase of the deviations with respect to the present equation of state can be 

observed for increasing temperatures and pressures. The data were measured with the 

same apparatus as the corresponding saturated liquid density data. The experiment was 

operated with a piezometer, which was sealed with mercury enclosed by two stainless-

steel membranes. This movable part was connected to the core of a differential 

transformer. The sample was filled into a 4.5 cm³ borosilicate glass bulb, which was 

calibrated to less than 0.015 % in terms of the volume at atmospheric conditions. A 

mercury thermometer (ΔT = 0.05 K) was used to monitor the temperature of the 

thermostat and a Heise Bourdon gauge with an error of less than 0.1 MPa was used to 

pressurize the working oil and the sample. The volume change of the sample due to 

temperature and pressure variation was detected through the displacement of the core. 

The error in the determination of the displacement was stated to be 0.03 mm, but no 

mathematical formulation is provided to calculate the influence on the uncertainty of the 

density. Additionally, no information about the differential transformer is given. Thus, it 
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is not possible to explain the pressure-related increase of the deviations. However, a 

temperature gradient could be suspected in the apparatus. The upper part was subject to 

atmospheric conditions, whereas the lower part was heated. With increasing 

temperature, the temperature gradient rises and the influence is higher. Since there are 

no other experimental data available in this region, additional investigations are 

necessary to clarify if this behaviour is caused by the present equation of state or the 

measurements.  

The low temperature and pressure region was explored by García-Giménez et al. 

[55] (AAD = 0.010 %). Data were measured with an Anton Paar vibrating-tube 

densimeter (DMA 512) with a high pressure cell. The temperature was stable within 

0.01 K, whereas the pressure was adjusted with 0.005 % of the full scale. With these 

numbers and a specified uncertainty of 10−4 g∙cm−3 in terms of density, a combined 

expanded uncertainty of 0.019 % follows. Except for five state points, all of these data 

are reproduced within this uncertainty. Considering the sample purity of 99.7 %, these 

outliers (deviations of up to 0.03 %) are still reproduced within their experimental 

uncertainty. Therefore, it is assumed that the increasing deviation of the data of 

Kumagai and Takahashi [46] is due to the experimental data. Unfortunately, the 

measurements of the two author groups only overlap at a single state point. At 

T = 298.15 K and p = 10 MPa, the density of García-Giménez et al. [55] is reproduced 

within 0.0068 %, whereas the one of Kumagai and Takahashi [46] differs by 0.0307 % 

from the present equation. Hence, the data set of Kumagai and Takahashi [46] is 

assumed to be less accurate. Additional measurements of Kumagai and Takahashi [46] 

for ammonia carried out with the same apparatus are reproduced within 0.4 % with a 

preliminary equation of state by Lemmon [103]. Thus, the deviations for 1,2-

dichloroethane are assumed to be reasonable. 
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In Figure 6, relative deviations of homogeneous density data measured at 

atmospheric pressure are presented. Similar to the saturated liquid density, the 

temperature range is restricted. However, there are several comprehensive data sets 

available, which are reproduced within 0.12 %. In Figure 6 (top), the impression of a 

wrong curvature of the equation could arise when considering the course of the 

measurements of Valtz et al. [64] (AAD = 0.010 %) and Manfredini et al. [60] 

(AAD = 0.043 %). Both data sets could not be fitted in a better way without 

compromising the homogeneous density data of García-Giménez et al. [55]. When 

deleting the data of Valtz et al. [64] and Manfredini et al. [60] from the plot, cf. Figure 

6 (bottom), the eye-catching curvature is not apparent anymore and the remaining data 

scatter equally distributed around the present equation. Valtz et al. [64] carried out their 

measurements with a vibrating-tube densimeter (Anton Paar, DMA500) and a sample 

purity of 99.8 %. The densimeter was calibrated with dry air and water at T = 293.15 K, 

but no information is given how the temperature dependence was compensated. 

Manfredini et al. [60] also used a vibrating-tube densimeter (Anton Paar, DMA 60). 

The same purification grade as for the measurements of Valtz et al. [64] is reported. 

They claim the sample to be contaminated with 0.1 % water. When applying a simple 

linear combination of the mixture 1,2-dichloroethane (99.9 %) and water (0.01 %), the 

density of pure 1,2-dichloroethane would be reduced by 0.025 %. This is a possible 

explanation of the systematic shift with respect to the measurements of Valtz et al. [64]. 

However, the data of Valtz et al. [64] and Manfredini et al. [60] are still reproduced 

within 0.04 % and 0.11 %, respectively.  

