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Force fields for engineering applications are often parameterized using strategies based on quantum mechanical
ab initio calculations and thermodynamic properties from experiment. An automated procedure for adjusting
molecular model parameters to experimental thermodynamic property data is introduced. The process acceler-
ates the development of molecular models by an efficient use of parallel computing power and an autonomous
progress of the model development without any user interaction. As a case study, the procedure is applied
to the parameterization of a molecular model for acetonitrile. The resulting model reproduces vapor-liquid
equilibrium data of acetonitrile with an accuracy of 0.1% for the saturated liquid density, 4.9% for the va-
por pressure and 3.7% for the enthalpy of vaporization. These accuracies are superior to data obtained with
previously published force fields for acetonitrile
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1 Introduction

Molecular modeling and simulation is a promising route for the prediction of thermodynamic
properties of pure substances and mixtures. The more widespread use of this technique in en-
gineering applications was restricted for a long time by two shortcomings [1]: first, the lack of
simulation programs that efficiently yield the thermodynamic properties of industrial interest;
and second, the poor availability of suitable molecular models, which yield these properties with
the necessary accuracy at a moderate simulation effort.
In the recent past, both issues were addressed by our group. With the release of the simula-
tion program ms2 [2] in 2011, a powerful simulation tool for the calculation of thermodynamic
properties is now publicly available. The scope of thermodynamic properties that are accessible
with this program ranges from basic static properties over Henry’s law constant and entropic
data to transport properties of bulk fluids. The accuracy of the calculated data is high, sat-
isfying current requirements expressed by the industry for their applications. With respect to
simulation time, the program makes efficient use of modern computing hardware for a large
variety of different computer architectures. It is executed in parallel, which reduces the response
time significantly [2]. The lack of accurate force fields for industrially relevant molecules was
addressed by many groups [3–13]. Recent efforts of our group in that field [7] resulted in a sys-
tematic approach for the development of such models using Lennard-Jones (LJ) type force fields
with superimposed electrostatic sites. Quantum mechanical (QM) ab initio calculations were
employed to determine the geometry and the permanent electrostatics of a molecule. These data
were directly passed on to the molecular force field. The dispersive and repulsive interactions were
modeled by LJ potentials. Their parameters σ and ε were adjusted to vapor-liquid equilibrium
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(VLE) data, namely saturated liquid density, vapor pressure and enthalpy of vaporization of the
pure fluid. This strategy was successfully applied to the development of rigid, non-polarizable
molecular force fields of comparatively small molecules up to the size of cyclohexanol [14].
For larger molecules, which require a larger number of molecular sites, however, the adjustment
of the LJ parameters to VLE data becomes more and more complex and tedious. In such cases,
the model parameter adjustment can be facilitated by automation procedures that execute all
required steps without user interaction [15–17]. In the present work, an automation procedure
was developed, which efficiently supports the user in the parameter adjustment. The parameter-
ization strategy is introduced in Section 2. The process was validated by the development of a
molecular force field for acetonitrile, which is presented in Section 3, while in Section 4, the work
is concluded. Note that a routine that steers the present automated process is publicly available
upon prior registration at http://www.ms-2.de. It is designed for the use with ms2 [2], but can
easily be adapted to other simulation engines.

