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In the pursuit to study the parameterization problem of molecular models with a broad perspective, this
paper is focused on an isolated aspect: It is investigated, by which algorithms parameters can be best
optimized simultaneously to different types of target data (experimental or theoretical) over a range of
temperatures with the lowest number of iteration steps. As an example, nitrogen is regarded, where the
intermolecular interactions are well described by the quadrupolar two-center Lennard-Jones model that
has four state-independent parameters. The target data comprise experimental values for saturated liquid
density, enthalpy of vaporization, and vapor pressure. For the purpose of testing algorithms, molecular
simulations are entirely replaced by fit functions of vapor–liquid equilibrium (VLE) properties from the
literature to assess efficiently the diverse numerical optimization algorithms investigated, being state-of-
the-art gradient-based methods with very good convergency qualities. Additionally, artificial noise was
superimposed onto the VLE fit results to evaluate the numerical optimization algorithms so that the
calculation of molecular simulation data was mimicked. Large differences in the behavior of the individual
optimization algorithms are found and some are identified to be capable to handle noisy function values.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Molecular modeling and simulation has made significant prog-
ress in recent years, being applied to a variety of areas such as
thermodynamic properties of fluids [1–7], mechanic properties of
solids [8–10], phase change phenomena [11–13], transport pro-
cesses in biologic tissue [14,15], protein folding [16–18], transport
processes in liquids [19–21], polymer properties by using different
length scales [22–25] or generic statistic properties of soft mat-
ter [26].

The sound physical basis of the molecular approach allows for
that versatility. Simulations in most of these areas are carried out
in the following fashion: First, a molecular model has to be cho-
sen, then it is assigned to a molecular configuration, and finally,
the phase space is subsequently explored under specified boundary
conditions, which allows gathering a broad variety of information.
The exploration of the phase space is mostly a rather technical
issue which may, however, be elaborate in the sense of efficient
programing and computational time.

The versatility of such simulations as a method lies in the
bottom-up approach: the “external” forces due to the boundary
conditions, such as thermostats or velocity gradients, are usually
much weaker than the intermolecular forces which govern the
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simulation result. Many molecular models have shown that they
may adequately represent the intra- and intermolecular interac-
tions even in a quantitative manner in numerous applications.
Therefore, molecular modeling and simulation are located some-
where between theory and experiment [2,27,28].

As the central role is played by the intermolecular interactions,
there is substantial research going on over decades to define and
optimize molecular models [29–39]. Such models describe to a
varying extent, among others, molecular geometry, repulsion, dis-
persion, electrostatics and polarizability. Although these are all
physical properties, they have to be parameterized. Thereby, e.g.,
results from quantum mechanics may be useful [40]. However,
usually not all parameters can be assigned unambiguously so that
some optimization to experimental data needs to be done.

Many approaches exist to optimize molecular models and to
create reliable force fields [41–45]. However, most of the ap-
proaches are based on quantum mechanics and the optimization
of intramolecular model parameters and charges. The intermolec-
ular model parameters predicted by this kind of methods are not
very reliable and can only be used as an initial guess for a further
optimization procedure. The development of empirical and semi-
empirical molecular models are accompanied by iterative simu-
lations with varying model parameter vectors. Thereby, different
simulation results are compared to experimental target values. The
most time-consuming step in this process is by far molecular sim-
ulation to evaluate the response of the molecular system to a pa-
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rameter variation, which may take days or more. It is thus useful
to discuss optimization schemes for molecular model parameters
in a systematic manner.

There are different aspects concerning the usability of auto-
matic optimization schemes for molecular modeling, e.g. the def-
inition of the type and the number of model parameters to be
optimized simultaneously or successively, the target values to be
fitted, the choice of the algorithms and the discussion of their
behavior with respect to statistical noise, as well as the techni-
cal implementation, which is presented and discussed in detail in
another contribution [46].

The present work entirely focuses on the best choice of the
optimization algorithms. They are assessed from a physical per-
spective, using a simple molecular model type, which is reasonable
for numerous real fluids. The reason for this is the fact that the
computation of the considered physical properties is very fast be-
cause simple fit functions are evaluated and hence, no simulations
have to be performed in this contribution. The objective is to iden-
tify the best and most efficient algorithm, i.e. the one that requires
the lowest number of iteration steps, to save substantial research
and computation time. For the assessment procedure a trick can be
used to avoid molecular simulations. By using fit functions instead,
a large number of optimization algorithms can be tested easily and
fast. In order to mimic simulation runs as realistically as possible,
artificial noise is added to the calculated physical properties so that
a detailed assessment also with respect to noise can be carried out.

Molecular models for fluids have been optimized to changing
properties over time: early on, the pair correlation function from
neutron scattering was used [47,48], later, the second virial coef-
ficient [49] or the liquid density at ambient conditions [50] was
used, nowadays, vapor–liquid equilibrium (VLE) data over the full
temperature range [51–57] is accepted as a good choice for models
of the fluid state.

In this work, optimizations to experimental data of saturated
liquid density, enthalpy of vaporization, and vapor pressure as
functions of the temperature are taken. As a case study nitrogen is
regarded, being described by the quadrupolar two-center Lennard-
Jones (2CLJQ) model. This model has four parameters, i.e. Lennard-
Jones size and energy parameter, elongation and quadrupolar mo-
ment, which are all optimized simultaneously to experimental
data. The 2CLJQ model for nitrogen has shown its appropriateness
by different authors [58–61].

The present study is facilitated by the availability of tempera-
ture-dependent fits for VLE properties as functions of the consid-
ered four molecular parameters from prior work [52]. Please note
again that no simulation runs had to be made here and a large
number of mathematical optimization schemes from the literature
was assessed with little computational effort.

2. Problem definition

The present work considers the optimization of the four state-
independent parameters of the 2CLJQ model. It consists of two
identical Lennard-Jones (LJ) sites, separated by an elongation L
and a point quadrupole site at the center of mass with a moment
Q , which is oriented along the molecular axis. The pair potential
u2CLJQ is given by

u2CLJQ
(
ri j,ωi,ω j, L, Q 2)

=
2∑

a=1

2∑
b=1

4ε

[(
σ

rab

)12

−
(

σ

rab

)6]

+ 3

4

Q 2

‖ri j‖5

[
1 − 5

(
cos2 θi + cos2 θ j

) − 15 cos2 θi cos2 θ j

+ 2(sin θi sin θ j cosφi j − 4 cos θi cos θ j)
2].

Fig. 1. Orientation angles used within the 2CLJQ potential. Note that ωi = (φi j , θi).

Therein, ri j is the center–center distance vector of two molecules i
and j, rab is one of the four LJ site–site distances, where a refers to
the two LJ sites of molecule i and b to the two LJ sites of molecule
j. Furthermore, ωi and ω j represent the orientations of the two
molecules, where θi is the azimuthal angle between the axis of
the molecule i and the center–center connection line, and φi j is
the angle between the axes of molecules i and j. For more details,
cf. Fig. 1 and [52].

2.1. Loss function

The following experimental VLE properties were considered for
the optimization of the model parameters: the saturated liquid
density ρl , the enthalpy of vaporization �hv and the vapor pres-
sure pσ . As the VLE properties are interrelated by the Clausius–
Clapeyron equation, either ρl and �hv or ρl and pσ were consid-
ered during the optimization. Note that by this equation, also �hv

can be computed without executing any molecular simulation run.
The VLE properties mentioned above are temperature depen-

dent so that the model is optimized at one or more temperatures
and the parameters are adjusted to experimental data at those
temperatures simultaneously.

In order to optimize with respect to different properties si-
multaneously, the following quadratic loss function between model
and experimental data in a temperature range T was considered:

F (x) =
n∑

i=1

∑
T ∈T

wi,T

( f exp
i,T − f sim

i,T (x)

f exp
i,T

)2

, (1)

where x = (ε,σ , Q 2, L)T ∈ R
4 is the molecular parameter vector, n

is the number of physical properties involved at different tempera-
tures T ∈ T . Moreover, f sim

i,T (x) is the ith property from the molec-
ular model, depending on its parameters, at a certain temperature
T and f exp

i,T is the respective experimental target value. The usage
of weights wi,T allows for the fact that the loss function includes
the easier reproducibility of particular properties at particular tem-
peratures. Please note that in this work ∀i,T wi,T = 1, since for the
assessment of the optimization algorithms, all properties are con-
sidered as homologous. The reason for this is the fact that the first
try consists in the simultaneous optimization of all properties in-
dependent from the amount of noise. Section 5 will show that this
consideration led to successful results. As mentioned before, in this
work, simulations are replaced by fit functions in order to obtain
a well-balanced assessment. However, when simulations are used
instead, the loss function should be weighted in a different way.
Then, the resulting molecular model may not be optimal but the
optimization task may be easier to solve.

