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The Fick diffusion coefficient matrix of ternary mixtures containing benzene + ace-

tone + three different alcohols, i.e. methanol, ethanol and 2-propanol, is studied

by molecular dynamics simulation and Taylor dispersion experiments. Aiming to

identify common features of these mixtures, it is found that one of the main dif-

fusion coefficients and the smaller eigenvalue do not depend on the type of alcohol

along the studied composition path. Two mechanisms that are responsible for this

invariant behavior are discussed in detail, i.e. the interplay between kinetic and

thermodynamic contributions to Fick diffusion coefficients and the presence of mi-

croscopic heterogeneities caused by hydrogen bonding. Experimental work alone

cannot explain these mechanisms, while present simulations on the molecular level

indicate structural changes and uniform intermolecular interactions between benzene

and acetone molecules in the three ternary mixtures. The main diffusion coefficients

of these ternary mixtures exhibit similarities with their binary subsystems. Anal-

yses of radial distribution functions and hydrogen bonding statistics quantitatively

evidence alcohol self-association and cluster formation, as well as component seg-

regation. Further, the excess volume of the mixtures is analyzed in the light of

intermolecular interactions, further demonstrating the benefits of the simultaneous

use of experiment and simulation. The proposed framework for studying diffusion

coefficients of a set of ternary mixtures, where only one component varies, opens the

way for further investigations and a better understanding of multicomponent diffu-

sion. The presented numerical results may also give an impulse to the development

of predictive approaches for multi-component diffusion.
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structure, hydrogen bonding, molecular simulation
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I. INTRODUCTION

In recent years, molecular modelling and simulation has been established as a reliable tool

to study transport properties of liquids because it allows to uncover the involved physical

mechanisms at the molecular level. Consequently, academic work that combines experiments

and molecular simulation has gained popularity1–5. Such joint investigations do not only

offer the possibility to contrast experimental results, but also to consider microscopic details

which, in many cases, are inaccessible with experimental techniques6.

Most mass transfer processes occurring in natural phenomena and engineering applica-

tions involve multicomponent liquid solutions that are thus of great importance for basic and

applied research7. However, diffusion coefficients have experimentally been measured only

for a very limited number of mixtures containing three or more components. In fact, the

description of multicomponent diffusion is more challenging than it is often conceived. For

instance, a ternary mixture has four state dependent Fick diffusion coefficients which differ

with component order and reference frame. The presence of cross diffusion effects introduces

additional complexity into experimental data interpretation and processing8,9. Indeed, the

first experimental verification of the existence of cross diffusion was reported a century af-

ter10 the first experimental and theoretical investigations of binary liquid mixtures11. Hence,

there is significant interest in the improvement of experimental methodologies and the de-

velopment of reliable methods for the prediction of mutual diffusion coefficients of liquid

mixtures containing three or more components.

Experimental and molecular simulation techniques were employed in this work to obtain

diffusion coefficients and density of three ternary liquid mixtures constituted of an aromatic,

a ketone and an alcohol. Benzene and acetone were mixed with one of the following three

alcohols: methanol, ethanol or 2-propanol. For each mixture, nine state points along a

composition path with a constant benzene mole fraction of x1 = 0.33 mol mol−1 were studied

under ambient conditions of temperature and pressure. These ternary mixtures contain

non-polar, polar aprotic and protic associating components that also significantly differ

in molecular mass and size. These characteristics make them particularly challenging12,

but also interesting as model mixtures to study the influence of the alcohol carbon chain

length on diffusion phenomena. Selected pioneering results on these mixtures were recently

published13, showing an intriguing relationship between the kinetic and thermodynamic

3



contributions to the Fick diffusion coefficients. Thus, the aim of this study was not only to

determine the Fick diffusion coefficient matrix, but also to seek for common features that

may help to better understand complex diffusion processes and support the development

and verification of predictive approaches.

In their pure liquid state, alcohol molecules exist in a self-associated form, while benzene

and acetone molecules exhibit non-associated structures14. Thus, when an alcohol is mixed

with benzene and acetone, different intermolecular interactions will lead to an extensive

variation of molecular ordering, which entails interesting macroscopic properties. Therefore,

to understand the observed dynamic behavior from a microscopic point of view on the basis

of structural properties, radial distribution functions (RDF) and hydrogen bonding statistics

were also analyzed.

Experimentally, Fick diffusion coefficients can be measured with a variety of techniques

from optical interferometry to NMR spin relaxation. In the present work, Taylor dispersion,

also known as peak broadening technique, was employed. On the molecular simulation side,

transport properties were sampled with equilibrium molecular dynamics and the Green-Kubo

formalism.

To the best of our knowledge, only one of the regarded ternary mixtures, i.e. benzene

+ acetone + methanol, has been studied with respect to diffusion before15. Diffusion and

structural properties of several binary subsystems that involve methanol or ethanol have

been the subject of investigations16–23. Binary mixtures of acetone with methanol5,14,24,25 or

ethanol26 have been studied especially with respect to their ability to form hydrogen bonds.

Attention has also been paid to the structural properties of binary mixtures of benzene with

methanol, ethanol or acetone27–31.

Molecular simulation studies on diffusion coefficients of ternary liquid mixtures containing

associating species are still scarce. Preceding work of our group on water + methanol +

ethanol3,32, the work of Liu et al.33,34 on chloroform + acetone + methanol and water +

methanol + ethanol as well as the investigation of transport properties of acetone + water +

supercritical CO2 by Sohrevardi et al.35 should be mentioned. The present study continues

our efforts to combine molecular simulation and experimental work to analyze diffusion in

ternary liquid mixtures.

This paper is organized as follows: First, a brief explanation of the general equations gov-

erning diffusive fluxes in ternary mixtures is given. Second, the experimental methodology is
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described, followed by a brief outline of the employed simulation techniques. Subsequently,

the experimental and simulation results are presented and analyzed in the light of the ob-

served microscopic structure. For this purpose, hydrogen bonding statistics and RDF were

employed. Finally, conclusions are drawn.

II. THEORY OF DIFFUSION

There are two major formulations to describe diffusive mass transport in mixtures. These

are Maxwell-Stefan (MS) theory and the generalization of Fick’s law, in which the molar

flux of component i in a mixture of N components is written as a linear combination of

concentration gradients ∇Cj
36

Ji = −
N−1
∑

j=1

Dij∇Cj , (i = 1, 2, ..., N − 1) , (1)

where Dii are the main diffusion coefficients that relate the molar flux of component i to its

own concentration gradient and Dij are the cross diffusion coefficients that relate the molar

flux of component i to the concentration gradient of component j37. Because molar fluxes,

concentration gradients and diffusion coefficients Dij can be determined experimentally,

Fick’s law is the most widely used approach. However, it suffers from serious drawbacks38.

The Fick approach involves N − 1 independent diffusion fluxes and a (N − 1) × (N − 1)

matrix of diffusion coefficients, which is generally not symmetric, i.e. Dij 6= Dji. Further,

the numerical values of Dij depend both on the reference frame for velocity (molar-, mass-

or volume-averaged) and on the order of the components. In this work, the following the

component order was specified: benzene (1) + acetone (2) + methanol / ethanol / 2-propanol

(3).

The molar-averaged reference frame was used in the present simulations to obtain Fick

diffusion coefficients, where the following closure holds

N
∑

i=1

JM
i = 0 , (2)

for the molar diffusion flux of component i in that reference frame JM
i . On the other

hand, the mathematical model of the Taylor dispersion technique for ternary mixtures was

originally developed for the volume-averaged reference frame39. In this case, the closure

reads
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N
∑

i=1

JV
i vi = 0 , (3)

where JV
i is the molar diffusion flux of component i in the volume-averaged reference frame

and vi the partial molar volume of component i. Because the molar fluxes depend on the

reference frame choice, the diffusion coefficients are defined accordingly. The Fick diffusion

coefficients in the volume- and molar-averaged reference frames are denoted by DV
ij and DM

ij ,

respectively. The diffusion coefficient matrix in the volume-averaged reference frame DV is

related to the one in the molar-averaged reference frame DM by40

DV = BV u · DM · BuV , (4)

where

BV u
ij = δij − xi (vj − vN) /v,

BuV
ij = δij − xi (1 − vj/vN) , (5)

with δij being the Kronecker delta function, xi the mole fraction of component i and

v =
N
∑

i=1

xivi. (6)

The main shortcoming of Fick’s law is the fact that concentration gradients are not the

true thermodynamic driving forces for diffusion, which are rather constituted by chemical

potential gradients41. MS theory follows this path, assuming that chemical potential gradi-

ents ∇µi are balanced by friction forces between the components that are proportional to

their mutual velocity ui − uj
40

N
∑

j 6=i=1

xj(ui − uj)
Ðij

= −
1

kBT
∇µi , (7)

where kB is the Boltzmann constant and T the temperature. The MS diffusion coefficient Ðij

thus plays the role of an inverse friction coefficient between components i and j. MS diffusion

coefficients are symmetric, i.e. Ðij = Ðji, so that the according matrix has only N(N −1)/2

independent entries. Furthermore, these Ðji pairs do not depend on the component order42.

