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Abstract 
Of all fluid and solid properties, quantities that describe losses are among the most challenging 
to quantify. In part, this is due to superimposed dissipative mechanisms, such as diffraction 
effects from spatially limited sources. Inherent to all these phenomena, however, is a specific 
frequency dependence. The nature of the frequency dependence varies, resulting from the 
respective absorption mechanism. Pure fluids, for example, exhibit absorption of acoustic 
waves with quadratic frequency dependence[1]. In solids, there are several absorption models 
that can be applied, each having different characteristics with respect to frequency. Other 
dissipative effects, such as diffraction, also show frequency dependence. In an approach using 
the raw moments of the signals from acoustic transmission measurements, a method to 
quantify absorption and dissipation phenomena with arbitrary frequency dependence is 
presented. The described method is applied to different absorption measurement problems. 
To verify that accurate results can be achieved under ideal conditions, the method is applied 
to signals generated using acoustic field simulation with different absorption models. To show 
its numerical stability, it is used qualitatively to evaluate the absorption of a fluid at different 
thermodynamic states. 
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I. Motivation 
While measurements of the acoustic absorption properties of fluids and solids can be used for 
an in-depth modelling of the acoustic behaviour of a material, there are other applications as 
well. In pure fluids, for example, acoustic absorption is described by three separate physical 
quantities[2] (shear viscosity, volume viscosity and thermal conductivity) and can thus be used 
to measure these fluid properties. For each absorption process, different frequency 
dependencies are either assumed in the modelling process based on observations, or result 
from the underlying physical properties of the respective wave propagation. In addition to 
absorption caused by the fluid, dissipative effects may occur in a measurement system, such 
as e.g. microstructural sound scattering and diffraction effects from a spatially limited acoustic 
transducer. As these effects also generally show frequency dependence, they can be 
quantified using the presented method as well.  

II. Methodology
It is assumed that an ultrasonic transducer emits an acoustic wave with magnitude spectrum |��(j�)| = ��(�). Assuming that the sound propagation is linear and the superposition
principle applies, the change to the spectrum caused by frequency-dependent absorption 	(�)
can be modelled using an exponential decay function: �(�, �) = ��(�)e
�(�)�	, (1) 

where	� is the propagation distance of the acoustic wave. Similar to approaches that apply the

change in centre frequency of the acoustic signal to determine absorption[3, 4, 5], the �-th raw

moment of the spectrum �(�, �) is considered:

��,�(�) = � ���(�, �)d�	.�

� (2) 
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For the following steps, the frequency-dependent absorption is assumed to be in a general 
polynomial form with the polynomial absorption parameters	��: 
 	(�) =�����

� 	. (3) 

 

To analyse how the absorption process influences the raw moments of the acoustic signal 
spectrum as the acoustic wave propagates, the derivative �� of the raw moments (equation 2) 

with respect to � is analysed. Inserting equations 1 and 3 yields:  
 

����,�(�) = � �� �−���� �� ��(�) exp �−������
�  d�	,�


�  (4) 

 

which can again be written using raw moments: 
 

����,�(�) = −���� � ��#���(�) exp �−������
�  d��


� = −���� ��#�,�(�)	. (5) 

 

Using this relationship, different methods to determine the parameters �� of the absorption can 
be derived. Here, two approaches are presented: For measurement systems where the 
acoustic signal can only be recorded at two distances �$ and �%, a procedure to quantify an 
absorption mechanism with one polynomial parameter is shown. Further, for measurement 
systems that acquire signals at multiple distances �, a method to determine dissipative 
phenomena with multiple polynomial parameters is presented. 
 
II.1. Single parameter absorption models 
For single parameter absorption mechanisms, as they occur for example with quadratic 
frequency dependence (& = 2) in pure fluids, equation 5 can be simplified as follows: 
 ����,�(�) = −�%	��#%,�(�)	. (6) 
 

While a raw moment of arbitrary order of the magnitude spectrum of an acoustic signal can be 
calculated easily via Fourier transform, the derivative has to be estimated. This is especially 
true if signals at only two distances are recorded. The straightforward method of estimating ����,�(�) would be to use a difference quotient, however, this would only yield a good estimate 

if ��,�(�) is linear in �. Evaluating simulation results and theoretical considerations for 

Gaussian shaped spectra however show, that ��,�(�) decays exponentially if bandwidth is 

small. Hence, ��,�(�) can be modelled using a simple exponential expression (�e
��) which 

can then be derived analytically. The derivative of the raw moment can be inserted in equation 
6 and yields the following expression, assuming � = 0 to minimize numerical errors: 
 �% = 1�% − �$��,�(�$)�%,�(�$) ln ,��,�(�$)��,�(�%)-	. (7) 

 

Equation 7 bears some resemblance to the expression attained by assuming monochromatic 
plane waves with absorption, evaluating the amplitude and solving for the absorption		. 

However, it directly yields the frequency independent parameter �% and thereby solves the 
problem that occurs in real measurement systems, where the waves are not monochromatic. 
Equation 7 can further be modified for other single-parameter absorption models by changing 
the order of the raw moment �%,�(�$) to match the power of the absorption mechanism to be 

quantified. 
 