This loss function has to be minimized with respect to x. In
an ideal situation, some xopt can be found for which F (xopt) =
0. However, the primary goal is to find a local minimum in an
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admissible compact parameter domain. Hence, an admissible range
for each of the molecular model parameters has to be defined.

The fit functions [52] employed in this work guarantee a
smooth dependency of F on the parameters. Hence, it is aimed
to find a minimum at xopt for which

∇ F
(
xopt) = 0. (2)

This goal can be achieved by gradient-based numerical optimiza-
tion algorithms, which are enumerated in Section 4.3 and dis-
cussed in detail in [46]. The gradient can be calculated by the
partial derivatives

∂ F

∂x j
(x) = −2

n∑
i=1

∑
T ∈T

wi,T
f exp

i,T − f sim
i,T (x)

( f exp
i,T )2

∂ f sim
i,T

∂x j
(x), (3)

where j = 1, . . . , N and N is the number of model parameters. For
2CLJQ models, N = 4, due to the fact that four parameters have to
be optimized. Finally, the partial derivatives of the properties can
be approximated numerically by

∂ f sim
i,T

∂x j
(x) = f sim

i,T (x1, . . . , x j + h, . . . , xN) − f sim
i,T (x)

h
, (4)

with h > 0.
Please note that also central differences or other finite differ-

ences could be used in order to achieve a higher accuracy. How-
ever, Eq. (4) is a reliable method to approximate gradients and was
used here to avoid unnecessary function evaluations, i.e. simula-
tions.

Furthermore, note that the loss function itself does not have
any unit but its gradient has units on its axes, namely the recipro-
cal value of the units of the respective molecular model parameter.
Differences in the magnitudes of the gradient components can lead
to deformations of the loss function. This, in turn, can cause nu-
merical problems in finding the minimum and the norm of the
gradient is not defined anymore. This problem can be avoided by
the division of each model parameter by its unit, or by a certain
physically meaningful reference value, which leads to a physically
better defined molecular model. In this work, the former solution
is used, as the units are kJ/mol, nm, and (Dnm)2, which do not lead
to any numerical problems. Defining physically meaningful refer-
ence values is not important for an assessment of the optimization
algorithms. In real applications, the user always has to care for the
choice of reasonable units.

2.2. Shape of loss function in 2D

The loss function (1) is a non-negative real-valued function

F : R
4 → R

+
0 ,(

ε,σ , Q 2, L
)T �→ F

((
ε,σ , Q 2, L

)T )
� 0.

The summation of the squares of relative errors on the physical
properties smoothens the loss function F , which facilitates the use
of gradient-based numerical optimization algorithms.

Altogether, eight distinct optimization scenarios were consid-
ered:

1. ρl and �hv at one temperature,
2. ρl and �hv at one temperature with artificial noise,
3. ρl and �hv at six different temperatures,
4. ρl and �hv at six different temperatures with artificial noise,
5. ρl and pσ at one temperature,
6. ρl and pσ at one temperature with artificial noise,
7. ρl and pσ at six different temperatures,
8. ρl and pσ at six different temperatures with artificial noise.

Fig. 2. Contour plots of the projected loss function, where ε = 0.3101 kJ/mol and
σ = 0.331 nm are fixed to their initial values, whereas the quadrupolar moment Q 2

and the elongation L vary. The plots a)–d) correspond to the optimization tasks 1, 3,
5, and 7, respectively. When six temperatures are considered, the loss function takes
much higher values than in the case of one temperature only. A three-dimensional
steep rain drain can be observed in all four plots, where the minimum may be
located.
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Table 1
Reduction formulas of different physical quantities.

Physical quantity Reduction formula

Quadrupolar moment Q ∗2 = Q 2/(εσ 5)

Elongation L∗ = L/σ

Temperature T ∗ = T kB/ε

Density ρ∗ = ρσ 3

Vapor pressure p∗
σ = pσ σ 3/ε

Enthalpy of vaporization �h∗
v = �hv/ε

Fig. 2 shows the contour plots of the projected loss functions,
where σ and ε are fixed to their initial values, cf. Section 4.1,
and Q 2 and L vary. The plots a)–d) correspond to the optimization
tasks 1, 3, 5, and 7, respectively. By these contours, a rough impres-
sion of the four-dimensional shape is given. However, these plots
indicate the broad range of loss function values that may appear.
Furthermore, it can be observed that there are domains where the
function has the shape of a steep rain drain where the minimum
may be situated.

3. Fit functions for VLE properties

Critical values of temperature and density, as well as the sat-
urated liquid density, saturated vapor density, and vapor pressure
are available as fit functions of the four molecular model param-
eters [52]. In the cited work, the VLE data was determined by
molecular simulations for 30 individual 2CLJQ fluids. The calcu-
lated properties thereof were fitted by nonlinear regression func-
tions, whose coefficients were determined individually for each
property over a range of temperatures. In order to obtain VLE
data for the whole range of Q 2/(εσ 5), L/σ and T kB/ε , where
kB is the Boltzmann constant, the simulation data was glob-
ally fitted. In this regard, the critical data Tc(ε,σ , Q 2, L) and
ρc(ε,σ , Q 2, L), the saturated liquid density ρl(ε,σ , Q 2, L, T ), the
saturated vapor density ρv(ε,σ , Q 2, L, T ), as well as the vapor
pressure pσ (ε,σ , Q 2, L, T ) were considered to be the key VLE data
for an adjustment to real fluids.

In [52], the properties as well as Q 2, L, T , and Tc were pre-
sented in the reduced form, cf. Table 1. The reduced functions
T ∗

c (Q ∗2, L∗) and ρ∗
c (Q ∗2, L∗) were assumed to be linear combi-

nations of elementary functions one of which is a constant c, the
others depend either on Q ∗2, i.e. ψi(Q ∗2), or on L∗ , i.e. ξi(L∗), or
on both, i.e. χi(Q ∗2, L∗). The number of elementary functions was
restricted to up to two for both the Q ∗2- and the L∗-dependence.
Writing the linear combination of any of the aforementioned func-
tions represented by y, one gets

y
(

Q ∗2, L∗) = c +
�2∑
i=1

αi · ψi
(

Q ∗2)

+
�2∑
j=1

β j · ξ j
(
L∗) +

�4∑
k=1

γk · χk
(

Q ∗2, L∗). (5)

The crucial step was the selection of elementary functions ψi , ξi ,
and χi .

It is known that the density–temperature dependence near the
critical point is well described by ρ ∼ (Tc − T )1/3, as given by
Guggenheim [62]. In terms of reduced properties, ρ∗ and T ∗ , the
fit functions for the saturated liquid density ρ∗

l and vapor density
ρ∗

v are given by

ρ∗
l = ρ∗

c + C1 · (T ∗
c − T ∗)1/3

+ C ′
2 · (T ∗

c − T ∗) + C ′
3 · (T ∗

c − T ∗)3/2
, (6)

ρ∗
v = ρ∗

c − C1 · (T ∗
c − T ∗)1/3 + C ′′

2 · (T ∗
c − T ∗)

+ C ′′
3 · (T ∗

c − T ∗)3/2
. (7)

The simultaneous fitting of saturated liquid and saturated vapor
densities yields not only the coefficients C1, C ′

2, C ′
3, C ′′

2 , and C ′′
3 but

also the critical data ρ∗
c , T ∗

c . The coefficient functions C1(Q ∗2, L∗),
C ′

2(Q ∗2, L∗), C ′
3(Q ∗2, L∗), C ′′

2(Q ∗2, L∗), and C ′′
3(Q ∗2, L∗) were also

linear combinations of elementary functions in the sense of Eq. (5).
The fit function for the logarithm of the vapor pressure, ln p∗

σ ,
reads

ln p∗
σ

(
Q ∗2, L∗, T ∗)

= c1
(

Q ∗2, L∗) + c2(Q ∗2, L∗)
T ∗ + c3(Q ∗2, L∗)

T ∗4
. (8)

Again, the coefficients c1(Q ∗2, L∗), c2(Q ∗2, L∗), and c3(Q ∗2, L∗)
were assumed to be linear combinations of the elementary func-
tions in the sense of Eq. (5).