Because Fick’s law and MS theory describe the same physical phenomenon, the Fick

diffusion coefficients can be expressed as
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DM = ∆ · Γ , (8)

in which all three symbols represent (N − 1) × (N − 1) matrices and ∆ is the matrix

of phenomenological diffusion coefficients. In this way, MS diffusion coefficients can be

transformed to the Fick diffusion coefficients and vice versa, if the thermodynamic factor

matrix Γ 40

Γij = δij + xi

∂ ln γi

∂xj

∣

∣

∣

∣

∣

T,p,xk,k 6=j=1...N−1

. (9)

is known. Therein, γi stands for the activity coefficient of component i. Further, MS

diffusion coefficients are related to the inverse of the phenomenological diffusion coefficient

matrix B = ∆−1 by43

Bii =
xi

ÐiN

+
N
∑

j 6=i=1

xj

Ðij

, Bij = −xi

(

1
Ðij

−
1

ÐiN

)

.

In Eq. (8), the phenomenological diffusion coefficient matrix ∆ accounts for hydrody-

namics, while the thermodynamic factor matrix Γ accounts for thermodynamic aspects of

diffusion. Clearly, non-ideal solution thermodynamics has a strong influence on diffusion in

liquid mixtures42. However, it should be noted that these parameters are not completely

independent. Intermolecular interactions are at the root because they determine the activity

coefficients as well as the effective diffusion ratio governing hydrodynamics37.

III. TAYLOR DISPERSION EXPERIMENTS

A. Working Equations

The Taylor dispersion technique was used for measurements of the Fick diffusion coef-

ficient matrix. A detailed description of the employed experimental set-up can be found

in Refs.3,8,9 so that only specific information is provided here. As an injected concentra-

tion pulse in a carrier liquid is pumped through a long tube, it broadens by the coupled

action of convection in axial direction and diffusion in radial direction. The inner diame-

ter and length of the employed polytetrafluoroethylene tube were 2R0 = 748 ± 1 µm and

L = 29.839 ± 0.001 m, respectively. That capillary was coiled around a grooved aluminum
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cylinder with a diameter of 30 cm and was placed together with a refractometer and a pump

in a temperature-regulated air bath at 298 ± 0.2 K. The flow rate was 0.08 mL / min and the

injected volume was 20 µL.

At the end of the capillary, a differential refractometer monitored the composition of

the eluted Taylor peak as a function of time t. Its output voltage signal consisted of two

overlapping profiles Vi(t)

V (t) =
K
∑

k=0

Vktk + V1(t) + V2(t). (10)

Fick diffusion coefficients were calculated by comparing the experimental refractive index

profile with the analytical solution. For a practical implementation following Leaist44, the

solution of the system of two diffusion equations was transformed to describe the detector

output signal V (t)

V (t) =
K
∑

k=0

Vktk + ∆Vmax

√

tR

t

×
[

W1 exp(−D̂1η) + (1 − W1) exp(−D̂2η)
]

, (11)

where η = 12(t − tR)2/R2
0t , tR = L/u is the retention time, ∆Vmax is the maximal peak

height at t = tR and D̂i are the eigenvalues of the Fick diffusion coefficient matrix

D̂1,2 =
1
2

(

DV
11 + DV

22 ±
√

(DV
11 − DV

22)2 + 4DV
12DV

21

)

. (12)

The normalized weight W1 is defined as

W1 =
(a + bα)

√

D̂2

(a + bα)
√

D̂1 + (1 − a − bα)
√

D̂2

, (13)

where the parameters are

a =
DV

11 − D̂1 − DV
12 SR

D̂2 − D̂1

, (14)

b =
DV

22 − DV
11 − DV

21/SR + DV
12 SR

D̂2 − D̂1

, (15)

α =
∆C1

∆C1 + ∆C2/SR

. (16)
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An unconstrained Nelder-Mead simplex method, similar to that employed by Legros

et al.9, was used to fit the working equations to the experimental voltage data from the

refractive index detector. Instead of a direct fit of the Fick diffusion coefficients DV
ij , the

coefficients a, b and the two eigenvalues D̂i were adjusted45. As can be seen from Eqs. (13-16),

the experimental signal strongly depends on the parameter SR, which is a sensitivity ratio of

the detector with respect to the independent components. Basic tests and validations of the

experimental set-up with binary and ternary mixtures were presented in detail in Refs.3,8,9.

Instead, attention will be drawn to the determination of the optical sensitivity coefficient

SR for the considered mixtures which contributes substantially to the accuracy of Taylor

measurements when applied to ternary mixtures.

B. Optical Properties

Refractometers provide an electrical signal, which depends on a change of the refractive

index n. Their voltage output signal V (t) is assumed to be linearly proportional to small

concentration changes of all independent components of the mixture44

V (t) =
K
∑

k=0

Vktk + R1(C1(t) − C0
1 ) + [R2(C2(t) − C0

2)]. (17)

Therein, C0
i and Ci are the molar concentrations of the liquid carrier mixture and injection,

respectively. The first term in Eq. (17) describes the baseline drift of the detector and

was modeled by a second order polynomial, K = 2. The sensitivity of the refractometer on

component i in the mixture can be written as

Ri = ∂V/∂Ci = (∂V/∂n)(∂n/∂Ci),

where (∂V/∂n) is detector constant and the derivatives ∂n/∂Ci are the contrast factors.

Note that the sensitivity ratio SR in Eqs. (11-16) does not depend on the detector constant

SR = R1/R2 = (∂n/∂C1)/(∂n/∂C2).

Optical contrast factors can be determined by independent measurements of the refractive

index. Alternatively, the sensitivity ratio SR can be determined from the ratio of the surface

areas between the dispersion peak and the baseline for different injections. However, initial
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experimental runs did not allow for a reliably determination of SR by the second approach,

which motivated the dedicated measurement of the refractive index.

In experimental work, it is preferred to deal with directly accessible composition variables

like mole fractions xi. On that basis, the optical contrast can be written as

∂n

∂Ci

=
∂n

∂xi

∂xi

∂Ci

, (18)

with
∂xi

∂Ci

= v
[

1 − xi

(

1 −
vi

v3

)]

. (19)

To determine optical contrast factors, 27 solutions with varying composition were pre-

pared for each ternary mixture, i.e., nine state points along three paths with a constant

benzene mole fraction x1 = 0.26, 0.33 and 0.40 mol mol−1, cf. Fig. 1 (top). For this purpose,

the following substances were purchased and used without further purification: benzene

(CAS number 71-43-2) from Sigma-Aldrich, acetone (CAS number 67-64-1) from Merck,

methanol (CAS number 65-56-1) from Fisher, ethanol (CAS number 64-17-5) from VWR

and 2-propanol (CAS number 67-63-0) from Sigma-Aldrich.

The differential refractometer operated at λ = 950 nm and the measurements were carried

out at the nearest accessible wavelength λ = 935 nm, cf. Fig. 1. In case of the ternary mixture

containing methanol, the refractive index n(x1, x2) has a very weak composition dependence

and was thus additionally measured at wavelengths of λ = 590 and 670 nm, considering the

dispersion dependence given by the Cauchy equation46

n(λ) = A +
B

λ2
.

Constants A and B were determined by comparing measurements at different wavelengths.

The dependence of the refractive index on the acetone mole fraction x2 was approximated

by third order polynomials. Although their relation was nearly linear in some cases, the third

order was kept throughout for the sake of consistency

n(x2) = a3 · x3
2 + a2 · x2

2 + a1 · x2 + a0, (20)

for a given benzene mole fraction x1. The coefficients for all mixtures are listed in Table II.