Based on the discussion above, the uncertainty of homogeneous density data 

calculated with the present equation of state is expected to be 0.05 % for T < 320 K and 



14 
 

p < 20 MPa, whereas for higher temperatures and pressures the uncertainty increases up 

to 0.5 %. 

Three data sets for the second virial coefficient from the literature are shown as 

absolute deviations from the present equation of state in Figure 7. The data of Sewell 

and Stock [30] (T = 273 K to 323 K) were derived from the Berthelot equation fitted to 

experimental vapour pressure measurements (AADpv = 0.80 %) carried out by the same 

authors. The absolute deviations of 3.8 cm³∙mol−1 with respect to the present equation of 

state (corresponding to a relative deviation of 0.4 %) without applying the data to the fit 

proves that this is a reasonable approach. Higher temperatures were investigated by 

Bohmhammel and Mannchen [79] and their data are reproduced within 40 cm³∙mol−1 

(5 %), but their information on experimental uncertainties is insufficient to assess the 

accuracy of these data. Finally, the data of Paniego et al. [81] differ by more than 

250 cm³∙mol−1 (20 %) from the present equation of state. Since the corresponding 

temperature range is covered by the reasonable data of Bohmhammel and Mannchen 

[79], the data of Paniego et al. [81] were not considered for the validation of the present 

equation of state. 

3.3 Caloric properties 

In Figure 8, relative deviations of experimental speed of sound data from the 

present equation of state are depicted. All of them were measured at atmospheric 

pressure and differ from the present equation of state by less than 1 %. Although the 

publication from 1949 is rather old, data of Lagemann et al. [57] were applied to the fit. 

Their measurements were carried out with a variable-path ultrasonic interferometer as 

described by McMillan and Lagemann [104]. No information on the experimental 

uncertainty is given. Therefore, comparisons of their measurements on benzene and 

heavy water with the corresponding equations of state from the literature [101, 105] 
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were made. The calculated deviations do not exceed 0.5 %, without being applied to the 

fitting procedure of the corresponding equations. Thus, it is assumed to be reasonable to 

apply the data of Lagemann et al. [57] to model the temperature range from 270 K 

to  325 K. Good agreement with measurements by Bhatia et al. [52] (AAD = 0.074 %), 

Nath and co-workers [66–69] (AAD = 0.053 % to 0.019 %), and Sekhar et al. [70] 

(AAD = 0.092 %) supports this choice. In contrast, two quite recently published data 

sets of Ali and Tariq [40] and Oswal et al. [61] exhibit a different trend. Ali and Tariq 

[40] (AAD = 0.65 %) carried out their measurements with a single crystal variable path 

ultrasonic interferometer. The specified experimental uncertainty of 1 m∙s−1 

(corresponding to 0.09 %) was assessed by comparing their measurements to other 

literature data. However, their measurements on benzene, which were published in the 

same paper, differ by up to 4  m∙s−1 (corresponding to 0.3 %) from the respective 

equation of state of Thol et al. [101]. Therefore, the uncertainty statement of Ali and 

Tariq [40] is questionable. Oswal et al. [61] (AAD = 0.41 %) state the same 

experimental uncertainty, but do not give any information how this value was 

determined. Thus, on the basis of all available data, except for the ones of Ali and Tariq 

[40], the expected uncertainty of speed of sound values calculated with the present 

equation of state is estimated to be 0.5 % at atmospheric pressure.  

An overview about the available experimental isobaric heat capacity data is given in 

Figure 9. Only three data sets with more than two data points are available. Góralski et 

al. [71] (AAD = 0.097 %) measured their data by differential scanning calorimetry as 

described by Becker et al. [106]. The experimental setup as well as the measuring 

procedure is described very comprehensively and they claim a combined experimental 

uncertainty of 0.15 %, excluding the effect of sample impurity. Test measurements on 

water (maximum deviation 0.14 % with respect to the IAPWS-95 [107]) verify this 
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specification. Experimental data for toluene differ by up to 0.25 %, which is reasonable 

because the underlying equation of state [108] does not exhibit reference quality. Thus, 

the present equation of state for 1,2-dichloroethane was modelled so that the 

experimental uncertainty of 0.15 % was maintained. The data set of Rastorguev and 

Ganiev [74] (AAD = 0.69 %) was measured in the same temperature range. It differs by 

up to 1 % from the present equation and the data of Góralski et al. [71], and no 

information on the experimental uncertainties is available. The data set of Gwinn and 

Pitzer [72] (AAD = 0.26 %) is located in the gaseous phase and covers the temperature 

range between 379 K and  557 K. As mentioned in the discussion of the ideal gas heat 

capacity, no information on sample purity or experimental uncertainties is given. 