The enthalpy of vaporization �h∗
v was calculated in this work

via the Clausius–Clapeyron equation

∂ ln p∗
σ

∂T ∗ = �h∗
v

p∗
σ T ∗(1/ρ∗

v − 1/ρ∗
l )

, (9)

where (∂ ln p∗
σ )/(∂T ∗) was determined analytically following

Eq. (8). The values for ρ∗
l and ρ∗

v were taken from Eqs. (6) and (7),
respectively. Please note that the vapor pressure fit (7) is only valid
for T /Tc � 0.7. Hence, for lower temperatures, the ideal gas equa-
tion ρ∗

v = p∗
σ /T ∗ was used for the reduced saturated vapor density.

Fig. 3 shows how the fit functions are used within the opti-
mization procedure of this work. Their usage makes it possible to
avoid expensive molecular simulation runs and therefore, they en-
able a detailed assessment of the optimization algorithms.

4. Optimizing the molecular model for nitrogen

For the detailed description of the general optimization work-
flow, cf. [46]. The considered numerical algorithms start with an
initial guess x0, which is improved within the optimization pro-
cedure. The output of the fit functions, i.e. the reduced values
for saturated liquid density plus enthalpy of vaporization or va-
por pressure, are converted into values with physical units, and
inserted into the loss function (1). Hence, the calculated physi-
cal properties are compared with the experimental ones [63]. If
they fulfill a specified stopping criterion, the parameters are final
and the workflow ends. Otherwise, the current parameter vector is
passed on to the optimization algorithm, which finds a new pa-
rameter vector with a lower loss function value via one of the
different investigated gradient-based methods.

4.1. Initial guess and boundary values

The values determined in [61] were taken as initial model pa-
rameters: Q 2 = 0.020727 (Dnm)2 and L = 0.10464 nm. Further-
more, ε = 0.3101 kJ/mol and σ = 0.331 nm were chosen, which
differ from the optimal values found in [61] but are still physi-
cally reasonable values. The reason for this modification is the fact
that not all four initial model parameters can be chosen as optimal
parameters from literature, as the focus of this work lies on the
assessment of the behavior of numerical optimization algorithms.
This would be trivial, if very good or optimal values were taken
as initial guess. The algorithms must also be successful, if bad
model parameters are initially chosen. Of course, the underlying
workflow described in [46] can be used for an unlimited number
of model parameters. In this work, i.e. for the assessment of the
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Fig. 3. Diagram describing how the fit functions for VLE properties developed by Stoll et al. [52] are used in this work in order to replace molecular simulations and hence
to enable an assessment of the optimization algorithms.

algorithms, four parameters are sufficient to obtain reliable con-
clusions.

The optimization procedure has to be performed within an ad-
missible domain: The range of validity of the fits [52] should be
repeated here: ε and σ can be arbitrary, but they must be pos-
itive. However, in order to keep physically reasonable values, σ
was not changed by more than 10% and ε not by more than
40%. The elongation is limited to a fraction of the LJ size param-
eter, i.e. L/σ ∈ [0,0.8], and at the same time, for the quadrupo-
lar moment, Q 2/(εσ 5) ∈ [0,4] is required. The smaller σ and ε
are, the lower are the maximal values for Q 2 and L. Therefore,
if the initial parameters are taken as indicated above, the ranges
are 0.2979 � σ/nm � 0.3641, 0.18606 � ε/(kJ/mol) � 0.43414,
0 � (Q /Dnm)2 � 0.029 and 0 � L/nm � 0.14895.

Naturally, the choice of a different initial parameter vector may
lead to a different local optimum. A study of the behavior of the
algorithms with respect to different initial parameter vectors was
not performed here for reasons of brevity, as its result is clear from
the outset. Using molecular simulations, the initial model param-
eters as well as the admissible domain have always to be chosen
physically reasonable. The initial model parameters may, for exam-
ple, be taken from literature [41,43,44].

4.2. Different temperatures and artificial noise

The employed fit functions (6) and (8) are avlid in the tempera-
ture range T /Tc ∈ [0.55,0.95], where Tc is the critical temperature,
which of course depends on the four molecular parameters. Note
that [52] also provides a fit for Tc . The six temperatures considered
here are T /Tc ∈ {0.52,0.59,0.67,0.75,0.83,0.91}, corresponding
to T /K ∈ {65,75,85,95,105,115}. If the target data were fitted at
one temperature only, T /Tc = 0.59 was taken, which corresponds

to T /K = 75. Please note that T /Tc = 0.52 is slightly outside the
temperature range where the fit functions are valid. However, the
triple point temperature of nitrogen is T = 63.151 K and for rea-
sons of continuity, the fit functions can handle reduced tempera-
tures which are somewhat lower than 0.55.

In order to mimic the calculation of molecular simulation data,
statistical noise was superimposed artificially on the physical prop-
erties from the fit functions. The artificial noise consists of uni-
formly distributed random numbers and is 0.5% for ρl , 1.0% for
�hv and 3.0% for pσ . Please note that thereby different loss func-
tion values may appear, if the loss function is evaluated for the
same parameter vector. The values of physical properties obtained
in independent molecular simulations are usually normally dis-
tributed but in this work, i.e. for the assessment of the behavior
of the numerical algorithms with respect to noise, the assumption
of uniformly distributed errors is more reliable because this is a
much serious type of noise.

Moreover, the stopping criterion depends on what one can ex-
pect from the molecular model and the optimization workflow:
Optimizing the model parameters to physical properties at dif-
ferent temperatures with a four-dimensional parameter vector is
much more elaborate than fitting them at one temperature only.
The problem becomes even more difficult in the case of artificial
noise. For details, cf. [46].

For the assessment of the different numerical optimization al-
gorithms, here ∀i wi = 1 was specified in Eq. (1), because all con-
sidered properties were treated equally.

4.3. Numerical optimization algorithms

The focus of the present work lies on applying fast algorithms
with low complexity, i.e. efficient algorithms, because they must be
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applicable to time-consuming molecular simulations as well. There
is a large number of candidate methods in the field of gradient-
based optimization. However, in general, the number of function
evaluations, i.e. the number of simulations to be performed at each
iteration, increases with the speed of convergency. Hence, the fol-
lowing numerical algorithms, which have very good convergency
properties but do not require too much computation time, were
chosen here:

1. Descent methods: xk+1 = xk + tkdk

• Steepest Descent: dk = −∇ F (xk)

• Newton Raphson: dk = −(D2 F (xk))−1∇ F (xk)

• Quasi Newton: dk = −H−1
k ∇ F (xk). The approximation Hk

of the Hessian is updated at every iteration, which can be
achieved by different Quasi Newton methods.
– Powell Symmetric Broyden (PSB)
– Davidon Fletcher Powell (DFP)
– Broyden Fletcher Goldfarb Shanno (BFGS)

The step length tk is obtained by a function adaptive step
length control method, the so-called Armijo step length con-
trol.

2. Conjugate Gradient (CG) methods: dk+1 = −∇ F (xk+1) + βkdk ,
d0 = −∇ F (x0)

• Fletcher Reeves: βFR
k = ‖∇ F (xk+1)‖2/‖∇ F (xk)‖2

• Polak Ribière: βPR
k = 〈∇ F (xk+1) − ∇ F (xk),∇ F (xk+1)〉/

‖∇ F (xk)‖2

3. Trust Region (TR) methods: xk+1 = xk + dk with the so-called
Trust Region subproblem: dk = dk(�) for some pre-defined step
length �.
There are two ways to solve the subproblem:
• Double Dog Leg Algorithm (DD): geometric approach
• Exact solution: eigenvalue decomposition of Hessian

The algorithms and the Armijo step length control are described
and discussed in detail in [46,66].

4.4. Stopping criteria

The stopping criterion ‖∇ F (x)‖ < τ for some τ > 0 cannot be
expected to be always fulfilled because of the slow convergency
of the Armijo step length control algorithm in a neighborhood
of the minimum. For example, this can be due to the rain drain
phenomenon mentioned in Section 2.2. Hence, the amount of com-
putation time to fulfill this stopping criterion would be too high in
comparison to the benefit obtained by the resulting step lengths,
which are very small due to the Armijo constraint [66].

Therefore, the stopping criterion

F (x) < τ

was chosen for τ = 10−4 or even τ = 10−5. For the exact choice
of τ , the Steepest Descent method was taken as a reference
method: Whenever the Armijo step length control did not con-
verge within a reasonable number of steps (usually 100), the actual
parameter vector was taken as the optimal one and the optimiza-
tion workflow ended. Then, an accurate upper bound of the actual
loss function value was chosen for τ . The value of τ depended on
the optimization task.

An algorithm was considered as successful, if and only if the
stopping criterion was fulfilled with a reasonable amount of com-
putation time. This means that the optimization workflow was
interrupted, whenever the Armijo step length control did not con-
verge within 100 steps at some iteration.