2 Molecular model properties

The geometry as well as the electrostatics of molecules can routinely be determined by QM
ab initio calculations. A detailed description of a QM based parameterization strategy for the
geometry was reported by Eckl et al. [18], which is summarized here briefly.
The geometry of the molecular models, i.e. bond lengths, angles and dihedrals, is directly passed
on from QM calculations. The geometry optimization is carried out using GAMESS(US) [19]. The
Hartree-Fock level of theory is applied with a relatively small (6-31G) basis set. For determining
the charge distribution of the molecule of interest, the Møller-Plesset 2 level of theory is used that
takes into account electron correlation in combination with the polarizable 6-311G(d,p) basis
set. The calculation of the electrostatic moments for the development of engineering molecular
models is preferably done for a liquid-like state. This is achieved by placing the molecule within
a dielectric continuum and assigning the experimental dielectric constant of the liquid to the
continuum via the COSMO method [20]. From the resulting electron density distribution, point
charges, point dipoles and point quadrupoles are estimated by a simple multipole expansion
in a user-defined position, typically the molecular center of mass. The use of such a multipole
expansion for modeling permanent electrostatics is advantageous, since it allows for a compact
but nonetheless detailed description of the interaction energy from the charge distribution [21].
In many cases, the magnitudes and orientations of the resulting electrostatic interaction sites
are such a good approximation for the charge distribution that they do not require any further
modification.
The dispersive and repulsive interactions between the molecules are usually reduced to pairwise
interactions, which are modeled by the LJ 12-6 potential. This potential relies on two parameters
which cannot be suitably predicted by QM calculations. Typically, both parameters are optimized
with respect to VLE data of the pure fluid, namely saturated liquid density, vapor pressure
and enthalpy of vaporization. Many different procedures are available for a stable and efficient
optimization, e.g. gradient based algorithms [22] or the Gauss-Newton least square estimator [6].
In our group, the optimization is carried out following a scheme by Stoll [23]. For a set of Na

data points ai, the square of the relative deviations ai,rel of simulation results compared to
experimental data is minimized
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Here, the vector m represents the set of Nm model parameters that are subject to optimization.
The relative deviations between experimental data and simulation results are weighted by the
diagonal Na x Na matrix G that individually scales the contributions of each considered property
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ai in the minimization function (1). The functional dependence of the relative error ai,rel on the
model parameter mj is approximated by a first order Taylor expansion developed in the vicinity
of the original parameter set. The required, but a priori unknown, sensitivities Sij = ∂ai,rel/∂mj

are estimated from individual simulations, in which mj is varied. Thus, the resulting solution

m
〈s+1〉 for the linearized optimization problem according to Eq. (1) based on parameter set m〈s〉

is given by

GS
〈s〉∆m

〈s〉 = Ga
〈s〉
rel , (2)

and

m
〈s+1〉 = m

〈s〉 +∆m
〈s〉 , (3)

where S
〈s〉 is the Na x Nm matrix of the sensitivities Sij of the optimized properties on the

model parameters.
On the basis of experimental data aExp, solving the optimization starting problem from a phys-

ically reasonable, initial model m〈1〉 is straightforward: molecular simulation is applied to deter-

mine a
〈1〉
Sim and hence a

〈1〉
rel as well as S

〈1〉. From Eqs. (2) and (3), the solution m
〈2〉 is determined.

Repeating the scheme over a certain number of iteration steps results in an optimized molecular
model. The iteration is terminated when a desired accuracy of the model is reached or no sig-
nificant progress is achieved in the iteration scheme. The time required for one iteration, i.e. for
generating the model m〈s+1〉 from model m〈s〉, is dominated by the molecular simulations that

need to be performed for a
〈s〉
Sim and S

〈s〉. It can be reduced by the use of a simulation program
that efficiently exploits multicore computing resources, such as ms2 [2], and by performing all
necessary simulation runs in parallel.
Starting from a physically reasonable model, the present automated algorithm allows for an
user independent execution of all operations required in the optimization process with respect
to experimental VLE data, namely saturated liquid density ρ′, vapor pressure p and enthalpy
of vaporization ∆hv. Note that these data can be reliably measured experimentally over a wide
range of temperature and are hence available in the literature for many industrially relevant
substances [24]. Note also that in molecular simulation, various efficient algorithms are avail-
able, e.g. Gibbs-Ensemble MC [25] and the Grand Equilibrium method [26], to determine VLE
data with low statistical uncertainties. For each iteration step in the parameter adjustment, the
automated tasks are the initiation and evaluation of the performed simulation runs as well as all
actions that are required to prepare and perform the optimization. Technical details are given
in the Appendix.
For the evaluation of the molecular model quality and the optimization of model parameters, all
VLE data determined by molecular simulation are regressed over a temperature range between
the triple point and the critical point. This regression is performed with temperature dependent
fits for the saturated liquid density ρ′, dew density ρ′′ and vapor pressure p following Lotfi et
al. [27]

ρ′ = ρc +D1(Tc − T )1/3 +D2(Tc − T )−D3(Tc − T )3/2 , (4)