Measurements of the isobaric heat capacity for cyclohexane and cyclopentane [87] 

carried out with the same apparatus exhibit deviations of up to 1 % with respect to the 

equations of state of Zhou et al. [88] and Gedanitz et al. [89], which is at the same time 

the experimental uncertainty of the data. Based on these findings, the experimental 

uncertainty of the measurements for 1,2-dichloroethane is also expected to be 1 % and 

the representation with the present equation of state is supposed to be reasonable. The 

expected uncertainty of isobaric heat capacity data calculated with the present equation 

of state is thus claimed to be 1 % in the gaseous region and 0.2 % in the liquid state at 

p = 1 atm. 

For the heat of vaporization, only few measurements are available. Since this 

property is closely related to the vapour pressure, these data were only used for 

comparison. The data of Majer et al. [78], McGovern [22], and Rao and Viswanath [80] 

are reproduced within 0.4 % and, therefore, verify the behaviour of the vapour pressure 

curve. 
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4 Molecular simulation 

Based on the available experimental data, the present equation of state for 1,2-

dichloroethane is valid for temperatures from the triple point up to 560 K and pressures 

up to 100 MPa. Similar to the equations of hexamethyldisiloxane [96] and 

octamethylcyclotetrasiloxane [109], it was extended to a maximum temperature 

Tmax = 1000 K and pressure pmax = 1200 MPa by means of molecular simulation data 

(cf. Figure 10, where r
mnA  denote the molecular simulation data). The underlying 

molecular interaction model that was developed here consists of four Lennard-Jones 

(LJ) sites representing the two chlorine atoms and the two methylene groups (CH2), and 

a point quadrupole in the centre of mass, cf. Figure 11. Therefore, the total 

intermolecular interaction energy in this case writes as 

 

LJLJ 12 6
1

a b a b
a b 5

1 1 1 1 a b a b

4 ( , )
ji

SSN N
i j i j i j

i j i j
i j i a b i j i j ij
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U f

r r r

 




    

                        
    ω ω , (11) 

where εiajb and σiajb are the LJ energy and size parameters for the pair-wise interaction 

between LJ site a on molecule i and LJ site b on molecule j. The distance between two 

sites or molecules is denoted by riajb or rij, respectively. In case of the electrostatic 

interaction Q stands for the quadrupole moment, which is dependent on the orientations 

ωi and ωj of molecules i and j according to [110, 111]. Finally, the summation limits N 

and Sx
LJ denote the number of molecules and the number of LJ sites, respectively. 

The geometry of the molecule as well as the magnitude and orientation of its 

quadrupole were initially determined on the basis of quantum chemical calculations. 

Since 1,2-dichloroethane is a rather compact molecule, its internal degrees of freedom 

were neglected in the present simulations. However, it has to be noted that the 

assumption of rigidity is an oversimplification for this molecule, due to the significant 
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influence of other possible conformers on the thermophysical properties. These inherent 

model limitations are tackled by fitting vapour pressure and saturated liquid density data 

to experimental values by varying the LJ energy and size parameters of all LJ sites. The 

resulting parameters are listed in Table 5. Throughout, the simulations were carried out 

by using cut-off radii equal to half the simulation box sizes using 864 particles. LJ long-

range interactions beyond the cut-off radius were corrected as proposed by Lustig [113]. 

The electrostatic long-range interactions were corrected with the reaction field method 

[110]. 

In order to calculate vapour-liquid equilibrium properties, the grand equilibrium 

method was used [115]. In this two-step procedure, the coexisting phases are simulated 

independently. In the first step, a Monte Carlo NpT ensemble simulation in the liquid 

phase is carried out to obtain the chemical potential as a function of pressure. This was 

done here with the gradual insertion method [117, 118]. After sufficient equilibration, 

the production is typically carried out for 500000 cycles. In the second step, a pseudo-

grand canonical (μVT) ensemble simulation, which yields the saturated vapour state 

point, is carried out. Vapour pressure data are reproduced within 3.5 % for T > 375 K 

(cf. Figure 2). For lower temperatures, simulations were not feasible due to sampling 

problems. The saturated liquid density deviates from the present equation of state by 

0.5 % for T < 400 K (cf. Figure 4). For higher temperatures, deviations increase. These 

values are well within the expected accuracy of a molecular model [112]. The 

representation of the homogeneous state properties by molecular simulation is presented 

in Figures 12 and 13. The simulated density data scatter around the present equation of 

state within 0.2 %. Keeping in mind that the experimental data are represented within 

0.05 % for T < 320 K and p < 20 MPa (except for p = 1 atm) as well as 0.5 % for higher 

temperatures and pressures, the density data from molecular simulation are remarkably 
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good. The simulated speed of sound data exhibit a systematic deviation of 

approximately 3 %. For regions where no measurements are available, this uncertainty 

is acceptable. 