Fig. 4. Curves showing the considered physical properties over the temperature
range from 65 K to 122 K using boundary values (black curves) and the optimal pa-
rameters from the corresponding optimization tasks (blue curves). The green curves
indicate the experimental values for comparison, ranging from 65 K to 126 K. Plot a)
shows saturated liquid density vs. temperature, plot b) enthalpy of vaporization vs.
temperature, and plot c) the logarithm of vapor pressure vs. temperature. The plots
indicate that boundary values can lead to extremely wrong results. This can also
be true using model parameters that significantly differ from the minimum of the
loss function. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

5. Results and discussion

5.1. Optimal model parameters

As mentioned in Section 4, the loss function is defined within
an admissible domain where it has to be minimized. From a phys-
ical point of view, it would be interesting to investigate the behav-
ior of the physical properties over a range of temperatures using
boundary values of the admissible domain as model parameters
instead of the optimal ones. Fig. 4 presents ρl vs. T (plot a)), �hv

vs. T (plot b)), and ln pσ vs. T (plot c)). A temperature range of
[65 K,122 K] was chosen.

Each plot consists of four curves: A green curve showing the
experimental target data, a blue one obtained by using optimal pa-
rameters and two black curves obtained by using boundary values
of the admissible domain, as discussed below.

The experimental values over the complete temperature range
(green curves) were taken from [67]. The values for the optimal
parameters (blue curves) were taken from the results of the corre-
sponding optimization tasks defined in Section 2.2:

• ρl vs. T : Optimization task 3.
• �hv vs. T : Optimization task 3.
• ln pσ vs. T : Optimization task 7.
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The first black curve (boundary values 1) is drawn by inserting
initial values for ε and σ and minimal values for Q 2 and L and
the second one (boundary values 2) by inserting maximal values
for ε and σ and initial values for Q 2 and L into the corresponding
fit functions.

The curves obtained by the optimal parameters are always very
close to the experimental curves. However, using boundary values
leads to extremely diverging results. Therefore, an automated opti-
mization is indispensable.

5.2. Assessment of numerical optimization algorithms

The detailed results of the investigated numerical optimization
algorithms are shown in the tables of Appendix A, where they are
described and explained as well. Please note that all successful
methods led to model parameters situated inside the admissible
domain and not at its boundary.

In order to discuss and evaluate the algorithms, both the num-
ber of iterations, indicating the speed of convergency, and the
number of function evaluations, indicating the number of loss
function or partial derivatives evaluations, have to be considered.
The number of function evaluations equals the number of molec-
ular simulations which would have to be performed. The New-
ton Raphson and the Trust Region methods use a Hessian ma-
trix at each step, which requires O(N2) calculations of properties,
where N is the number of the simultaneously optimized molecu-
lar model parameters, in addition to the calculation of the gradient
that requires O(N) calculations of properties. Furthermore, at each
Armijo iteration, one loss function evaluation has to be performed.
Please note that for the current objective, the number of iterations
is crucial, since the first goal is to assess the algorithms mathe-
matically and the speed of convergency is given by the number of
iterations. Whenever the methods are applied to molecular simu-
lations, one must always care about the fact that the computation
time required for the function evaluations should be as small as
possible. This can be achieved, e.g. by parallelizing the calculation
of the independent gradient components or Hessian entries. Fur-
thermore, mathematical tricks can be applied in order to increase
the efficiency of the optimization workflow, if the amount of noise
is sufficiently low.

The evaluation criteria of the eight loss functions to be opti-
mized, corresponding to the eight optimization tasks, always have
to consider what can be expected from the optimization proce-
dure. If target data at only one temperature is fitted, the computed
properties can be expected to deviate only very little from the ex-
perimental ones. However, as the problem is underdetermined, the
number of global optima of the loss function can be infinite. The
proper definition of the initial guess and the admissible search do-
main ensure that a physically meaningful minimum is found.

If noise is added artificially, the properties can only be situ-
ated within an error bar around the minimum. Hence, a deviation
smaller than the statistical uncertainty of the respective property
indicated in Section 4.2 is an optimal result. However, the results
could have been produced by chance. If an optimization is re-
peated, it may create a better or worse output. Therefore, some
replications were performed, in order to get statistically represen-
tative assessments. The respective result Tables 4, 6, 8, and 10
contain the average values and Figs. 5–8, cf. Appendix B, show the
corresponding box plots for each column of the result tables pro-
duced by ten replicates of each optimization workflow.

If more than one temperature is considered, the problem be-
comes more elaborate, as one parameter vector cannot predict
exactly all properties at all desired temperatures at the same time:
From the mathematical point of view, the problem is overdeter-
mined. Together with noise, this is even more difficult.

The simplex algorithm is the only iterative method applied to
the optimization of LJ parameters so far [31]. It is very robust with
respect to noise in finding a local optimum but it is a quite heuris-
tic approach with a slow convergency. Furthermore, at some point,
it starts to hop around the minimum. In a practical situation, us-
ing Molecular Dynamics simulations executed with the simulation
tool YASP [64], it took about 70–100 iterations for the optimization
of the saturated liquid density and enthalpy of vaporization at one
temperature with four model parameters and comparable accuracy
[65]. Therefore, a reduction to 30–50 iterations would already be
a benefit. If the optimization ends after ten iterations or even less,
this can even be considered as an achievement and a very good
performance of the respective algorithm. But one must be careful,
as the simplex algorithm only requires O(P ) loss function eval-
uations, where P is the number of iterations. The methods used
here require more function evaluations per iteration. As the eval-
uation was made via the fit functions introduced in Section 3 and
not via molecular simulations, the computational effort was irrel-
evant in the present work. If, however, molecular simulations are
used in order to calculate the physical properties, the complexity
by applying additional auxiliary methods should be reduced from
O(P N2) to O(P N) or even to O(P ).

5.3. Unsuitable methods

We claim that the Quasi Newton methods are unsuitable for
the present type of optimization tasks. This is especially true, if
the function values are noisy. In most cases, the Armijo step length
control does not converge within 100 steps after a few iterations
only. This is due to the fact that an approximation Hk of the Hes-
sian matrix is used and it is not guaranteed that the Quasi Newton
direction is a descent direction, as Hk is not guaranteed to be sym-
metric positive definite (spd). For details, cf. [46]. Therefore, the
methods tend to lead to the boundary of the admissible domain,
where no improved loss function value can be found. Firstly, the
gradient is only an inaccurate approximation in the case of noise,
and secondly, Hk is another approximation, namely of the actual
Hessian. Of course, this can lead to the fact that the Quasi Newton
direction can lead anywhere but not to the minimum. In general,
the Quasi Newton methods deliver poor results. However, in the
case of noise, the probability to find a lower loss function value,
in the sense of the Armijo step length, becomes higher. Thus, the
Quasi Newton methods sometimes deliver quite good results but
they are not robust with respect to noise.

Also, the solution of the Trust Region subproblem by the DD
method is unsuitable: The Hessian matrix is not spd in most cases
so that the so-called Cauchy point [66] is taken as a solution. But
then, a good quality of the interpolation model [46,66] can only be
achieved by chance. Hence, only in the case of noise, the DD was
successful. But it cannot be guaranteed that this is always the case.

5.4. Detailed discussion of the results

Table 2 contains the results of the initial model parameters of
each optimization task. When the saturated liquid density and the
vapor pressure were optimized at one temperature (optimization
tasks 5 and 6), the initial parameter vector was obtained by three
steepest descent iterations with a heuristic step length [46], which
led to the boundary of the admissible domain. Therefore, the new
admissible domain for ε was reduced but not for σ , as this led
to convergency problems of the Armijo step length control. Hence,
the initial parameter vector is not the same as the original one in
this case.

The results for the initial parameter vectors are poor, and the
optimization algorithms could improve them drastically: In the fol-
lowing, the tables in Appendix A are discussed in detail:
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Table 2
Initial model parameters and the corresponding results for all optimization tasks. For the first four, the relative errors on enthalpy of vaporization and for the last four, the
ones on vapor pressure are indicated. If six temperatures are considered, the absolute average values over all temperatures are indicated. In the case of artificial noise, the
averages over ten replicates are shown. Please note that different initial parameters were taken for the optimization tasks 5 and 6, as no minimum was found in the original
admissible domain. Hence, it had to be modified.