II.2. Multi parameter absorption models 
For measurement systems that acquire signals at multiple distances, one can take advantage 
of the fact that equation 5 needs to hold for all distances �. This leads to a system of equations, 

which can be solved for the absorption parameters	��. As an example, the equation system to 

be solved if the signal is acquired in three positions �$, �% and �., and a constant and a linear 

absorption parameter �� and �$ are to be estimated, takes the following form: 
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−/����,�(�$)����,�(�%)����,�(�.)0 = /��,�(�$) �$,�(�$)��,�(�%) �$,�(�%)��,�(�.) �$,�(�.)0 ⋅ 2
���$3	, (8) 

 

again assuming � = 0. While this example is already overdetermined, it proves helpful for an 
application of this method that the signal can be acquired at a significantly higher number of 
positions than the number of absorption parameters to be determined. In this case, due to the 
high number of positions, the derivative of moment of ����,�(�) can be determined by 

difference quotients.  
 
III. Evaluation 
The performance of the presented approaches is evaluated by applying them to different 
signals from simulations and measurements:  
To evaluate whether exact results can be expected under ideal conditions, virtual 
measurement signals are generated using a one-dimensional representation of a precision 
sound velocity measurement setup (figure 1), filled with a fluid medium (sound velocity 4 = 

1500 m/s, density 5� =	1000 kg/m³). To cause absorption, the medium is provided with a 

volume viscosity 67 of 5 mPa s. With no other dissipative mechanisms active, this causes a 

rather small quadratic absorption parameter �% = 67/(2	4.5�)[2] of 7.4074·10-16 s²/m. 
Simulations are conducted using finite differences in time domain (FTDT). The transmitted 
signal is a Gaussian modulated sinusoidal pulse with a centre frequency of 8 MHz and a 
relative bandwidth of 0.1. Evaluating equation 7 for the signals generated using the simulation 
procedure yields an estimated volume viscosity of 4.966 mPa s. Even though the absorption is 
small, the relative deviation from the expected result is only 0.68 %. This deviation is likely to 
be caused by numerical effects in the simulation. 

 
Figure 1: Schematic of the precision sound velocity measurement setup[6] with two reflectors and the 

propagation of acoustic signals over time. 
 

To evaluate the performance of the algorithm when applied to measurement data, it is used to 
estimate the acoustic loss of methanol in different thermodynamic states from signals recorded 
using the aforementioned measurement setup originally designed for precision sound velocity 
measurement[6]  (figure 1). The physical setup consists of a single, suspended quartz disc 
transducer to allow for sound emission in both directions and two acoustic reflectors mounted 
at different distances from the transducer. Due to the differently positioned reflectors, the 
acoustic bursts that are emitted both propagate over different distances until they reach the 
transducer again, yielding the two signals necessary for the application of equation 7. While 
the resulting numerical values (figure 2) are still superimposed by the influence of the 
measurement setup, such as diffraction, they show the numerical stability of the approach, as 
similar thermodynamic states of the fluid result in similar (classical) acoustic loss 69:;< =2�%,9:;< ⋅ 5�4.. Especially in comparison to the evaluation of the change in centre frequency 

discussed before[5], the presented method yields stable results even though the properties of 
the transducer, and thus those of the transmitted signal, change with temperature. 
The estimation method for multi parameter absorption models is evaluated by applying it to 
virtual measurement results generated by performing a finite element simulation of a circular 
waveguide with a radius of 1 mm using CFS++[7]. The waveguide is filled with the same fluid 
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as used in the preceding simulation. However, losses are now caused by Rayleigh absorption[8] 
with parameters 	= = 103 s-1 and 	> = 10-9 s as an example for an absorption mechanism with 
multiple parameters. The waveguide is excited with a sinusoidal burst at 2 MHz while 160 
signals are recorded at different distances along the waveguide with a pitch of 0.3 mm. 
Applying equation 8 to these signals leads to a highly overdetermined equation system that 
can be solved using a least squares approach. To directly compare the results, the relation 
between the Rayleigh absorption parameters and the absorption 	 has to be established, 

leading to a constant and a quadratic absorption parameter �� and �%. The resulting estimate 

for 	> = 1.002·10-9 s deviates only slightly from the expected result. The estimate for 	= = 1.9·103 s-1, however, shows significant deviation, probably due to the relatively low 

absorption caused by this parameter in the examined frequency range in comparison to 	>. 
 
IV. Conclusion 
The presented method to determine the parameters of frequency-dependent absorption and 
dissipative mechanisms shows promising results in delivering numerically stable estimates for 
attenuation parameters, even if the properties of the transducer change and the signal cannot 
be assumed to be monochromatic. Prerequisites for the quantification of absorption models 
with multiple parameters using the presented method are that all parameters cause significant 
absorption in the analysed signal and that signals are recorded at multiple distances from the 
acoustic source. As the presented procedures only rely on the evaluation of the spectrum of 
the signals, it is possible to apply them in other fields, for example optics, as well. 
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Figure 2: Estimated acoustic loss of methanol at different temperatures and pressures. 

 