After the verification of the molecular model, derivatives of the residual 

Helmholtz energy were simulated. Based on a methodology by Lustig [114], Thol et al. 

[116] comprehensively presented a new strategy for the development of Helmholtz 

energy equations of state based on molecular simulation data. In comparison to other 

literature, the innovation of this strategy is to simulate the residual Helmholtz energy 

and its derivatives with respect to the natural variables systematically: 

 
 o r

o r

m n

m n
mn mn mn m n

α α
A A A τ δ

τ δ

 
  

 
. (12) 

Since the ideal gas contribution is given by the isobaric heat capacity of the ideal 

gas (cf. Eq. (3)), only the residual contribution to the Helmholtz energy is needed. In 

this work, the simulation data were generated by sampling 83 state points with the 

simulation tool ms2 [119]. At each state point, 864 particles were sufficiently 

equilibrated and then sampled for 2 million cycles with Monte Carlo NVT ensemble 

simulations. From one simulation run, all Helmholtz derivatives up to the third order 

(except for the third density derivative) were computed. Numerical simulation values 

along with their statistical uncertainties are given in the supplementary material. These 

simulation data allow the direct adjustment of the fundamental function and its 

derivatives with respect to the natural variables during the development of the equation 

of state. Comparisons of these data with the present equation of state are illustrated in 

Figure 14. Relative deviations of the residual Helmholtz energy r
00A  are 15 %. The first 

derivatives of the residual Helmholtz energy with respect to the density r
01A  and 
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temperature r
10A  as well as the first mixed derivative r

11A  are reproduced within 10 %. 

The second derivative of the residual Helmholtz energy with respect to the density r
02A  

deviates up to 20 %, whereas the second derivative of the residual Helmholtz energy 

with respect to the temperature r
20A  differs by up to 40 %. This is most probably the 

reason for the systematic offset of the simulated speed of sound data depicted in Figure 

13. For a better assessment of the quality of the data, the simulated Helmholtz 

derivatives are transferred to common thermodynamic properties according to the 

following relations [84]: 
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These results are compared to the present equation of state in Figure 15. The test 

simulations of the homogeneous density presented in Figure 12 already indicated a very 

good accuracy of the data. Here, the molecular simulation data are reproduced within 

0.6 % for ρ ≥ 5 mol∙dm−3. For lower densities, deviations increase up to 4 %. The 

physical behaviour of the present equation of state in this region was carefully 

monitored during the fitting procedure. Therefore, this effect is most probably caused 

by the simulation data. However, since no experimental measurements for 1,2-

dichloroethane are available in the vapour state, a reliable statement cannot be made 

here. The simulated isochoric heat capacity scatters around the present equation within 

2 % for ρ ≤ 2 mol∙dm−3. 
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5 Physical and extrapolation behaviour 

Selected diagrams to verify the physical and extrapolation behaviour of the 

present equation of state are illustrated in Figure 16. On the top (left), the vapour-liquid 

equilibrium including the rectilinear diameter is presented and no unreasonable 

behaviour was detected. The rectilinear diameter ends up as a straight line in the critical 

region und the critical isotherm exhibits a distinctive saddle point according to the 

pressure derivatives   c
0

T
p ρ    and  22

c
0

T
p ρ   . On the top (right), the speed of 

sound as a function of temperature along selected isobars proves correct physical 

behaviour. The saturated liquid phase exhibits a straight line with negative slope down 

to very low temperatures. Additionally, the saturated liquid and vapour lines merge in a 

minimum at the critical temperature. This is in accordance with a correct course of the 

isochoric and isobaric heat capacities, where the saturation lines merge in a distinct 

maximum. The correct behaviour of the phase identification parameter [120] (centre of 

Figure 16) was discussed in detail by Thol et al. [116] and Gao et al. [121]. Originally, 

this property was proposed to discriminate between liquid and vapour states without 

carrying out time-consuming flash iterations. In the context of developing equations of 

state, this property is valuable due to the high-order Helmholtz energy derivatives, 

which are involved. Therefore, wrong shapes of equations of state can easily be detected 

and revised. For the present equation, no inadequate changes in slope or curvature can 

be observed. On the bottom of Figure 16, the thermal virial coefficients up to the fourth 

order (left) and the characteristic ideal curves [122] (right) are presented. The second 

virial coefficient behaves as expected. The maximum of the third virial coefficient 

occurs slightly below the critical temperature. 1,2-dichloroethane is slightly associating 

and, therefore, a shift of the maximum is reasonable. However, this phenomenon is not 