ρ′′ = ρc − E1(Tc − T )1/3 + E2(Tc − T )− E3(Tc − T )3/2 , (5)

ln p = C1T − C2/T − C3/T
4 , (6)

where Ci, Di and Ei are model specific constants, which are adjusted to the simulation data.
Employing such functions for the description of simulation data has two advantages: first, they
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allow for an inter- and extrapolation of simulation data ai,Sim, which are typically determined for
few discrete temperatures only, to a wide range of temperatures, where experimental reference
data are available. This also includes an extrapolation of simulation data to properties that are
not directly accessible, such as critical data, so that these can be included in the investigation
of the fluids. The second advantage is that the scatter in the simulation data due to statistical
uncertainties are smoothed by the regression functions. This allows for the determination of a

continuous sensitivity S
〈s〉
ij of property a

〈s〉
i,rel on m

〈s〉
j over the entire range of studied temperatures

and hence, for a more accurate estimation of the optimized parameter set m〈s+1〉.
The automated execution of all tasks facilitates the molecular model parameter adjustment
significantly. An alternative manual execution of the iteration steps is tedious, time consuming
and, hence, often leads to an unsystematic exploration of the parameter space. The stopping
criterion is often not the optimal solution of Eq. (1), but determined by a simple time out.
However, note that due to the automated execution of all required tasks for one iteration step,
problems may occur which are related to the physical nature of the studied problem; e.g. it is
not guaranteed that each parameter set m〈s〉 that is studied during the optimization yields all
experimental target data aExp at the conditions of interest. E.g., for a certain parameter set,
VLE may not be present at a given temperature, if the critical temperature of the model is too
low. During this automation, such data are excluded according to specific criteria.

3 Case study: Acetonitrile

A force field for acetonitrile was developed to test the applicability and efficiency of the present
automation process introduced above. All required simulations were performed with the simu-
lation program ms2 [2], which determines VLE data with the Grand Equilibrium method [26].
Technical details on the simulations are given in the Appendix. However, note that these simula-
tion details with respect to the sampling have to be specified appropriately, e.g. when molecules
are regarded that are more demanding than acetonitrile.
Following the united-atom approach, acetonitrile was modeled by three LJ sites with one su-
perimposed point dipole. The geometry of acetonitrile was taken from preceding work [18], cf.
Figure 1 and Table 1, that used the QM based procedure mentioned above. The electrostatic
interactions were determined from the electron density distribution at discrete positions and a
multipole expansion. This led to a single point dipole located at a distance of 0.695 Å from
the nitrogen atom shifted towards the carbon atom, cf. Table 1. The dipole was oriented with
its positive end towards the methyl site. Throughout the study, the internal molecular degrees
of freedom were neglected. This assumption is reasonable for acetonitrile, since the molecule is
small enough to show only a minor dependence of its thermodynamic properties on its internal
motions. The complete force field thus writes as

uij =

NS,i
∑

k=1

NS,j
∑

l=1

4εkl

(

(
σkl
rkl

)12 − (
σkl
rkl

)6
)

+
1

4πǫ0

µiµj

r3ij

(

sin θi sin θj cosφij − 2 cos θi cos θj
)

, (7)

where rkl is the distance between two LJ sites k and l of the interacting molecules, θi is the
angle between the dipole direction and the distance vector of the two interacting dipoles and φij

is the azimuthal angle of the two dipole directions. σkl and εkl denote the LJ parameters. Note
that throughout this study, the Lorentz-Berthelot [28, 29] combining rules were applied for the
interactions between unlike LJ sites.
The parameter set for the LJ interaction sites of the nitrogen atom and of the methyl group,
i.e. Nm = 4 parameters, were subject to optimization with respect to VLE data of the pure
fluid, namely saturated liquid density ρ′, vapor pressure p and enthalpy of vaporization ∆hv.
The accuracy of the molecular model required after a successful optimization, i.e. the average
of the absolute values of the relative deviations for each property between experimental data
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and simulation results using the optimized model, were specified to be not larger than 1% for
ρ′, 5% for p and 10% for ∆hv over the temperature range 0.6 < T/Tc,Exp < 0.99, where Tc is
the critical temperature of acetonitrile. Note that the LJ parameters of the third site, i.e. the
carbon site, showed hardly any effect on the VLE properties in an earlier study [18] and were