Results for initial model parameters

x0 ρl �hv , pσ F (x0) ‖∇ F (x0)‖
Optimization task 1 (Table 3): 0.310100 3.49% 10.88% 0.0131 1.84
ρl , �hv , one temperature, without noise 0.331000

0.020727
0.104640

Optimization task 2 (Table 4): 0.310100 3.42% 10.97% 0.0132 389.13
ρl , �hv , one temperature, with noise 0.331000

0.020727
0.104640

Optimization task 3 (Table 5): 0.310100 5.49% 21.86% 0.3848 57.84
ρl , �hv , six temperatures, without noise 0.331000

0.020727
0.104640

Optimization task 4 (Table 6): 0.310100 5.51% 21.86% 0.3850 2149.57
ρl , �hv , six temperatures, with noise 0.331000

0.020727
0.104640

Optimization task 5 (Table 7): 0.323221 8.21% 68.87% 0.4811 131.96
ρl , �pσ , one temperature, without noise 0.338112

0.028995
0.088137

Optimization task 6 (Table 8): 0.323221 8.30% 68.92% 0.4819 3794.30
ρl , �pσ , one temperature, with noise 0.338112

0.028995
0.088137

Optimization task 7 (Table 9): 0.310100 5.49% 34.60% 0.7524 121.44
ρl , �pσ , six temperatures, without noise 0.331000

0.020727
0.104640

Optimization task 8 (Table 10): 0.310100 5.46% 34.56% 0.7510 1939.62
ρl , �pσ , six temperatures, with noise 0.331000

0.020727
0.104640

Table 3 contains the results obtained by optimizing the sat-
urated liquid density and enthalpy of vaporization at T = 75 K
without noise. The Steepest Descent and the Newton Raphson iter-
ations are identical in this case, as the Newton direction was never
accepted. The relative errors on ρl and �hv are very small (−0.03%
on ρl and 0.19% on �hv ). The Fletcher Reeves and the Trust Re-
gion methods led to even better results. The Polak Ribière and the
Trust Region methods had the smallest number of iterations. As
‖∇ F‖ ≈ 0 for all these methods, their results can be considered as
optimal.

In Table 4, the results of the same problem together with ar-
tificial noise are indicated: None of the methods fell below both
error bars (0.5% on ρl and 1% on �hv ). Only the Newton Raph-
son and the Fletcher Reeves methods reached the error bar of ρl .
The PSB method gives the best result for �hv on average. The
corresponding box plots (Fig. 5) show that the Newton Raphson,
the Conjugate Gradient methods and, in this case, both Trust Re-
gion methods are the most robust ones with respect to noise. The
Newton Raphson and the Fletcher Reeves methods deliver the best
results, which can be seen from the position of the box plots, but
only in the case of the exact Trust Region method, all ten replicates
were successful.

Tables 5 and 6 show the results for ρl and �hv at six differ-
ent temperatures, without and with artificial noise, respectively:
As mentioned earlier, the loss function cannot be expected to reach
zero, as the problem is overdetermined. All suitable methods, i.e.
all methods except the Quasi Newton methods and the Trust Re-

gion method together with the DD algorithm, yield satisfactory
results concerning the saturated liquid density (≈0.7% without and
≈1.7–2% with noise). Also for the enthalpy of vaporization, the av-
erage errors (≈3–3.5%) are satisfactory. Without noise, the Steepest
Descent, the Newton Raphson, and the Fletcher Reeves methods
are quite poor, as they require more than 50 iterations, whereas
the Trust Region method is clearly superior with only 30 iterations.
However, when noise is introduced, the Newton Raphson method
yields the best results (0.63% on ρl). All the other methods—also
the DFP and the DD methods—lead to similar satisfactory results.
An interesting aspect is the fact that the noise only influences the
error on ρl but not on �hv . From Fig. 6, it can be seen that the DFP
method yields low relative errors on average but it is not robust
with respect to noise. The most robust algorithms are the Steepest
Descent method, the Conjugate Gradient methods and the exact
Trust Region method. The low error on ρl in the case of the New-
ton Raphson method was maintained over ten replicates, as can be
seen from the corresponding box plot.

The output of the optimization of ρl together with the vapor
pressure pσ at one temperature without and with noise is indi-
cated in Tables 7 and 8, respectively: All suitable methods yield
a notably small error for the vapor pressure (<0.5%), if no artifi-
cial noise is present. Otherwise, the error is always less than 1%
but as can be seen from Fig. 7, the variations on this average er-
ror can be quite large. The best results for the vapor pressure in
the case of no noise are created by the Newton Raphson method
(0.03%), which requires more than 100 iterations, as well as the
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Steepest Descent method. However, after the introduction of noise,
no Newton Raphson replicate was successful. One workflow, which
had been executed previously, gave an outlier result: After 23 iter-
ations, the stopping criterion was fulfilled with an error on ρl of
6.86% and on pσ of 0.04%. For the vapor pressure, this is a very
good result but the probability that such a result is achieved is
very low. In the case of the other methods, the error on the sat-
urated liquid density is quite high (>0.9% without and even >6%
with noise). Two exceptions are the Trust Region method in the
case of no noise (0.68%) and the PSB method in the case of noise
(4.34%). However, the PSB result was obtained by chance, because
only two replicates were successful. The box plots in Fig. 7 show
that the most robust methods are the Steepest Descent method,
the Conjugate Gradient methods, and the Trust Region method.
They also give similar results. It is worth to mention that in this
case, also the DFP method works quite well. However, only three
DFP replicates were successful.

When ρl and pσ are optimized at six different temperatures si-
multaneously without noise, all suitable methods yield similar sat-
isfactory results as shown in Table 9: The error on ρl is about 1.2–
1.3% and the error on pσ is about 3.6–3.8%. In the case of noise,
which is summarized by Table 10, the error on ρl is slightly lower,
and the error on �hv remains approximately the same. The New-
ton Raphson method yielded a quite high error on ρl (≈ 4%) and
only one replicate was successful. Interestingly, the DFP and BFGS
methods produced very good results in this case. The stopping cri-
terion was fulfilled by 7 and 5 replicates, respectively, within about
8–9 iterations. The lowest loss function value was given again by
the Trust Region method with exact solution. However, exception-
ally, the Trust Region method also delivered very good results, if
the subproblem was solved by the DD algorithm. The box plots
shown in Fig. 8 approve that all methods except the Newton Raph-
son and PSB methods achieve good results. Only the Trust Region
method together with the DD algorithm—exceptionally being su-
perior in this case—delivers narrow box plots. Only the relative
error on ρl is produced robustly. All other methods give compara-
ble results but it is worth to mention that the Conjugate Gradient
methods are quite robust with respect to the noise on the loss
function value itself and that the Trust Region method delivers the
lowest loss function values.

5.5. Particular aspects with respect to noise

In general, the number of iterations is much smaller in the case
of noise. However, the Armijo step length often requires more it-
erations, as the artificial noise may lead to greater loss function
values. Hence, the probability to find a lower loss function value in
the sense of the Armijo step length decreases. But at some point,
the superimposed random number will be negative, which leads to
much smaller loss function values. Hence, the algorithm converges
faster to the minimum and may reach final parameters with lower
or higher loss function values, depending on the sign of the last
random number.

The two whiskers in each box plot of Figs. 5–8 show the best
and the worst cases, i.e. the replicates with the highest and lowest
loss function values, respectively. The worst case occurs, of course,
if a replicate is not successful. However, also below the upper
bound of the stopping criterion, better and worse replicates have
to be differentiated. If the whiskers are situated far away from each
other, there is a large span between the best and the worst cases.
This is mostly the case for the Newton Raphson method and the
Quasi Newton methods. This means that by chance, an extraordi-
narily good result can be achieved but also the opposite may occur
as well. In the case of the Quasi Newton methods, the probability
that a replicate is successful is very low. So, the occurrence of the
best case is rare. If the distance between the lower whisker and

the lower quartile is large, a very good result may be achieved but
this case is most unlikely. The outliers marked by circles cannot be
evaluated as best or worst cases. Only the whiskers can be chosen
for this.

5.6. Further improvements

Another aspect is the fact that the tables only allow evalua-
tions with respect to the stopping criterion, i.e. how ‘optimal’ the
last iteration is, meaning how small the last loss function value is.
All algorithms terminate, as soon as F (x) � τ for some τ > 0, and
τ was defined with the Steepest Descent method as a reference.
Therefore, all suitable methods will end up with approximately
the same function values. But possibly there are methods which
still get closer to the minimum. Hence, for the Conjugate Gradi-
ent methods and the Trust Region method with exact solution of
the subproblem, a further investigation was performed, determin-
ing how close to the minimum the methods really get, until the
Armijo step length does not converge within 100 steps or the Trust
Region radius becomes too small.