proven experimentally yet, but only shown for simple potential models, such as the 
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Lennard-Jones fluid [116, 123]. The same applies for the fourth virial coefficient. It 

approaches negative infinity for T → 0 K and a maximum is reached at the critical 

temperature. The absolute values are negative over the entire temperature range, which 

should actually remain positive beyond the maximum. However, this behaviour does 

not affect the calculation of thermodynamic properties for 1,2-dichloroethane within the 

specified uncertainties. Finally, no unreasonable changes in slope or curvature can be 

detected in the characteristic ideal curves [122]. Other typical diagrams, e.g., the pρT 

relation at extreme conditions, the heat capacities, or the Grüneisen coefficient [124] 

were monitored as well and assessed to be reliable. Therefore, the physical as well as 

the extrapolation behaviour of the present equation of state is assumed to be correct. 

6 Conclusion 

The present equation of state for 1,2-dichloroethane is written in terms of the 

reduced Helmholtz energy, allowing for the calculation of any thermodynamic state 

property by a combination of its derivatives. The ideal contribution consists of two 

Planck-Einstein terms, whereas the residual contribution comprises five polynomial, 

five exponential, and five Gaussian bell-shaped terms. Based on the available 

experimental data set, it is valid for T = 237.52 K to 560 K and pressures of up to 

p = 100 MPa. The expected uncertainty of vapour pressure data calculated with the 

present equation of state is 0.1 % for T < 400 K and 4 % for higher temperatures. 

Because of the restricted experimental data sets, no statement for the saturated liquid 

and vapour densities can be made. The uncertainty regarding the homogeneous density 

was assessed to be 0.05 % for T < 320 K and p < 20 MPa, whereas for higher 

temperatures and pressures uncertainties increase up to 0.5 %. The speed of sound can 

be calculated with an accuracy of 0.5 % at atmospheric pressure. The expected 

uncertainty of the isobaric heat capacity is 1 % in the gaseous and 0.2 % in the liquid 
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state. The physical and extrapolation behaviour of the equation of state was monitored 

carefully and found to be reasonable. Finally, the range of validity of the present 

equation was extended to Tmax = 1000 K and pmax = 1200 MPa by means of molecular 

simulation data. Indications for possible uncertainties in this region are given, but 

cannot be verified because no experimental measurements are available. 

Reference values to verify computer implementation, a fluid file for the 

application in the software packages REFPROP [125] and TREND [126], and the 

numerical values of the molecular simulation data are given in the supplementary 

material. 
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Table 1. Parameters of the residual contribution to the present equation of state, cf. 

Eq. (5). 

i ni ti di pi ηi βi γi εi 

1 0.51000000∙10−1 1.000 4      

2 0.19900000∙10+1 0.352 1      

3 −0.25950000∙10+1 0.890 1      

4 −0.66530000∙10+0 0.824 2      

5 0.23595000∙10+0 0.498 3      

6 −0.17000000∙10+1 1.630 1 2     

7 −0.44530000∙10+0 4.070 3 2     

8 0.67247400∙10+0 0.679 2 1     

9 −0.21918000∙10+0 2.850 2 2     

10 −0.35540000∙10−1 1.070 7 1     

11 0.97650000∙10+0 1.700 1 - 0.660 0.574 0.995 0.571 

12 −0.49517900∙10+0 2.090 1 - 1.360 1.800 0.329 0.862 

13 −0.23291174∙10+0 1.930 3 - 0.711 0.462 0.525 0.597 

14 −0.10902450∙10−1 3.720 3 - 1.700 3.220 0.850 1.160 

15 0.39209000∙10+0 1.580 1 - 1.110 2.220 0.585 0.208 

 

Table 2. Average absolute relative deviations of experimental vapour pressure, saturated 

liquid, and saturated vapour densities calculated from the present equation of state. All 

temperatures were adapted to the ITS-90 scale. Data sets, which were applied to the fit, 

are marked with an asterisk. 

 
No. 

Temperature 
Average absolute relative deviations 
(AAD) / % of 

Authors data range / K LTa MTa HTa overall 

Vapor pressure pv       

Amireche-Ziar et al. [8]* 20 284 - 355 0.080 1.14 - 0.50 

Barhala et al. [9] 10 292 - 314 0.62 - - 0.62 

Comelli & Francesconi [10] 3 298 - 334 0.74 - - 0.74 

Comelli & Francesconi [11] 15 292 - 356 9.87 2.34 - 5.85 

Comtat et al. [12] 14 326 - 355 2.96 4.24 - 3.78 

Davies et al. [13] 4 293 - 324 0.78 - - 0.78 

Dietrich [14] 58 284 - 353 0.17 0.19 - 0.17 

Dohnal et al. [15] 15 324 - 355 0.022 0.021 - 0.021 

Garcia-Sanchez & Trejo [16] 65 351 - 547 - 2.15 - 2.15 

Giles & Wilson [17] 2 303 - 354 0.055 0.25 - 0.15 
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No. 