The derivative (∂n/∂x2)x1
can be determined from Eq. (20) by differentiation. The other

10



FIG. 1. Refractive index n of the ternary mixtures benzene + acetone + methanol (top) / ethanol

(center) / 2-propanol (bottom) at 298.15 K, 0.1 MPa and λ = 935 nm along three constant benzene

mole fraction paths x1 = 0.26, 0.33 and 0.40 mol mol−1. x2 stands for the acetone mole fraction.
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TABLE I. Coefficients of Eq. (20) for the refractive index of the ternary mixtures benzene + acetone

+ methanol / ethanol / 2-propanol at 298.15 K, 0.1 MPa and λ=935 nm along the three constant

benzene mole fraction paths x1 = 0.26, 0.33 and 0.40 mol mol−1 as shown in Fig. 1.

x1 a0 a1 a2 a3

mol mol−1 benzene + acetone + methanol

0.26 1.4145 0.0003 −0.0270 0.0193

0.33 1.4026 0.0042 −0.0198 0.0073

0.40 1.3889 0.0137 −0.0289 0.0119

benzene + acetone + ethanol

0.26 1.4166 −0.0132 −0.0078 0.0137

0.33 1.4069 −0.0115 −0.0086 0.0105

0.40 1.3965 −0.0118 −0.0007 0.0020

benzene + acetone + 2-propanol

0.26 1.4156 −0.0137 −0.0024 0.0078

0.33 1.4073 −0.0149 0.0026 0.0016

0.40 1.3994 −0.0212 0.0186 −0.0169

derivative (∂n/∂x1)x2
was calculated on the basis of measurements at three state points with

a constant mole fraction x1, expressed by the linear equation

(∂n/∂x1)x2
= d1 · x2 + d0. (21)

TABLE II. Coefficients of Eq. (21) for (∂n/∂x1)x2
of benzene + acetone + alcohol mixtures at

λ = 935 nm.

alcohol d0 d1

methanol 0.0280 −0.0251

ethanol −0.0142 0.0038

2-propanol −0.0145 0.0019

The contrast factors of all mixtures are shown in Fig. 2. There are two important con-

clusions: first, (∂n/∂x1)x2
is larger than (∂n/∂x2)x1

by more than one order of magnitude,

meaning that the detector signal has little sensitivity on the acetone mole fraction. Second,

the value of (∂n/∂x2)x1
is zero at x2 = 0.12 mol mol−1 and within the small margins along the
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FIG. 2. Optical contrast factors of the ternary mixtures benzene + acetone + methanol

(black) / ethanol (blue) / 2-propanol (red) at 298.15 K, 0.1 MPa and λ = 935 nm along a constant

benzene mole fraction path x1 = 0.33 mol mol−1. x2 stands for the acetone mole fraction.

path x1 = 0.33 mol mol−1 it can be positive or negative, which may lead to very different con-

tributions of the last two terms in Eq. (17). This imposes limitations on the selection of the

injection composition and requires numerous repetitions of Taylor measurements runs. For

example, it was not favorable to take two perpendicular injections in which either ∆x1 = 0

or ∆x2 = 0. The choice of the injection composition in regions with poor optical properties

was discussed in detail in Ref.3. Note that the main Fick diffusion coefficients DV
11 and DV

22

were much less affected by the choice of the injection composition than the cross diffusion

coefficients DV
12 and DV

21.

Solutions for the Fick diffusion coefficients obtained by the fitting procedure were stable,

however, the cross diffusion coefficients of the diffusion matrix display larger differences from

molecular dynamics simulation results. It is important to note that in case of mixtures with

methanol, the present simulation results provided valuable support to the experiments as

they were used as initial guess.

Optical contrast factors of these mixtures are valuable not only for the study of diffusion,

but also for other laboratory work which relies on such data, e.g. Soret experiments47.
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IV. MOLECULAR SIMULATION

Rigid, united-atom type models were used to describe the intermolecular interactions.

The employed molecular models account for these interactions, including hydrogen bonding,

by a set of Lennard-Jones (LJ) sites, point charges, point dipoles and point quadrupoles,

which may or may not coincide with the LJ site positions48–52. These models were satisfacto-

rily assessed in previous works with respect to the binary subsystems of the ternary mixtures

under consideration48. The interested reader is referred to the original publications48–52 for

detailed information about the molecular pure substance models and their parameters.

To define a molecular model for a ternary mixture on the basis of pairwise additive

potentials, only the unlike interactions have to be specified. In case of polar interaction

sites, this can straightforwardly be done by following the laws of electrostatics. However, for

the unlike LJ parameters, there is no physically sound approach so that combining rules have

to be employed for predictions. For this purpose, the simple Lorentz-Berthelot combining

rules were chosen. Consequently, all simulation data presented below are strictly predictive.

The Green-Kubo formalism based on the net velocity auto-correlation function can be

employed to sample the Onsager coefficients43

λij =
1

3Np

∫ ∞

0
dt
〈 Np,i
∑

k=1

vi,k(0) ·
Np,j
∑

l=1

vj,l(t)
〉

, (22)

where Np is the total number of molecules, Np,i is the number of molecules of component

i and vi,k(t) denotes the center of mass velocity vector of the k-th molecule of component

i at time t. Eq. (22) corresponds to a reference frame in which the mass-averaged mixture

velocity is zero43. Note that the λ matrix is symmetric because of the Onsager reciprocal

relations53. For a ternary mixture, the elements of the phenomenological diffusion coefficient

matrix ∆ in the molar-averaged reference frame are then given by43
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∆11 = (1 − x1)

(

λ11

x1

−
λ13

x3

)

− x1

(

λ21 + λ31

x1

−
λ23 + λ33

x3

)

,

∆12 = (1 − x1)

(

λ12

x2

−
λ13

x3

)

− x1

(

λ22 + λ32

x2

−
λ23 + λ33

x3

)

,

∆21 = (1 − x2)

(

λ21

x1
−

λ23

x3

)

− x2

(

λ11 + λ31

x1
−

λ13 + λ33

x3

)

,

∆22 = (1 − x2)

(

λ22

x2
−

λ23

x3

)

− x2

(

Λ12 + λ32

x2
−

λ13 + λ33

x3

)

. (23)

The Fick diffusion coefficient matrix was thus determined through Eqs. (8) and (23).

Further, once the phenomenological diffusion coefficient matrix ∆ is known, the MS diffusion

coefficients can be calculated from Eq. (10).

A recent work of Jamali et al.54 demonstrated the presence of a significant system size

dependence on the calculated values of the binary MS diffusion coefficients. They suggest

that the finite-size effect, which is also found for self- and intra-diffusion coefficients, is

highly dependent on the nonideality of the mixture and thus, on the thermodynamic factor.

Therefore, it is expected that present ternary simulation results exhibit systematic errors

due to finite-size effects. However, because of the relatively large number of molecules (5000)

employed, the errors are expected to be within the statistical uncertainties of the simulation

results.

The thermodynamic factor matrix Γ was calculated from the classical Wilson55 excess

Gibbs energy GE model, which does yield good results for the present binary subsystems48.

The Wilson GE model relies on adjustable binary parameters, which were regressed to exper-

imental vapor-liquid equilibrium data for each binary subsystem, assuming that the vapor

phase is an ideal gas and that the Poynting correction factor is negligible. The according

regressions were carried out with the RecPar tool from the Dortmund Data Bank56. The

composition derivatives of the multicomponent Wilson model were evaluated analytically as

described by Taylor and Kooijman57, leading to the thermodynamic factor

Γij = δij + xi(Qij − QiN) , (24)

and

Qij = −Λij/Si − Λji/Sj +
N
∑

k=1

xkΛkiΛkj/S2
k , (25)
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where

Si =
N
∑

j=1

xjΛij , (26)

and Λij are adjustable Wilson parameters. Their numerical values are given in the supple-

mentary material. Note that this multicomponent thermodynamic model also defines the

properties of its binary subsystems.

Structural Properties

The RDF g(r) is an important property to characterize the microscopic structure of

matter. It represents the local density around a site or position58

g(r) =
V

N2

〈

∑

i

∑

j 6=i

δ(r − rij)
〉

, (27)

where N is the number of molecules on a volume V with an average number density ρ = N/V .

The geometric criterion proposed by Haughney et al.59 was employed to sample hydrogen

bonding statistics for the studied ternary mixtures. Accordingly, two sites were considered

to form a hydrogen bond if the distance between the donor and the acceptor sites was smaller

than 2.6 Å, the distance between the acceptor sites of the acceptor and donor molecules was

smaller than 3.5 Å and the angle between the acceptor–donor axis and the acceptor–acceptor

axis was below 30◦.

V. RESULTS

A. Density and Excess Volume

The density of the three ternary mixtures was determined experimentally and predicted

by means of molecular simulation. Numerical data are given in Table III. The densities

of the solution were measured with a vibrating tube density meter (Anton Paar GmbH,

model DMA 5000M) with a standard deviation of 1 · 10−2 kg m−3 and internal temperature

control of 0.01 K. Further, the excess volume of the mixture was derived from the present

experimental data in order to discuss mixing effects due to molecular packing. The excess

volume is negative for the ternary mixtures involving methanol or ethanol, indicating denser
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molecular packing than in the pure liquids and strongly attractive unlike interactions, cf.