For example, in the case of the enthalpy of vaporization at one
temperature without noise, the Fletcher Reeves method gave a bet-
ter result compared to Table 3: A relative error on ρl of 0.04% and
on �hv of −0.06% was obtained after three additional iterations.

As can be seen from Table 4, both error bars were reached
by none of the methods within the corresponding optimization
task, which seems to be quite hard to solve for the considered
algorithms. However, there was one exception obtained by further
studies: After eight iterations, the Trust Region method with an ex-
act solution of the Trust Region subproblem obtained 0.28% on ρl
and −0.23% on �hv .

In the case of six temperatures (compared to Table 5), only
slightly better results were obtained with much more effort: the
Polak Ribière method yields a result of 0.61%/3.09% after 62 ad-
ditional iterations, and the Trust Region method yielded a result
of 0.62%/3.12% after 70 additional iterations. In the case of noise
(compared to Table 6), only the Fletcher Reeves method showed
improved results: After 16 iterations, the result was 0.79%/2.83%.

Improvements were achieved in the case of the vapor pressure
as well: At T = 75 K without noise (compared to Table 7), the
Polak Ribière method gave an error rate of 0.51% on ρl and of
0.09% on pσ after only four additional iterations, and the result
of the Trust Region method was even 0.24% and 0.03%, respec-
tively, after 11 additional iterations. When noise was introduced
(compared to Table 8), the Fletcher Reeves method achieved the
error rates 2.81%/−0.14% after 18 iterations and the Polak Ribière
method even 0.45%/0.25% after 25 iterations. This result cannot be
improved, as it is situated within the error bars due to noise. When
six temperatures are considered (compared to Table 9), the aver-
age error is 0.88% on ρl and 3.53% on pσ in the case of Fletcher
Reeves after 91 more iterations, the Polak Ribière method gave a
result of 0.96% and 3.50%, respectively, after 40 additional itera-
tions. The best result was achieved by the Trust Region method
with average errors of 0.73%/3.12% with 33 additional iterations.
With noise (compared to Table 10), only the Polak Ribière method
could improve the parameter vector yielding 0.72%/2.25% with 11
iterations.

Please note that in the case of noise, the result of only one
replicate was indicated above in order to show exemplarily the
capacity of the algorithms. Of course, the hypothesis that no im-
provement was achieved was tested with replicates.

6. Conclusion

An optimization procedure for the parameterization of molecu-
lar models was presented, wherein numerical optimization algo-
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Table 3
Optimization results of loss function containing the density and the enthalpy of vaporization at T = 75 K, without introduction of artificial noise. The stopping criterion was
F (x) � 10−5. The asterisk indicates that the stopping criterion was not fulfilled and that the Armijo step length search did not converge within 100 steps. In the case of PSB,
the convergency was too slow. Therefore, the descent direction was not normalized which led to better values in much less time. The Newton Raphson results are exactly
concordant with the Steepest Descent results, as the Newton direction was never accepted. The Trust Region constraint had to be weakened. Therefore, η1 = 0.2.

Density and enthalpy of vaporization, T = 75 K, without noise

Algorithm # Iter. # Eval. xopt ρl �hv F (xopt) ‖∇ F (xopt)‖
Steepest Descent 9 62 0.300120 −0.03% 0.19% 4 × 10−6 0.02

0.325710
0.013278
0.115343

Newton Raphson 9 152 0.300120 −0.03% 0.19% 4 × 10−6 0.02
0.325710
0.013278
0.115343

PSB (Quasi Newton) 2� x2 = 0.301444 −0.58% 1.46% 2.5 × 10−5 0.17
0.327477
0.014151
0.114339

DFP (Quasi Newton) 4� x4 = 0.301445 −0.58% 1.46% 2.5 × 10−5 0.17
0.327476
0.014145
0.114337

BFGS (Quasi Newton) 8� x8 = 0.301446 −0.83% 0.35% 8.1 × 10−5 7.21
0.327473
0.014145
0.114338

Fletcher Reeves (CG) 36 235 0.300137 −0.01% 0.16% 3 × 10−3 0.02
0.325656
0.013175
0.115355

Polak Ribière (CG) 6 41 0.300215 −0.03% 0.29% 8 × 10−6 0.03
0.325784
0.013409
0.115276

Trust Region (DD) No solution of Trust Region partial problem found: Hessian not spd

Trust Region (Exact) 6 105 0.299802 −0.03% −0.14% 2 × 10−6 0.02
0.325402
0.013067
0.115660

Table 4
Optimization results of loss function containing the density and the enthalpy of vaporization at T = 75 K, with introduction of artificial noise (0.5% for the density and 1%
for the enthalpy of vaporization). The stopping criterion was F (x) � 3.5 × 10−3. In all columns, the average values of ten replicates are shown. In order to weaken the Armijo
and Trust Region constraints, the settings ζA = 0.001 and η1 = 0.2 were made, respectively.

Density and enthalpy of vaporization, T = 75 K, with noise

Algorithm # Repl. # Iter. # Eval. xopt ρl �hv F (xopt) ‖∇ F (xopt)‖
Steepest Descent 8 7–8 63–64 0.305494 −0.80% 5.22% 2.9 × 10−3 0.72

0.331350
0.016490
0.110247

Newton Raphson 8 8–9 161–162 0.306133 0.10% 5.68% 3.3 × 10−3 0.82
0.331285
0.016791
0.109278

PSB (Quasi Newton) 5 5–6 62 0.313424 −2.81% 2.94% 2.4 × 10−3 0.71
0.326680
0.024047
0.126885

DFP (Quasi Newton) 4 9 95–96 0.306095 −0.23% 5.67% 3.3 × 10−3 0.80
0.331706
0.017046
0.109435

BFGS (Quasi Newton) No replicate successful

Fletcher Reeves (CG) 3 10–11 191–192 0.306708 −0.12% 5.86% 3.4 × 10−3 0.86
0.331669
0.017046
0.108642

Polak Ribière (CG) 8 6–7 52 0.305550 −0.61% 5.19% 2.8 × 10−3 0.69
0.331365
0.016605
0.110351

Trust Region (DD) 7 2–3 51–52 0.306105 −0.71% 5.22% 2.8 × 10−3 0.70
0.331997
0.016823
0.109954

Trust Region (Exact) 10 3–4 70–71 0.305743 −1.01% 4.98% 2.6 × 10−3 0.60
0.331171
0.015991
0.111001
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Table 5
Optimization results of loss function containing the density and the enthalpy of vaporization at six temperatures, without introduction of artificial noise. The stopping
criterion was F (x) � 0.01. The errors on density and enthalpy of vaporization are averages over the absolute percental errors at the different temperatures. The asterisk
indicates that the stopping criterion was not fulfilled and that the Armijo step length search did not converge within 100 steps. In the case of BFGS, the approximation of
the Hessian matrix was singular. Two asterisks indicate that the convergency was too slow and that the workflow was artificially interrupted. The Armijo constraint had to
be weakened in the cases of PSB, DFP and Fletcher Reeves. Therefore the setting ζA = 0.1 was made.

Density and enthalpy of vaporization, 6 temperatures, without noise

Algorithm # Iter. # Eval. xopt ρl �hv F (xopt) ‖∇ F (xopt)‖
Steepest Descent 50 346 0.304200 0.73% 3.29% 9.9 × 10−3 0.53

0.326315
0.011931
0.114235

Newton Raphson 42 715 0.304112 0.69% 3.31% 9.9 × 10−3 0.31
0.326501
0.011745
0.114031

PSB (Quasi Newton) 100�� x100 = 0.312485 3.83% 10.00% 0.1336 31.26
0.327299
0.017722
0.111616

DFP (Quasi Newton) 24� x24 = 0.301446 1.72% 3.52% 0.0134 1094.36
0.327473
0.014145
0.114338

BFGS (Quasi Newton) 0� x0 = 0.310100 5.49% 21.86% 0.3848 65.72
0.331000
0.020737
0.104640

Fletcher Reeves (CG) 93 569 0.304203 0.72% 3.31% 9.9 × 10−3 0.19
0.326076
0.012550
0.114217

Polak Ribière (CG) 33 224 0.304313 0.72% 3.30% 9.9 × 10−3 0.24
0.325951
0.012119
0.114163

Trust Region (DD) No solution of Trust Region partial problem found: Hessian not spd

Trust Region (Exact) 30 553 0.304172 0.70% 3.32% 9.9 × 10−3 0.29
0.326158
0.012438
0.114130

Table 6
Optimization results of loss function containing the density and the enthalpy of vaporization at six temperatures, with introduction of artificial noise (0.5% for the density and
1% for the enthalpy of vaporization). The stopping criterion was F (x) � 0.013. The errors on density and enthalpy of vaporization are averages over the absolute percental
errors at the different temperatures. In all columns, the average values of ten replicates are shown. The Armijo constraint had to be weakened in the case of PSB and Fletcher
Reeves. Therefore, ζA = 0.1 was set. The Trust Region constraint had to be weakened as well. The setting η1 = 0.5 was made.