Temperature 
Average absolute relative deviations 
(AAD) / % of 

Authors data range / K LTa MTa HTa overall 

Gutsche & Knapp [18] 15 301 - 358 0.12 0.099 - 0.12 

Igoudjilene et al. [19] 10 263 - 344 0.43 0.40 - 0.43 

Kirschbaum et al. [20] 2 356 - 362 - 0.46 - 0.46 

Kirss et al. [21] 4 319 - 357 0.19 0.042 - 0.079 

McGovern [22] 1 356.62 - 0.084 - 0.084 

Miksch et al. [23] 3 286 - 306 3.36 - - 3.36 

Patel et al. [24] 16 343 - 382 - 0.55 - 0.55 

Pearce & Peters [25] 27 242 - 373 2.45 1.01 - 2.02 

Radulescu & Alexa [26] 6 273 - 299 1.10 - - 1.10 

Rao & Viswanath [27]* 59 344 - 404 - 2.01 2.57 2.46 

Rivenq [28] 5 318 - 356 1.55 2.11 - 1.89 

Rollet et al. [29] 18 353 - 385 - 0.21 - 0.21 

Sewell & Stock [30] 6 273 - 324 0.80 - - 0.80 

Sieg et al. [31] 1 356.61 - 0.13 - 0.13 

Smith & Matheson [32] 17 352 - 361 - 0.17 - 0.17 

Stull [33] 18 228 - 559 19.1 4.71 1.61 11.0 

Sundaram & Viswanath [34] 20 343 - 382 - 0.64 - 0.64 

Teodorescu et al. [35] 2 323 - 354 0.15 0.092 - 0.12 

Toropov & Nikonovich [36] 3 313 - 334 0.77 - - 0.77 

Varushchenko et al. [37] 15 298 - 357 0.083 0.077 - 0.080 

Waters et al. [38] 5 263 - 299 0.82 - - 0.82 

Wilding et al. [39] 2 243 - 274 4.18 - - 4.18 

Saturated liquid density ρʹ       

Ali & Tariq [40] 5 298 - 319 0.19 - - 0.19 

Babak & Udovenko [41] 3 298 - 349 0.21 0.23 - 0.22 

Comelli & Francesconi [10] 1 298.15 0.025 - - 0.025 

Herz & Levi [43] 4 293 - 324 0.13 - - 0.13 

Joshi et al. [44] 4 298 - 314 0.015 - - 0.015 

Klofutar et al. [45] 6 293 - 334 0.066 - - 0.066 

Kumagai & Takahashi [46] 5 298 - 399 0.073 0.29 - 0.20 

Martin et al. [47] 5 303 - 344 0.46 0.41 - 0.45 

Sivaramprasad et al. [48] 5 293 - 334 0.26 - - 0.26 

Udovenko et al. [49] 4 303 - 334 0.27 - - 0.27 

Varushchenko et al. [50] 6 293 - 334 0.036 - - 0.036 

Vogel [51] 5 286 - 334 0.16 - - 0.16 

Saturated vapor density ρʹʹ       

McGovern [22] 1 356.62 - 3.03 - 3.03 
a LT: T/Tc < 0.6; MT: 0.6 ≤ T/Tc ≤ 0.98; HT: T/Tc > 0.98 
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Table 3. Parameters for the ancillary equations, cf. Eqs. (8) to (10). 

 pv: Eq. (8) ρ': Eq. (9) ρ'': Eq. (10) 

i ni ti ni ti ni ti 

1 −0.898372∙10+1 1.00 0.170532∙10+1 0.30 −0.293901∙10+1 0.37 

2 0.154600∙10+2 1.50 0.178600∙10+0 0.70 −0.645628∙10+1 1.20 

3 −0.371100∙10+2 1.90 0.147900∙10+1 1.10 −0.497300∙10+2 3.50 

4 0.408520∙10+2 2.30 −0.622480∙10+0 1.50 0.732730∙10+2 4.30 

5 −0.200420∙10+2 2.80   −0.837170∙10+2 5.40 

6     −0.966800∙10+2 13.0 

 

Table 4. Average absolute relative deviations of the experimental data of homogeneous 

states from the present equation of state. All temperatures were adapted to the ITS-90 

scale. Data sets, which were applied to the fit, are marked with an asterisk. The values 

for the second virial coefficient are calculated as absolute deviations in cm³∙mol-1. 