Fig. 3. These effects are more pronounced for the mixture containing methanol because of

its small molecular size and the presence of strong hydrogen bonding. The minimum of the

excess volume is located near equimolar composition for both alcohols. On the other hand,

the mixture containing 2-propanol shows a positive excess volume, indicating a decrease in

the packing density upon mixing, which is a consequence of the bulky shape of 2-propanol

molecules that leads to steric hindrance.

FIG. 3. Density ρ (top) and excess volume vE (bottom) of the mixtures benzene + acetone + methanol

(black) / ethanol (blue) / 2-propanol (red) at 298.15 K and 0.1 MPa along a constant benzene mole fraction

path x1 = 0.33 mol mol−1. Data from present experiments (+) are compared with present simulation results

(◦). x2 stands for the acetone mole fraction.
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B. Intradiffusion Coefficients

Although intradiffusion coefficients bear less practical importance than mutual diffusion

coefficients, they provide fundamental information about solvation, structure and dynamics

of solutions60. The intradiffusion coefficients of all components in the ternary mixtures were

thus calculated by molecular simulation and the Green Kubo formalism. Finite size effects

were accounted with the correction by Yeh and Hummer61, which did not exceeded 6% of

the simulation results. The results are shown in Fig. 4. The intradiffusion coefficients of

both benzene D1 and acetone D2 are higher for the ternary mixture involving methanol,

which is a consequence of the obstruction effect60, i.e. their propagation is blocked to a

lesser extent through the small and light methanol molecules. For the mixtures involving

ethanol or 2-propanol, the intradiffusion coefficients D1 and D2 are almost identical. The

intradiffusion coefficient of the three alcohols D3 behaves as expected, mobility decreases

with molecular weight. Note that intradiffusion does not always adhere to this rule, e.g. it

decreases with the presence of self-association due to hydrogen bonding as is the case for

the alcohols. This phenomenon leads to a decrease of mobility of the alcohol molecules, i.e.

the increase of their effective diffusion size when the alcohol concentration is increased. In

fact, in the alcohol-rich region, the intradiffusion coefficient of the small methanol molecules

is similar as that of the much larger benzene molecules.

To understand this phenomenon, the average number of hydrogen bonds per alcohol

molecule in the three ternary mixtures was calculated by molecular simulation, cf. Fig. 1

of the supplementary material. In the binary limit x2 → 0, alcohol molecules are hydrogen

bonded on average to ∼ 1.8 other alcohol molecules, which approximately coincides with

the value for pure alcohols. Along the studied composition path, the average hydrogen bond

number decreases to less than unity in the alcohol-poor region. This decrease is almost

monotonic up to the equimolar composition where a marked change in the slope can be

noticed. This behavior cannot solely be explained by the reduction in the availability of

hydrogen bonding partners but also by the disruption of ordered hydrogen bonding struc-

tures, which is in line with the reported increase of the intradiffusion coefficients for all

considered alcohols upon their dilution. Further, the presence of hydrogen bonding clusters

in the regarded mixtures was analyzed in detail employing molecular simulation techniques,

cf. Fig. 5. The amount of alcohol molecules that do not participate in hydrogen bonding

18
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FIG. 4. Intradiffusion coefficient Di of benzene (top), acetone (center) and an alcohol (bottom) of the

ternary mixtures benzene + acetone + methanol (black) / ethanol (blue) / 2-propanol (red) at 298.15 K and

0.1 MPa along a constant benzene mole fraction path x1 = 0.33 mol mol−1. x2 stands for the acetone mole

fraction. Statistical uncertainties are within symbol size.
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increases with decreasing alcohol mole fraction. In the alcohol-rich binary limit, about 70%

of the alcohol molecules are self-associated trimers, as is the case for the pure alcohols. The

amount of self-associated alcohol molecules forming trimers decreases with the reduction of

the alcohol content. On the other hand, the amount of alcohol molecules forming dimers with

another alcohol increases with decreasing alcohol content. The number of alcohol molecules

hydrogen bonded to three or more partners is negligible. The amount of alcohol molecules

that are hydrogen bonded to acetone was also determined.

C. Fick Diffusion Coefficient Matrix

The Fick diffusion matrix of the three ternary mixtures was measured by means of the

Taylor dispersion technique. Numerical values of the matrix elements DV
ij are reported

in Table III. Further, in order to compare results from experiment and simulation, the

measured Fick diffusion matrix in the volume-averaged reference frame DV was converted

into the molar-averaged reference frame DM employing Eq. (4). For this conversion, the

partial molar volumes have to be known. However, it can be shown for the regarded mixtures

that the molar volumes of the pure liquids may be employed with negligible loss in conversion

accuracy.

All experimental and simulation results for the ternary diffusion coefficients are consistent

and their numerical values fulfill the theoretical restrictions given by Taylor and Krishna40,

i.e. the Fick diffusion matrix has positive and real eigenvalues, positive diagonal elements

and a positive determinant. The eigenvalues, which are independent on the reference frame,

are shown in Fig. 6, their numerical values are listed in the supplementary material. It can be

seen that both eigenvalues grow monotonically with decreasing alcohol content for all three

ternary mixtures. The larger eigenvalue D̂1 decreases in magnitude with increasing alcohol

carbon chain length in the entire regarded composition range. The smaller eigenvalue D̂2

generally exhibits a similar behavior, i.e. it is larger for the shorter alcohols, however, the

differences between the three mixtures are far less significant than for D̂1, cf. Fig. 6.

Fick diffusion coefficients are difficult to interpret from a physical perspective because they

depend on hydrodynamic and thermodynamic contributions37, cf. Eq. (8). For a better un-

derstanding of Fick diffusivity data, it is thus useful to analyze both contributions separately,

i.e. the behavior of the thermodynamic factor matrix Γ and that of the phenomenological
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FIG. 5. Hydrogen bonding statistics of the ternary mixtures benzene + acetone + methanol (black) / ethanol

(blue) / 2-propanol (red) at 298.15 K and 0.1 MPa along a constant benzene mole fraction path x1 = 0.33

mol mol−1. Calculated fractions of alcohol molecules forming hydrogen bonded monomers (top), dimers,

trimers and tetramers (center and bottom) are shown. x2 stands for the acetone mole fraction. Statistical

uncertainties are within symbol size.
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TABLE III. Experimental density ρ in kg m−3 and Fick diffusion coefficient data DV
ij in 10−9m2s−1

with their uncertainties σ/10−9m2s−1 of the ternary mixtures benzene (1) + acetone (2) +

methanol / ethanol / 2-propanol (3) at 298.15 K and 0.1 MPa along a constant benzene mole fraction

path x1 = 0.33 mol mol−1.