Density and enthalpy of vaporization, 6 temperatures, with noise

Algorithm # Repl. # Iter. # Eval. xopt ρl �hv F (xopt) ‖∇ F (xopt)‖
Steepest Descent 5 9–10 84 0.303881 1.93% 3.21% 0.0125 3.15

0.329132
0.016636
0.114858

Newton Raphson 7 7–8 134–135 0.306369 0.63% 3.47% 0.0118 4.63
0.327030
0.017582
0.116017

PSB (Quasi Newton) No replicate successful

DFP (Quasi Newton) 3 9–10 91–92 0.304235 1.80% 3.19% 0.0118 2.46
0.328549
0.016598
0.115224

BFGS (Quasi Newton) No replicate successful

Fletcher Reeves (CG) 8 8–9 61–62 0.303858 1.78% 3.19% 0.0121 2.88
0.327724
0.016460
0.115816

Polak Ribière (CG) 7 7–8 81–82 0.304027 1.74% 3.33% 0.0124 3.51
0.328910
0.016597
0.114834

Trust Region (DD) 3 5–6 111–112 0.304029 2.09% 3.16% 0.0120 2.69
0.329058
0.016557
0.115179

Trust Region (Exact) 3 5 97–98 0.303701 1.84% 3.22% 0.0118 2.40
0.328640
0.016466
0.115193
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Table 7
Optimization results of loss function containing the density and the vapor pressure at T = 75 K, without introduction of artificial noise. The stopping criterion was F (x) �
10−4. The initial parameter vector was obtained by 3 steepest descent iterations with a heuristic step length, which led on the boundary of the admissible domain. Therefore,
the new admissible domains for σ and ε were reduced. The asterisk indicates that the stopping criterion was not fulfilled and that the Armijo step length search did not
converge within 100 steps. The Armijo constraint had to be weakened in the case of PSB. Therefore, the setting ζA = 0.1 was made.

Density and vapor pressure, T = 75 K, without noise

Algorithm # Iter. # Eval. xopt ρl pσ F (xopt) ‖∇ F (xopt)‖
Steepest Descent 106 670 0.329080 0.91% 0.34% 9.5 × 10−5 0.37

0.349806
0.032471
0.084349

Newton Raphson 145 2343 0.324721 0.94% 0.03% 8.9 × 10−5 0.17
0.351530
0.027617
0.079118

PSB (Quasi Newton) 14 214 0.309356 0.85% 0.48% 9.6 × 10−5 0.51
0.354817
0.041032
0.074182

DFP (Quasi Newton) 88� x88 = 0.342390 13.58% 1.9% 0.018812 3.31
0.335250
0.007313
0.081177

BFGS (Quasi Newton) 16� x16 = 0.323386 14.16% 1.99% 0.020433 3.30
0.338228
0.028883
0.076116

Fletcher Reeves (CG) 157� x157 = 0.328757 4.02% 0.34% 0.001630 0.77
0.346543
0.032610
0.083449

Polak Ribière (CG) 93 580 0.329154 0.92% −0.13% 8.1 × 10−5 0.25
0.349809
0.032640
0.084373

Trust Region (DD) No solution of Trust Region partial problem found: Hessian not spd

Trust Region (Exact) 29 572 0.329153 0.68% −0.18% 5 × 10−5 0.26
0.350085
0.032568
0.084390

Table 8
Optimization results of loss function containing the density and the vapor pressure at T = 75 K, with introduction of artificial noise (0.5% for the density and 3% for the
vapor pressure). The stopping criterion was F (x) � 5 × 10−3. In all columns, the average values of ten replicates are shown. The initial parameter vector was obtained by 3
steepest descent iterations with a heuristic step length, which led on the boundary of the admissible domain. Therefore, the new admissible domain for ε were reduced but
not for σ , as this led to convergency problems of the Armijo step length. The Armijo constraint also had to be weakened drastically. Therefore, ζA = 0.001 was set. The Trust
Region constraint had to be weakened as well. The setting η1 = 0.2 was made. In the case of DFP, the last iterations were steepest descent iterations, as the approximation
of the Hessian was singular.

Density and vapor pressure, T = 75 K, with noise

Algorithm # Repl. # Iter. # Eval. xopt ρl pσ F (xopt) ‖∇ F (xopt)‖
Steepest Descent 4 14–15 155–156 0.327347 6.69% 0.68% 4.8 × 10−3 2.41

0.343816
0.032180
0.081839

Newton Raphson No replicate successful

PSB (Quasi Newton) 2 11–12 121 0.338901 4.34% 0.16% 2.6 × 10−3 1.77
0.344088
0.017238
0.084665

DFP (Quasi Newton) 3 20 298–299 0.328169 6.65% −0.47% 4.7 × 10−3 2.33
0.343964
0.029897
0.081085

BFGS (Quasi Newton) No replicate successful

Fletcher Reeves (CG) 7 12–13 94–95 0.327520 6.60% 0.24% 4.5 × 10−3 1.64
0.344102
0.032243
0.081782

Polak Ribière (CG) 7 12 79–80 0.327505 6.47% 0.53% 4.5 × 10−3 2.32
0.344212
0.032151
0.082050

Trust Region (DD) No solution of Trust Region partial problem found: Hessian not spd

Trust Region (Exact) 7 8–9 158–159 0.327377 6.40% 0.81% 4.4 × 10−3 2.18
0.344348
0.031970
0.081577
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Table 9
Optimization results of loss function containing the density and the vapor pressure at six temperatures, without introduction of artificial noise. The stopping criterion was
F (x) � 0.012. The errors on density and vapor pressures are averages over the absolute percental errors at the different temperatures. The Newton Raphson results are
exactly concordant with the Steepest Descent results, as the Newton direction was never accepted. The asterisk indicates that the stopping criterion was not fulfilled and
that the Armijo step length search did not converge within 100 steps. In the case of BFGS, the approximation of the Hessian matrix was singular. Two asterisks indicate that
the algorithm tends to move in the direction of the boundary of the admissible domain: Therefore, the workflow was interrupted at some point. The Armijo constraint had
to be weakened in the case of DFP (ζA = 0.1) and drastically in the case of PSB (ζA = 0.001).

Density and vapor pressure, 6 temperatures, without noise

Algorithm # Iter. # Eval. xopt ρl pσ F (xopt) ‖∇ F (xopt)‖
Steepest Descent 20 143 0.304677 1.26% 3.65% 0.011915 1.15

0.328113
0.017685
0.111711

Newton Raphson 20 143 0.304677 1.26% 3.65% 0.011915 1.15
0.328113
0.017685
0.111711

PSB (Quasi Newton) 552 9438 0.339904 2.85% 2.73% 0.011883 14.07
0.317919
0.021602
0.134778

DFP (Quasi Newton) 300�� x300 = 0.351747 4.54% 28.39% 0.515222 106.82
0.319875
0.021347
0.133568

BFGS (Quasi Newton) 58� x58 = 0.311995 9.53% 15.97% 0.214957 60.16
0.340508
0.00955
0.116957

Fletcher Reeves (CG) 20 144 0.304690 1.26% 3.72% 0.011999 1.67
0.328137
0.017624
0.111662

Polak Ribière (CG) 20 143 0.304710 1.27% 3.75% 0.011961 1.97
0.328130
0.017709
0.111691

Trust Region (DD) No solution of Trust Region partial problem found: Hessian not spd

Trust Region (Exact) 7 140 0.304695 1.26% 3.70% 0.011938 1.52
0.328128
0.017678
0.111701

rithms were applied and assessed, in order to fit the saturated
liquid density, the enthalpy of vaporization and the vapor pres-
sure to experimental data by minimizing a loss function. This was
performed at one and at six different temperatures simultaneously.
A direct relation of the parameters to be optimized and the physi-
cal properties was given by fit functions for VLE data based on the
2CLJQ potential. As an example, the 2CLJQ model for nitrogen was
chosen.

The gradient-based iterative procedures considered have very
good convergency qualities. The gradient and the Hessian were
approximated by finite differences of the physical properties. The
Steepest Descent method, the Newton Raphson method, three
Quasi Newton methods, two Conjugate Gradient methods and the
Trust Region method with two different solutions of the Trust Re-
gion subproblem were investigated.