 No. Temperature and Average absolute relative  

 of pressure range deviation (AAD) / % 

Authors data T / K p / MPa Gas Liquid 

pρT data      

Bhatia et al. [52] 2 293 - 314 0.101325  0.012 

Ciocirlan et al. [53] 4 288 - 319 0.101325  0.010 

Fort & Moore [54] 1 298.14 0.101325  0.020 

García-Giménez et al. [55]* 44 288 - 319 0.1 - 21  0.010 

Hahn et al. [56] 2 293 - 314 0.101325  0.026 

Kumagai & Takahashi [46]* 35 298 - 399 10 - 102  0.19 

Lagemann et al. [57] 4 293 - 324 0.101325  0.029 

Malhotra et al. [58] 4 278 - 339 0.101325  0.042 

Malhotra & Woolf [59] 6 278 - 339 0.101325  0.042 

Manfredini et al. [60] 17 263 - 344 0.101325  0.043 

Oswal et al. [61] 5 298 - 334 0.101325  0.028 

Ranjbar et al. [62] 6 288 - 314 0.101325  0.082 

Schaaffs [63] 1 293.14 0.101325  0.028 

Valtz et al. [64] 51 283 - 334 0.101325  0.010 

Speed of sound w      

Ali & Tariq [40] 5 298 - 319 0.101325  0.65 

Bhatia et al. [52] 2 293 - 314 0.101325  0.074 

Fort & Moore [54] 1 298.14 0.101325  0.74 

Iloukhani & Samiey [65] 1 303.15 0.101325  0.55 
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 No. Temperature and Average absolute relative  

 of pressure range deviation (AAD) / % 

Authors data T / K p / MPa Gas Liquid 

Lagemann et al. [57]* 6 273 - 324 0.101325  0.067 

Nath [66] 1 303.15 0.101325  0.095 

Nath & Dixit [67] 2 298 - 309 0.101325  0.053 

Nath & Saini [68] 2 303 - 314 0.101325  0.19 

Nath & Singh [69] 2 303 - 314 0.101325  0.060 

Oswal et al. [61] 5 298 - 334 0.101325  0.41 

Schaaffs [63] 1 293.14 0.101325  17.4 

Sekhar et al. [70] 1 303.15 0.101325  0.092 

Isobaric heat capacity cp      

Góralski et al. [71]* 30 284 - 354 0.101325  0.097 

Gwinn & Pitzer [72] 6 379 - 557 0.101325 0.26  

Hallén [73] 1 298.15 0.101325  0.39 

Rastorguev & Ganiev [74] 4 293 - 354 0.101325  0.69 

Shehatta [75] 2 298 - 309 0.101325  0.36 

Sieg et al. [31] 1 293.15 0.101325  3.5 

Wilhelm et al. [76] 1 298.15 0.101325  0.27 

Heat of vaporization ∆hv      

Carson et al. [77] 1 298.15 pv 2.0  

Majer et al. [78] 5 298 - 359 pv 0.21  

McGovern [22] 1 356.62 pv 0.27  

Rao & Viswanath [80] 2 353 - 357 pv 0.17  

Second virial coefficient B      

Bohmhammel & Mannchen [79] 12 364 - 579  8.97  

Paniego et al. [81] 4 365 - 414  221  

Sewell & Stock [30] 6 273 - 324  2.69  
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Table 5. Parameters of the present molecular interaction model for 1,2-dichloroethane. 

Lennard-Jones interaction sites are denoted by the modelled atoms or atomic groups. 

The electrostatic interaction site is denoted by quadrupole. Coordinates (x, y, z) are 

given with respect to the centre of mass in a principal axes system. The orientation of 

the quadrupole is defined in standard Euler angles, where φ is the azimuthal angle with 

respect to the x-z plane and θ is the inclination angle with respect to the z axis. kB is the 

Boltzmann constant. 

Interaction site x / Å y / Å z / Å σ / Å ε∙kB
−1 / K φ / deg θ / deg Q / 10-39 A m2 s 

Cl −0.4757 2.1203 0 3.52 135    

CH2 0.4757 0.5904 0 3.76 76.95    

CH2 −0.4757 −0.5904 0 3.76 76.95    

Cl 0.4757 −2.1203 0 3.52 135    

Quadrupole 0 0 0   60 90 −2.9354 
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Figure 1. Representation of the isobaric heat capacity of the ideal gas of Gwinn and 

Pitzer [72]. 
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Figure 2. Relative deviations of vapour pressure data from the present equation of state. 
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Figure 3. log(pv)-T diagram including selected experimental vapour pressure data. 