benzene + acetone + methanol

x1 x2 x3 ρ DV
11 σ DV

12 σ DV
21 σ DV

22 σ

0.33 0.00 0.67 832.04 1.291 0.002

0.33 0.07 0.60 831.25 1.409 0.054 −0.876 0.347 0.024 0.006 3.239 0.71

0.33 0.17 0.50 829.69 1.578 0.202 −0.799 0.228 0.062 0.057 3.371 0.197

0.33 0.27 0.40 827.73 1.760 0.098 −0.675 0.191 0.182 0.41 3.743 0.196

0.33 0.33 0.33 826.36 1.847 0.058 −0.823 0.153 0.332 0.056 3.878 0.100

0.33 0.37 0.30 825.56 1.954 0.065 −0.681 0.101 0.254 0.034 3.836 0.087

0.33 0.47 0.20 823.24 2.159 0.071 −0.225 0.029 1.590 0.125 4.350 0.091

0.33 0.57 0.10 820.74 2.241 0.067 −0.366 0.034 2.063 0.218 4.837 0.093

0.33 0.67 0.00 819.34 2.980 0.003

benzene + acetone + ethanol

x1 x2 x3 ρ DV
11 σ DV

12 σ DV
21 σ DV

22 σ

0.33 0.00 0.67 823.33 1.313 0.003

0.33 0.07 0.60 823.03 1.411 0.072 −0.707 0.062 −0.163 0.015 2.596 0.053

0.33 0.17 0.50 822.36 1.602 0.028 −0.651 0.033 −0.204 0.017 2.822 0.041

0.33 0.27 0.40 821.61 1.731 0.038 −0.641 0.034 −0.155 0.010 3.078 0.032

0.33 0.33 0.33 821.08 1.781 0.042 −0.667 0.027 0.036 0.003 3.275 0.029

0.33 0.37 0.30 820.78 1.769 0.039 −0.648 0.047 0.286 0.019 3.497 0.079

0.33 0.47 0.20 819.91 1.910 0.088 −0.731 0.062 0.493 0.037 3.870 0.098

0.33 0.57 0.10 819.02 2.397 0.087 −0.506 0.051 0.903 0.043 4.199 0.072

0.33 0.67 0.00 818.34 2.980 0.003

benzene + acetone + 2-propanol

x1 x2 x3 ρ DV
11 σ DV

12 σ DV
21 σ DV

22 σ

0.33 0.00 0.67 812.80 1.124 0.002

0.33 0.07 0.60 812.99 1.270 0.072 −0.539 0.041 −0.137 0.009 2.201 0.054

0.33 0.17 0.50 813.33 1.390 0.066 −0.567 0.047 −0.142 0.010 2.526 0.038

0.33 0.27 0.40 813.82 1.594 0.042 −0.461 0.031 −0.374 0.021 2.708 0.032

0.33 0.33 0.33 814.23 1.747 0.041 −0.323 0.027 −0.284 0.019 2.969 0.059

0.33 0.37 0.30 814.48 1.827 0.059 −0.376 0.044 −0.298 0.027 3.090 0.098

0.33 0.47 0.20 815.39 2.034 0.101 −0.195 0.022 −0.189 0.027 3.420 0.125

0.33 0.57 0.10 816.58 2.349 0.092 −0.076 0.013 0.366 0.041 3.933 0.138

0.33 0.67 0.00 818.34 2.980 0.00322



FIG. 6. First (top) and second (bottom) eigenvalue of the Fick diffusion coefficient matrix D of the ternary

mixtures benzene (1) + acetone (2) + methanol (black) / ethanol (blue) / isopropanol (red) (3) at 298.15 K

and 0.1 MPa along a constant benzene mole fraction path x1 = 0.33 mol mol−1. x2 stands for the acetone

mole fraction. Data from present experiments (+) are compared with present simulation results (◦).

coefficient matrix ∆. The composition dependence of the Fick diffusion coefficients DM
ij , the

thermodynamic factor elements Γij and the phenomenological coefficients ∆ij is shown in

Figs. 7 to 10.

Both main elements of the Fick diffusion coefficient matrix increase with falling alcohol

content. In general, DM
11 < DM

22 , which is expected because of the size difference between

benzene and acetone molecules. However, the most striking feature is the insensitivity of DM
11

on the alcohol carbon chain length, which is especially visible at high alcohol concentrations.

On the other hand, the hydrodynamic behavior given by the phenomenological coefficient

∆11 does depend on the alcohol type, i.e. ∆11 of the ternary mixture involving methanol is
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significantly larger than that of the other two mixtures, which is consistent with a smaller

diffusion size of methanol, cf. Fig. 7. In contrast, the thermodynamic factor Γ11 of the

ternary mixture with methanol is lower than that of the mixtures with ethanol or 2-propanol.

From Eq. (8), DM
11 = ∆11Γ11 + ∆12Γ21. Because the major contribution to DM

11 stems from

the first term, i.e. the second term yields at most 12% of the total, it is clear that the

observed independence of DM
11 on the alcohol type has its root in the factorization of the

hydrodynamics and non-ideal thermodynamics.

As can be seen in Fig, 8, DM
22 decreases with carbon chain length of the alcohol in the

ternary mixture, i.e. methanol > ethanol > 2-propanol. ∆22 shows a similar behavior,

but exhibits a maximum for all mixtures at acetone mole fractions x2 ≈ 0.47 mol mol−1.

This suggests a change in hydrodynamics, i.e. diffusion size, at this composition. The

thermodynamic factor Γ22 goes through a minimum close to equimolar composition and has

a strong composition dependence when the alcohol mole fraction decreases. Further, the

lowest value corresponds to the ternary mixture containing 2-propanol and not methanol as

for Γ11.

The cross elements of the Fick diffusion matrix are shown in Figs. 9 and 10. DM
12 , which

relates the mass flux of benzene to the acetone concentration gradient, is negative and

smaller than the main elements of all regarded mixtures. Nonetheless, for the highest al-

cohol concentration, the ratio |DM
12/DM

11 | reaches 0.5, suggesting a non-negligible coupling

between acetone concentration with the mass flux of benzene for these ternary mixtures.

A negative cross element of the diffusion matrix Dij implies that species i diffuses towards

larger concentrations of species j. DM
21 shows a stronger composition dependence, especially

for acetone mole fractions x2 > 0.3 mol mol−1. For all ternary mixtures, DV
21 has positive or

negative values depending on acetone mole fraction. Further, |DM
21 | is usually significantly

smaller than its corresponding main coefficient DM
22 . On the other hand, both phenomeno-

logical cross coefficients ∆12 and ∆21 are positive and exhibit larger values for the ternary

mixture with methanol due to its smaller diffusion size. Again, a maximum of the phe-

nomenological coefficient ∆21 was observed at x2 ≈ 0.47 mol mol−1. The main feature of the

cross terms of the thermodynamic coefficient matrix Γ12 and Γ21 is that they may acquire

negative values. In fact, the cross elements DM
ij acquire negative values when Γij is negative

and Γij∆ii > Γjj∆ij. Therefore, negative values of DM
12 and DM

12 are mainly a consequence

of the non-ideal thermodynamic behavior of the ternary mixtures.
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FIG. 7. Fick diffusion coefficient DM

11 (top), phenomenological coefficient ∆11 (center) and thermodynamic

factor element Γ11 (bottom) of the ternary mixtures benzene (1) + acetone (2) + methanol (black) / ethanol

(blue) / 2-propanol (red) (3) at 298.15K and 0.1 MPa along a constant benzene mole fraction path x1 = 0.33

mol mol−1. The green cross indicates asymptotic values approaching the binary subsystem. x2 stands for

the acetone mole fraction. Data from present experiments (+) are compared with present simulation results

(◦). 25



FIG. 8. Fick diffusion coefficient DM

22 (top), phenomenological coefficient ∆22 (center) and thermodynamic

factor element Γ22 (bottom) of the ternary mixtures benzene (1) + acetone (2) + methanol (black) / ethanol

(blue) / 2-propanol (red) (3) at 298.15K and 0.1 MPa along a constant benzene mole fraction path x1 = 0.33

mol mol−1. x2 stands for the acetone mole fraction. Data from present experiments (+) are compared with

present simulation results (◦).
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FIG. 9. Fick diffusion coefficient DM

12 (top), phenomenological coefficient ∆12 (center) and thermodynamic

factor element Γ12 (bottom) of the ternary mixtures benzene (1) + acetone (2) + methanol (black) / ethanol

(blue) / 2-propanol (red) (3) at 298.15K and 0.1 MPa along a constant benzene mole fraction path x1 = 0.33

mol mol−1. x2 stands for the acetone mole fraction. Data from present experiments (+) are compared with

present simulation results (◦).
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FIG. 10. Fick diffusion coefficient DM

21 (top), phenomenological coefficient ∆21 (center) and thermodynamic

factor element Γ21 (bottom) of the ternary mixtures benzene (1) + acetone (2) + methanol (black) / ethanol

(blue) / 2-propanol (red) (3) at 298.15K and 0.1 MPa along a constant benzene mole fraction path x1 = 0.33

mol mol−1. The green cross indicates asymptotic values approaching the binary subsystem. x2 stands for

the acetone mole fraction. Data from present experiments (+) are compared with present simulation results

(◦).
28



Thermodynamics and hydrodynamics and of liquid mixtures, and hence the thermody-

namic factor and the phenomenological coefficient matrices, are highly influenced by the

presence of hydrogen bonding. To elucidate this issue, molecular simulation techniques were

employed to analyze self-associated alcohol clusters. The amount of alcohol monomers,

hydrogen bonded dimers, trimers and tetramers that are present in the studied ternary mix-

tures are shown in the supplementary material. It can be seen that the fraction of alcohol

molecules in monomeric form increases upon their dilution. In the alcohol-rich binary limit

x2 → 0, about 70% of the alcohol molecules are part of self-associated trimers, as is the

case for the pure alcohols. The amount of self-associated alcohol molecules forming trimers

decreases with the reduction of alcohol content, which can be explained by the limited avail-

ability of partner molecules that can participate in hydrogen bonding. On the other hand,

the fraction of alcohol molecules forming dimers increases with decreasing alcohol content.

Almost the same amount of alcohol dimers and trimers is present in all studied ternary

mixtures at x2 = 0.47 mol mol−1, which corresponds to the maximum of ∆22 and ∆21. For

higher acetone mole fractions, the amount of dimers exceeds that of trimers. Thus, a relation

between these changes in alcohol cluster size distribution and hydrodynamic behavior of the

elements of the phenomenological matrix involving acetone can be inferred for the studied

ternary mixtures.