The algorithms were assessed for the parameterization problem,
also with respect to some artificial noise in the calculated proper-
ties. Thereby, it was very important which performance could be
expected at each single problem, leading to different stopping cri-
teria for each optimization task. A very strict stopping criterion
for the loss function was fulfilled in the case of the optimization
of the saturated liquid density and the enthalpy of vaporization
at one temperature, a somewhat weaker one in the case of vapor
pressure. It became increasingly difficult, when the properties were
noisy and when several temperatures were considered. Therefore,
even weaker stopping criteria were used.

The Quasi Newton methods and the solution of the Trust Re-
gion subproblem by a DD algorithm turned out not to be suitable
for this optimization task, as the matrices involved in those meth-

ods were not spd and at some iteration steps even singular. The
Steepest Descent, the Newton Raphson, the Fletcher Reeves, the
Polak Ribière, and the Trust region methods with an exact solution
of the subproblem mostly fulfilled the respective stopping criterion
within a reasonable number of iterations, regardless of the pres-
ence of noise, where the physical properties were mostly predicted
within an error bar around the minimum. However, the Newton
Raphson method often used the Steepest Descent direction, as the
Hessian was not spd in most cases. Furthermore, please note that
in the case of noise, the Newton direction may be accepted by mis-
take, although the Hessian is not spd. This, in turn, leads to the fact
that the Newton Raphson method does not fulfill the stopping cri-
terion in some cases. But as it worked quite well for the enthalpy
of vaporization, it is considered as a suitable method anyway.

The Conjugate Gradient methods and the Trust Region method
were found to be the best numerical optimization algorithms for
the present scenarios, as they led to the best results in most
cases and were very robust with respect to noise. The Trust Re-
gion method converged within less iterations than the Conjugate
Gradient methods but it needs more function evaluations due to
the calculation of the Hessian.

So, we can conclude that gradient-based numerical optimiza-
tion algorithms are suitable, even if there is noise in the loss func-
tion evaluations. If they are applied to molecular simulations, one
must always take care of the complexity, as for each evaluation of
the loss function, simulations have to be performed. At each iter-
ation, the gradient has to be computed and an Armijo step length
control must be used. Some algorithms also require the calculation
of the Hessian. Hence, some considerations have to be undertaken
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Table 10
Optimization results of loss function containing the density and the vapor pressure at six temperatures, with introduction of artificial noise (0.5% for the density and
3% for the vapor pressure). The stopping criterion was F (x) � 0.015. The errors on density and vapor pressure are averages over the absolute percental errors at the
different temperatures. In all columns, the average values of ten replicates are shown. The Armijo constraint had to be weakened drastically in the case of Newton Raphson
(ζA = 0.001). In the case of PSB and DFP, the last iterations were steepest descent iterations, as the approximation of the Hessian was singular.

Density and vapor pressure, 6 temperatures, with noise

Algorithm # Repl. # Iter. # Eval. xopt ρl pσ F (xopt) ‖∇ F (xopt)‖
Steepest Descent 9 6 46–47 0.305610 1.06% 3.79% 0.0118 8.68

0.328488
0.017561
0.111967

Newton Raphson 1 11 258 0.309644 3.93% 2.58% 0.0142 12.74
0.325261
0.015911
0.112473

PSB (Quasi Newton) No replicate successful

DFP (Quasi Newton) 7 8 101–102 0.306359 1.21% 3.35% 0.0105 3.45
0.327853
0.017664
0.112784

BFGS (Quasi Newton) 5 8–9 73–74 0.308596 1.12% 3.90% 0.0119 11.31
0.327424
0.020029
0.114783

Fletcher Reeves (CG) 10 6–7 82 0.305510 0.86% 3.69% 0.0125 10.11
0.328466
0.017439
0.112224

Polak Ribière (CG) 10 5–6 55–56 0.305590 1.13% 3.90% 0.0132 15.63
0.328411
0.017556
0.111956

Trust Region (DD) 8 4–5 89–90 0.305605 0.92% 3.82% 0.0112 8.30
0.328515
0.017454
0.112047

Trust Region (Exact) 5 5 113–14 0.305578 1.00% 3.39% 9.8 × 10−3 9.18
0.328435
0.017474
0.111974

in order to reduce the complexity when using molecular simula-
tions, as the number of function evaluations was always quite high.
However, the present work shows that it is possible to apply high-
performance gradient-based iteration procedures in this field, and
their application to molecular simulations will be presented in a
coming publication [68].
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Appendix A. Result tables

Tables 3–10 show the results for all eight optimization tasks,
without and with artificial noise.

The tables contain all gradient-based numerical optimization
methods considered, i.e. Steepest Descent, Newton Raphson, three
Quasi Newton methods (PSB, DFP and BFGS), two Conjugate Gra-
dient methods (Fletcher Reeves and Polak Ribière) as well as the
Trust Region method with two different solutions of the Trust Re-
gion subproblem (DD algorithm and exact solution).

The tables contain the following details:

• Optimization method (Algorithm): One of the above men-
tioned numerical optimization methods.

• Number of iterations (# Iter.): Those are the iteration steps
required, in order to fulfill the stopping criterion. Hence, it is
the P ∈ N so that xP = xopt, starting from x0. The number of
iterations indicates the speed of convergency.

• Number of function evaluations (# Eval.): This number indi-
cates how often the loss function or its partial derivatives had
to be evaluated, i.e. how often the physical properties had to
be calculated, e.g. by molecular simulations, until the stopping
criterion was fulfilled. This number increases with the compu-
tation of the gradient and the Hessian as well as the number
of iterations required for the Armijo step length control. If the
algorithm was interrupted for some reason before the stopping
criterion was fulfilled, the column contains ‘x P̃ =’, where P̃ is
the number of iterations so far, followed by the parameter x P̃

itself in the next column.
• Final parameter (xopt): The final parameter vector is given,

either the optimal one, for which the stopping criterion is ful-
filled, or the last one before the optimization was interrupted.

• Error on saturated liquid density (ρl): This is the percental
error on the saturated liquid density. In the case of one
temperature, a negative sign indicates that ρl was underesti-
mated, a positive sign that it was overestimated. In the case of
six different temperatures, the Mean Absolute Percental Error
(MAPE) over all temperatures is indicated.

• Error on enthalpy of vaporization or vapor pressure (�hv or
pσ ): The percental error on enthalpy of vaporization or vapor
pressure. It is computed exactly in the same way as the error
on the saturated liquid density.

• Value of loss function (F (xopt)): The value of the loss function
for the final or last parameter vector. Whenever the stopping
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Fig. 5. Box plots corresponding to the columns of Table 4: Saturated liquid density plus enthalpy of vaporization at T = 75 K.
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Fig. 6. Box plots corresponding to the columns of Table 6: Saturated liquid density plus enthalpy of vaporization at six different temperatures.
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Fig. 7. Box plots corresponding to the columns of Table 8: Saturated liquid density plus vapor pressure at T = 75 K.
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Fig. 8. Box plots corresponding to the columns of Table 10: Saturated liquid density plus vapor pressure at six different temperatures.
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criterion is fulfilled, this value is lower than the upper bound
of the criterion. The loss function should be as close to zero as
possible.

• Norm of the gradient (‖∇ F (xopt)‖): The norm of the gradient
for the final iteration. This value should be close to zero as
well, but it cannot be expected that it gets as small as F (xopt)

for the reasons mentioned in Section 4.

In the case of noise, the average values over ten replicates are in-
dicated. The second column (# Repl.) contains the number of suc-
cessful replicates (maximum: 10), i.e. the replicates which fulfilled
the stopping criterion without being interrupted before. Please
note again that a workflow was interrupted whenever the Armijo
step length control algorithm did not converge within 100 steps or,
in the case of the Quasi Newton methods, if Hk was singular.

Appendix B. Box plots for artificial noise

Figs. 5–8 show the box plots corresponding to the columns of
the result Tables 4, 6, 8, and 10, respectively. The width of a box
plot indicates the robustness of the method with respect to noise:
The narrower the box plot, the more robust is the corresponding
method. Furthermore, the position of a box plot is crucial: The bold
line stands for the median of the sample consisting of ten repli-
cates. Therefore, if the median is located at a value close to zero
and the box plot is narrow with only a small number of outliers,
the method features a good performance and is robust with re-
spect to noise as well.

The lower and upper boundaries of a box plot are the first and
third quartiles of the sample, the largest non-outlier observations
are marked by error bars (so-called whiskers). Outliers are marked
by circles.
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