 

 

Figure 4. Relative deviations of saturated liquid density data from the present equation 

of state. 
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Figure 5. Relative deviations of experimental homogeneous density data from the 

present equation of state for 285 K < T < 400 K. 

 

 

Figure 6. Relative deviations of experimental homogeneous density data from the 

present equation of state at atmospheric pressure. 
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Figure 7. Absolute deviations of second virial coefficient data from the present equation 

of state. 

 

 

Figure 8. Relative deviations of experimental speed of sound data from the present 

equation of state at atmospheric pressure. 
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Figure 9. Relative deviations of experimental isobaric heat capacity data from the 

present equation of state at atmospheric pressure. 

 

 

Figure 10. Available data for 1,2-dichloroethane in the homogeneous region. The grey 

area depicts the region where experimental data are available: Tmax = 560 K and 

pmax = 100 MPa. The residual Helmholtz derivatives 
r
mnA  from molecular simulation 

extend this region up to Tmax = 1000 K and pmax = 1200 MPa. 
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Figure 11. Present molecular interaction model for 1,2-dichloroethane. The green 

spheres represent chlorine atoms, the brown spheres represent methylene groups. Note 

that the sphere diameters correspond to the Lennard-Jones size parameters, which are 

depicted according to the molecular geometry scale. 
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Figure 12. Relative deviations of experimental homogeneous density data from the 

present equation of state. At the same p-T state points, molecular simulation data are 

presented to verify the accuracy of the present molecular model. 
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Figure 13. Relative deviations of experimental speed of sound data from the present 

equation of state at atmospheric pressure. At the same p-T state points, molecular 

simulation data are presented to verify the accuracy of the molecular model. 
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Figure 14. Relative deviations of simulated residual Helmholtz derivative data from the 

present equation of state along selected isotherms. Relative deviations are calculated 

according to Eq. (6). 
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Figure 15. Comparison of the present equation of state with thermodynamic properties 

obtained from molecular simulation data (Tmax = 1000 K and pmax = 1200 MPa). The 

involved residual Helmholtz energy derivatives are indicated in the grey boxes. 
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Figure 16. Physical behaviour of some thermodynamic properties of 1,2-dichloroethane: 

vapor-liquid equilibrium curves together with the rectilinear diameter (top left), speed 

of sound as a function of temperature along selected isobars (top right), phase 
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identification parameter as a function of temperature along selected isobars (center left), 

phase identification parameter as a function of density along selected isotherms (center 

right), second, third, and fourth virial coefficients (bottom left), and characteristic ideal 

curves [122] (bottom right). pv: vapor pressure curve, BL: Boyle curve, ID: ideal curve, 

JT: Joule-Thomson inversion curve, JI: Joule inversion curve. 
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Test values for computer implementation 

 

T / K  ρ / mol∙dm−3 p / MPa h / J∙mol−1 s / J∙mol−1∙K−1 cp / J∙mol−1∙K−1 w / m∙s−1 a / J∙mol−1

250 0.0001 2.0782423∙10−4 2.3536919∙10+4 1.1263617∙10+2 7.9434919∙10+1 1.5314712∙10+2 −6.7003659∙10+3

250 14 1.3148464∙10+2 −6.3294127∙10+3 −5.4436721∙10+1 1.2357319∙10+2 1.7682675∙10+3 −2.1119925∙10+3

400 0.05 1.6082797∙10−1 3.5896016∙10+4 9.6321504∙10+1 9.3603168∙10+1 1.8706153∙10+2 −5.8491451∙10+3

400 12 7.2350760∙10+1 9.2143686∙10+3 8.2503437∙10+0 1.3062037∙10+2 1.1810220∙10+3 −1.1499891∙10+2

550 14 7.4415061∙10+2 6.8017209∙10+4 2.4569494∙10+1 1.3911233∙10+2 2.1697534∙10+3 1.3503729∙10+3

 



 
Figure S1. Relative deviation of simulated residual reduced Helmholtz energy data from the 
present equation of state. 
   



 
Figure S2. Relative deviation of simulated first derivative of the residual Helmholtz energy 
with respect to density data from the present equation of state. 
   



 
Figure S3. Relative deviation of simulated first derivative of the residual Helmholtz energy 
with respect to inverse temperature data from the present equation of state. 
   



 
Figure S4. Relative deviation of simulated second derivative of the residual Helmholtz energy 
with respect to density data from the present equation of state. 
   



 
Figure S5. Relative deviation of simulated second derivative of the residual Helmholtz energy 
with respect to inverse temperature data from the present equation of state. 
   



 
Figure S6. Relative deviation of simulated mixed derivative of the residual Helmholtz energy 
with respect to density and temperature data from the present equation of state. 