Binary Subsystems

To better appreciate the direct influence of the thermodynamic factor on Fick diffusivity

in ternary mixtures, it is compelling to consider diffusion in the conceptually more simple

binary subsystems. The subsystems benzene + alcohol are of particular interest because

their binary Fick diffusion coefficient D behaves similarly to the main term of the ternary

Fick diffusion coefficient matrix DM
11 , i.e. D does not depend on the alcohol type, especially

at alcohol mole fractions below 0.7 mol mol−1, cf. Fig. 11.

For all three binary mixtures, the binary Fick diffusion coefficient shows a strong mole

fraction dependence. When an alcohol (R-OH) is infinitely diluted in benzene, i.e. xR−OH →

0, the Fick diffusion coefficient is higher than that of the self-diffusion coefficient of the pure

liquid, suggesting hydrogen bond breaking because of the dominating presence of benzene.

However, when the alcohol mole fraction reaches xR−OH ≥ 0.2 mol mol−1, the binary Fick
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diffusion coefficient decreases to less than half of its infinite dilution value, indicating the

presence of organized alcohol microstructures caused by association effects due to hydrogen

bonding.

In binary mixtures, the Fick diffusion coefficient D is directly related to the corresponding

MS diffusion coefficient Ð by

D = ΓÐ, (28)

where the thermodynamic factor Γ is a scalar quantity given by Eq. (9). In analogy to the

corresponding phenomenological coefficients of ternary mixtures, cf. Eq. (8), the binary MS

diffusion coefficient and the thermodynamic factor represent the hydrodynamic and thermo-

dynamic contributions to diffusion. As can be seen in Fig. 11, the MS diffusion coefficient of

the benzene + alcohol mixtures does depend on the alcohol type. For instance, the binary

MS diffusion coefficient of benzene + methanol is significantly larger than that of the binary

mixture with 2-propanol, which is the expected hydrodynamic behavior because of the dif-

ference in molecular size. In contrast, the thermodynamic factor Γ of the binary mixture of

benzene with methanol is lower than that of the mixtures with ethanol or 2-propanol. Fur-

ther, the composition dependence of the binary MS diffusion coefficient shows a maximum

for the three binary mixtures at xR−OH ≈ 0.2 mol mol−1, which has been related to micro-

scopic clustering due to alcohol self-association48,62. The presence of a thermodynamic factor

minimum at the same composition confirms the interdependence between hydrodynamics

and thermodynamics of liquid mixtures. In fact, the pronounced composition dependence

of the thermodynamic factor and its values far from unity indicate the presence of strong

non-idealities, which are expected to be more important for the binary mixture involving

methanol and are related to the presence of clusters and micro-heterogeneity. Thus, as in

the case of the ternary mixtures, a trade-off between the hydrodynamic and thermodynamic

contributions to the Fick diffusion coefficient causes the observed insensitivity of D on the

alcohol type.

At this point, the question arises whether a direct correlation between the observed

alcohol type independence of the Fick diffusion coefficient in the binary limit of the mixture

benzene + alcohol and the main term D11 of the ternary benzene + acetone + alcohol exists.

To investigate this issue, additional molecular dynamics simulations were performed along

neighboring constant benzene mole fraction paths x1 = 0.1 and 0.2 mol mol−1. From the
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FIG. 11. Binary Fick D (top), Maxwell-Stefan Ð diffusion coefficient (center) and thermodynamic factor

(bottom) of the binary mixtures benzene + methanol (black) / ethanol (blue) / 2-propanol (red) at 298.15 K

and 0.1 MPa. Where possible, molecular simulation results (◦) are compared with present measurements

(x) and experimental data from the literature15,16,19,23,62 (+). xR−OH stands for the alcohol mole fraction.
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binary limit x2 → 0, it is expected that these ternary mixtures show different values for DM
11

in case of the ternary mixtures involving methanol or ethanol, which was confirmed by the

molecular simulation results, cf. supplementary material.

D. Maxwell-Stefan Diffusion Coefficient Matrix

MS diffusion coefficients are interesting to analyze because they can be the subject of

physical interpretation in terms of intermolecular friction or drag40 and because of the un-

expected behavior of one of the main elements of the Fick diffusion coefficient matrix. The

three independent MS diffusion coefficients Ðij of the three studied ternary mixtures ob-

tained from equilibrium molecular dynamics and the Green-Kubo formalism are shown in

Fig. 12. Their numerical values are listed in the supplementary material.

The behavior of the three MS diffusion coefficients is different. Ð12 shows a rather mono-

tonic growth similar to that observed for the main Fick diffusion coefficients. Moreover, as

for D11, the numerical values of Ð12 are also independent on the alcohol type. This indicates

that the frictional drag between benzene and acetone is alike for the mixtures involving

different alcohols. Thus, it can be inferred that the microscopic arrangement and collective

intermolecular interactions between benzene and acetone molecules are comparable in the

three ternary mixtures. Ð13, characterizing the drag between benzene and the alcohol, also

increases with decreasing alcohol content in the mixture. Further, its numerical value de-

pends on alcohol type, i.e. Ð13 increases with decreasing carbon chain length of the alcohol.

Such a behavior was also observed for Ð23, however, its composition dependence shows a

maximum at an acetone mole fraction x2 ≈ 0.4 mol mol−1 for all ternary mixtures. Note

that the values of the MS diffusion coefficients involving an alcohol, i.e. Ð13 and Ð23, are

much larger than Ð12, suggesting the presence of significantly stronger intermolecular drag

effects.

E. Radial Distribution Functions

To gain a better understanding of the intermolecular interactions and microscopic struc-

ture that lead to the observed diffusion coefficients, RDF were analyzed. Fig. 13 shows

the RDF of the studied mixtures at equimolar composition, i.e. x1 = x2 = x3 = 1/3 mol
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FIG. 12. Maxwell-Stefan diffusion coefficients between components 1 and 2 (top), 1 and 3 (center) as

well as 2 and 3 (bottom) of the ternary mixtures benzene (1) + acetone (2) + methanol (black) / ethanol

(blue) / 2-propanol (red) (3) at 298.15K and 0.1 MPa along a constant benzene mole fraction path x1 = 0.33

mol mol−1 from molecular simulation. x2 stands for the acetone mole fraction.
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mol−1, for the interactions between the aromatic carbons of benzene and the methyl group

of the alcohols and acetone. The benzene-benzene RDF exhibits a double peak with maxima

at approximately 5.0 and 6.3 Å. This peak bifurcation is due to the presence of different

preferred spatial configurations of benzene molecules within their first solvation shell. The

location and shape of this double peak corresponds to that of the pure liquid, thus, the local

environment of benzene molecules located in the first solvation shell is largely preserved in

the ternary mixtures. This suggests the presence of segregated benzene clusters, which is

in line with the findings of Požar et al.28. Further, this near-neighbor structure is almost

identical for all studied mixtures, regardless of alcohol type. A similar behavior was observed

for gCH−CH3(r) between benzene and acetone, i.e. the density of the acetone methyl groups

located within the first solvation shell of benzene remains more or less constant, indepen-

dent of alcohol type. The maxima of the first, second and third peaks are located at ∼ 3.9,

5.9 and 8.2 Å , respectively. This suggests that the polar interactions between acetone and

benzene30 are affected in the same way by the presence of an alcohol. To some extent, this

observation explains the lack of sensitivity of the ternary MS diffusion coefficient Ð12 on

alcohol type.

The RDF of the interaction between benzene and the non-polar methyl group of the

three alcohols exhibit, as expected, a different behavior for each alcohol. The first peak is

located between 4.0 and 4.2 Å for methanol to 2-propanol, respectively. Further, the ternary

mixture with methanol has a rather well-defined first peak, whereas the mixtures involving

ethanol and 2-propanol show a broader and split first peak due to configurational differences.

Note that the magnitude of the main peaks of the three RDF in Fig. 13 is similar so that a

clear preference of benzene for the type of their surrounding molecules cannot be assigned.

In Fig. 14, selected RDF for acetone as a central molecule are depicted. The acetone-

acetone RDF gCH3−CH3(r) has two peaks at short distances with maxima at approximately

4.0 and 5.7 Å, which is due to the presence of two equivalent methyl groups constituting

the acetone molecule. Acetone also contains a carbonyl group, hence it is able to associate

through dipole-dipole interactions30. This interaction is characterized by gO−CH3(r), which

shows a well-defined first peak located at ∼ 3.6 Å, followed by two small peaks. Because

the magnitude of this first peak is higher than that of gCH3−CH3(r), it can be concluded

that the probability of finding an acetone oxygen around an acetone methyl group is higher

than finding an acetone methyl group. As in case of benzene, it should be noticed that
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FIG. 13. Radial distribution functions of the benzene-benzene gCH−CH(r) (top), benzene-acetone

gCH−CH3(r) (center) and benzene-alcohol gCH−CH3(r) (bottom) interactions of the equimolar ternary mix-

tures benzene + acetone + methanol (black) / ethanol (blue) / 2-propanol (red) at 298.15 K and 0.1 MPa.

The green line represents the RDF of benzene in its pure state.
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the major features of gCH3−CH3(r) and gO−CH3(r), i.e. location and shape of the peaks, for

pure acetone are conserved in the mixture, suggesting the presence of segregated acetone

pockets28. The smaller magnitude of the pure component’s first peak can be attributed to

statistical standardization due to better homogeneity. The cross interaction acetone-alcohol

given by gCH3−CH3(r) yields a different picture. This RDF depends on the alcohol type, the

peaks change in magnitude, shape and position, indicating strong differences in the near-

neighbor structure of the different alcohol molecules around acetone. E.g., in the ternary

mixture with methanol, more alcohol molecules can be found in the first solvation shell than

is the case for the ternary mixtures with ethanol or 2-propanol.

The RDF gOH−O(r) and gO−O(r) of the alcohol-alcohol interaction are typical for hydrogen

bonding molecules, i.e. gOH−O has a sharp and very pronounced first peak at ∼ 1.9 Å,

followed by a smaller second peak located at ∼ 3.4 Å, cf. Fig. 15. These peaks vary in

magnitude for the different alcohols and, at distances beyond 4 Å, there are also changes

in peak location or shape. Note that the magnitudes of the main RDF peaks of gOH−O(r)

and gO−O(r) are significantly larger than those of the RDF related to benzene or acetone,

indicating that the well-defined hydrogen bonding structure of the alcohols persists in the

ternary mixture. This induces local segregation as reported for binary mixtures of alcohols

with alkanes28,29.

The RDF between the hydrogen of the alcohol hydroxyl group and the oxygen of the

acetone carbonyl group gOH−O(r) is shown in Fig. 15. Although the acetone oxygen may

have the ability to accept hydrogen bonds24, practically no hydrogen bond formation between

acetone and alcohol molecules was found in the studied ternary mixtures. The observed first

peak of gOH−O(r) is located at ≈ 3.6 Å and has a magnitude that is more than eight times

smaller than that describing alcohol-alcohol hydrogen bonding. Thus, as expected, alcohol

molecules prefer self-association through hydrogen bonding to association with acetone.

Further, because of the substantial strength of the hydrogen bonding network, acetone

molecules do not sequester alcohol molecules and they neither brake nor increase the alcohol

hydrogen bond network24. For instance, the calculated amount of alcohol molecules hydrogen

bonded to acetone is below 3% for the constant benzene composition path x1 = 0.33 mol

mol−1.
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F. Microscopic Structure

Observations of the macroscopic properties, hydrogen bonding and RDF suggest the

presence of micro-heterogeneity in the studied ternary mixtures. Microscopic inhomogeneity

has already been observed for the binary mixtures of ethanol + acetone63 and ethanol +

benzene29. A valid method to detect the presence of microscopic segregation and long-range

clustering is the visual examination of molecular configurations. Clearly, the presence of

inhomogeneous mixing was confirmed. Further, the hydrogen bonded structures formed

by alcohol molecules span through the entire simulation volume, causing the formation of

segregation pockets. Selected snapshots of the simulation volume for the equimolar ternary

mixtures are shown in Fig. 16.

VI. CONCLUSION

The Fick diffusion coefficient matrix of three ternary mixtures of benzene + acetone +

methanol / ethanol / 2-propanol was measured with the Taylor dispersion technique along

the constant benzene mole fraction path x1 = 0.33 mol mol−1.

Unexpected features of the Fick diffusion coefficient matrix were found:

• The main element DM
11 is almost independent on the alcohol chain length.

• The smaller eigenvalue D̂2 shows only a slight dependence on the alcohol type.

Because of the challenging conceptual interpretation of the Fick diffusion coefficient ma-

trix, these features were analyzed in terms of the hydrodynamic and thermodynamic con-

tributions to diffusion, employing molecular dynamics simulation techniques. It was found

that the hydrodynamic and thermodynamic contributions to the Fick diffusion coefficient

do show, as expected, a dependence on the alcohol. In the case of the main diffusion coef-

ficient DM
11 , a trade-off between the major hydrodynamic and thermodynamic contributions

leads to the observed alcohol type independence. It was shown how the presence of alcohol

clusters governs the observed hydrodynamic and thermodynamic behavior of the studied

ternary mixtures. Further, the fact that the Fick diffusion coefficient of the binary subsys-

tems benzene + methanol / ethanol / 2-propanol does not change in most of the composition

range, indicates a relation between the Fick diffusion coefficients of the ternary mixture with

that of its binary limits.
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Another interesting finding is that the Maxwell-Stefan diffusion coefficient between ben-

zene and acetone is also insensitive to the alcohol carbon chain length, which can be inter-

preted as a consequence of the presence of similar microscopic arrangements and collective

intermolecular interactions between benzene and acetone molecules in the three ternary

mixtures.

From the hydrogen bonding statistics and RDF analyses, it was shown that alcohol

molecules self-associate to form clusters, induce segregation and thus microheterogeneity.

SUPPLEMENTARY MATERIAL

See supplementary material for hydrogen bonding statistics, simulation details and nu-

merical simulation results.
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FIG. 14. Radial distribution functions of the acetone-acetone gCH3−CH3(r) (top), gO−CH3(r) (center) and

acetone-alcohol gCH3−CH3(r) (bottom) interactions of the equimolar ternary mixtures benzene + acetone +

methanol (black) / ethanol (blue) / 2-propanol (red) at 298.15 K and 0.1 MPa. The green line represents the

RDF of acetone in its pure state.
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FIG. 15. Radial distribution functions of the alcohol-alcohol gOH−O(r) (top), gO−O(r) (center) and alcohol-

acetone gOH−O(r) (bottom) interactions of the equimolar ternary mixtures benzene + acetone + methanol

(black) / ethanol (blue) / 2-propanol (red) at 298.15 K and 0.1 MPa.
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FIG. 16. Selected snapshots of the equimolar benzene + acetone + methanol (top) / ethanol (center) / 2-

propanol (bottom) mixtures 298.15 K and 0.1 MPa. In the left column, all molecules are shown, whereas in

the remaining columns only benzene molecules, acetone molecules or alcohol molecules are depicted. Here,

the aromatic carbons are brown, oxygen molecules are red, hydroxyl hydrogens are white and methyl groups

are yellow.

44



Supplementary Material to:
Interplay of Structure and Diffusion in Ternary Liquid Mixtures of
Benzene + Acetone + Varying Alcohols

Gabriela Guevara-Carrion,1 Yuri Gaponenko,2 Aliaksandr Mialdun,2 Tatjana Janzen,1 Valentina
Shevtsova,2, a) and Jadran Vrabec1, b)
1)Thermodynamics and Energy Technology, University of Paderborn, Warburger Str. 100,
D-33098 Paderborn, Germany
2)Microgravity Research Center, Université Libre de Bruxelles, CP–165/62, Av. F.D. Roosevelt, 50,
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MOLECULAR SIMULATION DETAILS

Equilibrium molecular dynamics simulations were performed with the simulation tool ms21. These
were done in two steps: First, a simulation in the isobaric-isothermal (NpT ) ensemble was performed
to calculate the density at the desired temperature, pressure and composition. In the second step, a
canonic (NV T ) ensemble simulation was performed at this density to sample the transport properties.
Newton’s equations of motion were solved with a fifth-order Gear predictor-corrector numerical inte-
grator. The temperature was controlled by velocity scaling. Throughout, the integration time step
was 0.98 fs. Simulations were carried out in a cubic volume with periodic boundary conditions. To
minimize finite size and cut-off effects, 5000 molecules were considered and the cut-off radius was set
to rc = 17.5 Å. The LJ long range interactions were corrected using angle averaging2. Electrostatic
long-range corrections were considered by the reaction field technique with conducting boundary con-
ditions (εRF =∞). The simulations in the NpT ensemble were equilibrated over 5× 105 time steps,
followed by a production run over 2 × 106 time steps. In the NV T ensemble, the simulations were
equilibrated over 5×105 time steps, followed by production runs of 2×107 time steps with up to 1×105

independent time origins of the autocorrelation functions. The sampling length of the autocorrelation
functions varied between 45 and 60 ps. The separation between the time origins was chosen such that
all autocorrelation functions have decayed at least to 1/e of their normalized value to achieve their
time independence3. The uncertainties of the predicted values were estimated with a block averaging
method4.

a)Electronic mail: vshev@ulb.ac.be
b)Electronic mail: jadran.vrabec@upb.de
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FIG. 1. Average number of hydrogen bonds per alcohol molecule of the ternary mixtures benzene + acetone +
methanol (black) / ethanol (blue) / 2-propanol (red) at 298.15 K and 0.1 MPa along a constant benzene mole fraction
path x1 = 0.33 mol mol−1. Statistical uncertainties are within symbol size.
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FIG. 2. Fick diffusion coefficient DM
11 matrix of the ternary mixtures benzene (1) + acetone (2) + methanol

(black) / ethanol (blue) / 2-propanol (red) (3) at 298.15K and 0.1 MPa along two constant benzene mole fraction paths
x1= 0.1 (top) and 0.2 mol mol−1 (bottom) from molecular simulation. The green cross indicates asymptotic values
approaching the binary subsystem.
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NUMMERICAL DATA

TABLE I. Parameters of the Wilson gE model, where Λij = (vj/vi)exp(−∆λij/RT ).

component 1 component 2 ∆λij / J mol −1 ∆λji / J mol −1

benzene acetone -378.92 1646.6
methanol 713.71 8571.3
ethanol 598.82 7249.1

isopropanol 1228.5 4063.2
acetone methanol -602.29 2575.3

ethanol 104.19 1630.3
isopropanol 1096.2 969.56

component vi / cm3 mol −1

benzene 89.711
acetone 73.876

methanol 40.749
ethanol 58.372

isopropanol 77.034
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TABLE II. Eigenvalues D̂1 and D̂2 in 10−9m2s−1 of the ternary mixtures benzene (1) + acetone (2) +
methanol / ethanol / isopropanol (3) at 298.15K and 0.1 MPa along a constant benzene mole fraction path
x1 = 0.33 mol mol−1 from present experiments and predicted by molecular simulation.

benzene + acetone + methanol
x1 x2 x3 D̂exp

1 D̂exp
2 D̂sim

1 D̂sim
2

0.33 0.07 0.60 3.23 1.42 2.87 1.32
0.33 0.17 0.17 3.34 1.61 3.27 1.52
0.33 0.27 0.25 3.68 1.82 3.46 1.75
0.33 0.33 0.37 3.73 1.99 3.77 2.03
0.33 0.37 0.44 3.74 2.05 4.00 2.15
0.33 0.47 0.50 4.17 2.34 4.50 2.66
0.33 0.57 0.60 4.50 2.57 4.87 2.95

benzene + acetone + ethanol
x1 x2 x3 D̂exp

1 D̂exp
2 D̂sim

1 D̂sim
2

0.33 0.07 0.60 2.69 1.32 2.24 1.27
0.33 0.17 0.50 2.92 1.50 2.55 1.40
0.33 0.27 0.40 3.15 1.66 2.89 1.71
0.33 0.33 0.33 3.26 1.80 3.00 1.86
0.33 0.37 0.30 3.38 1.88 3.20 1.90
0.33 0.47 0.20 3.66 2.12 3.57 2.35
0.33 0.57 0.10 3.89 2.70 3.88 2.81

benzene + acetone + 2-propanol
x1 x2 x3 D̂exp

1 D̂exp
2 D̂sim

1 D̂sim
2

0.33 0.07 0.60 2.28 1.20 2.21 1.27
0.33 0.17 0.50 2.59 1.32 2.50 1.49
0.33 0.27 0.40 2.85 1.46 2.68 1.67
0.33 0.33 0.33 3.04 1.68 2.82 1.90
0.33 0.37 0.30 3.17 1.74 3.11 1.96
0.33 0.47 0.20 3.45 2.01 3.40 2.47
0.33 0.57 0.10 3.92 2.37 3.47 2.94
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TABLE III. Maxwell-Stefan diffusion coefficients Ðij in 10−9m2s−1 and phenomenological diffusion coefficient
matrix ∆ in 10−9m2s−1 together with their statistical uncertainties σ in 10−9m2s−1 of the ternary mixtures
benzene (1) + acetone (2) + methanol / ethanol / isopropanol (3) at 298.15 K and 0.1 MPa along a constant
benzene mole fraction path x1 = 0.33 mol mol−1 predicted by molecular simulation.

benzene + acetone + methanol
x1 x2 x3 Ð13 σ Ð12 σ Ð23 σ ∆11 σ ∆12 σ ∆21 σ ∆22 σ

0.33 0.07 0.60 5.4 0.4 1.9 0.3 4.2 0.9 4.9 0.1 1.7 0.3 0.3 0.2 3.1 0.1
0.33 0.17 0.50 6.1 0.9 2.3 0.4 5.0 1.0 5.1 0.2 1.6 0.2 0.7 0.2 3.8 0.2
0.33 0.27 0.40 6.7 1.4 2.6 0.4 5.3 1.1 5.1 0.2 1.6 0.2 1.0 0.2 4.3 0.2
0.33 0.33 0.33 7.5 1.9 2.8 0.4 5.8 1.2 5.3 0.2 1.6 0.2 1.4 0.2 4.7 0.2
0.33 0.37 0.30 7.6 2.3 2.9 0.5 6.2 1.5 5.3 0.2 1.7 0.2 1.6 0.2 5.0 0.3
0.33 0.47 0.20 9.4 4.3 3.3 0.6 5.9 1.4 5.6 0.3 1.7 0.3 1.7 0.2 5.2 0.3
0.33 0.57 0.10 10.2 6.4 3.5 0.6 5.3 1.2 5.3 0.3 1.5 0.3 1.3 0.2 4.8 0.3

benzene + acetone + ethanol
x1 x2 x3 Ð13 σ Ð12 σ Ð23 σ ∆11 σ ∆12 σ ∆21 σ ∆22 σ

0.33 0.07 0.60 3.4 0.2 1.8 0.3 2.8 0.5 3.3 0.1 0.7 0.3 0.1 0.2 2.4 0.1
0.33 0.17 0.50 4.0 0.4 2.3 0.3 3.0 0.4 3.6 0.1 0.6 0.2 0.2 0.2 2.7 0.1
0.33 0.27 0.40 4.8 0.8 2.4 0.3 4.0 0.7 3.9 0.1 0.9 0.2 0.6 0.2 3.4 0.2
0.33 0.33 0.33 5.2 0.9 2.6 0.4 4.0 0.6 4.1 0.2 0.9 0.2 0.6 0.2 3.5 0.2
0.33 0.37 0.30 4.9 0.8 2.9 0.4 4.1 0.6 4.0 0.2 0.7 0.2 0.5 0.2 3.7 0.2
0.33 0.47 0.20 5.6 1.3 3.2 0.5 4.4 0.6 4.3 0.2 0.7 0.2 0.7 0.2 4.0 0.2
0.33 0.57 0.10 5.3 1.4 3.7 0.5 4.1 0.5 4.4 0.2 0.5 0.2 0.2 0.1 4.0 0.3

benzene + acetone + 2-propanol
x1 x2 x3 Ð13 σ Ð12 σ Ð23 σ ∆11 σ ∆12 σ ∆21 σ ∆22 σ

0.33 0.07 0.60 3.1 0.2 1.9 0.4 2.6 0.4 3.0 0.1 0.4 0.2 0.1 0.1 2.3 0.1
0.33 0.17 0.17 3.6 0.3 2.3 0.4 3.1 0.4 3.4 0.1 0.5 0.2 0.2 0.2 2.8 0.1
0.33 0.27 0.25 3.9 0.5 2.6 0.4 3.5 0.4 3.5 0.1 0.5 0.2 0.3 0.2 3.2 0.1
0.33 0.33 0.37 4.4 0.6 2.9 0.4 4.0 0.4 3.8 0.2 0.5 0.2 0.2 0.2 3.3 0.2
0.33 0.37 0.44 4.0 0.5 3.2 0.4 4.5 0.5 3.7 0.2 0.3 0.2 0.3 0.2 3.7 0.2
0.33 0.47 0.50 4.6 0.8 3.3 0.5 3.7 0.6 3.9 0.2 0.4 0.2 0.6 0.1 4.1 0.2
0.33 0.57 0.60 5.4 1.4 3.7 0.5 3.0 0.4 4.3 0.2 0.5 0.2 0.4 0.1 3.7 0.3
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