thus assumed constant here [18]. The value of σC = 2.81 Å and εC/kB = 10.64 K as proposed
by Eckl et al. [18] were used.
In this study, experimental VLE data were obtained via correlations of experimental measure-
ments from the literature [24]. VLE data were obtained by simulation at five temperatures
(NT = 5) explicitly, namely at 270, 360, 420, 490 and 518 K. These results were regressed ac-
cording to Lotfi et al. [27] so that data in the temperature range of 0.6 < T/Tc < 0.99 was
available. The regression functions for the VLE data were evaluated in intervals of 2 K in the
studied temperature range, i.e. for NT,corr temperatures, and compared to experimental data.
The weighting factors for the individual properties were set to one for ρ′, four for p and 14 for
∆hv. These values were chosen to reflect the accuracies that were demanded on the optimized
model for each investigated VLE property type, i.e. they define what can be expected from the
model. They have been successfully employed in numerous studies, e.g. to describe cyclohex-
anol [14], and showed a fast convergence of the cost function.
Hence, the explicit form of the optimization problem that had to be solved in the present model
development was
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(8)

Following the approach of Stoll [23] for solving Eq. (8), the sensitivity of the observables with
respect to the model parameters ∂ai,rel/∂mj was determined by variations of 2% of the LJ size
parameter σ and 5% of the LJ energy parameter ε. VLE data for the current model and all Nm

model variations that were required for the calculation of the sensitivities Sij were determined
simultaneously throughout the model development. Hence, an overall of NT · (Nm + 1) VLE
simulation runs were executed in parallel for each iteration, i.e. 5× 5 = 25 simulation runs.
Note that the uncertainty of the cost function Eq. (8) is dependent on the accuracy of the
performed simulations and hence the quality of the regression functions that correlate the data.

3.1 Optimization pathway

The initial parameter setm
〈1〉
C2H3N for acetonitrile was taken from previous work by Eckl et al. [18].

However, since the electrostatic sites of the acetonitrile model were changed, these parameters
were not expected to yield good results. The initial force field underpredicted the experimental

saturated liquid density significantly, cf. Figure 2. Based on the results for model m
〈1〉
C2H3N and

the sensitivity calculations, a new model m
〈2〉
C2H3N for acetonitrile was generated, which showed

significant changes for the LJ size parameter of the methyl group and of the nitrogen atom (cf.
Figure 3). The LJ energy parameters were altered to slightly smaller values.

VLE data calculated with m
〈2〉
C2H3N show an improvement for all considered properties, especially

for the saturated liquid density and the vapor pressure. This is most evident in terms of the

critical data, which increased from 80% (m
〈1〉
C2H3N) to 95% of the experimental critical temper-

ature and from 25% (m
〈1〉
C2H3N) to 83% of the experimental critical pressure. However, m

〈2〉
C2H3N

still underestimated the target data systematically. Looking at the main contributions for the

further optimization, the cost function (8) of m
〈2〉
C2H3N was still dominated by the lack of a phase
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transition at high temperatures, cf. Table 2.

The subsequent model m
〈3〉
C2H3N reproduced the saturated liquid density well, while the vapor

pressure and the enthalpy of vaporization showed deviations of 7% and 5%, respectively. Looking
at the cost function, cf. Table 2, the pressure at low temperatures became the most outlying
quantity. This was expected, since the vapor pressure is a very sensitive property, especially at

low temperatures. Based on model m
〈3〉
C2H3N, only slight changes of the parameters were made

for minimizing the cost function (8) and hence obtaining a new molecular model.

Model m
〈4〉
C2H3N reproduced the vapor pressure with a higher accuracy. However, this improve-

ment corrupted the preceding good agreement for the saturated liquid density. With m
〈5〉
C2H3N,

a good agreement for the vapor pressure and the saturated liquid density at low temperatures
was achieved, while the behavior at high temperatures was not well reproduced.

With model m
〈6〉
C2H3N, the overall deviations from experimental data were determined to be 0.5%

for the saturated liquid density, cf. Figure 4, 4.9% for the vapor pressure, cf. Figure 5, and 3.7%
for the enthalpy of vaporization, cf. Figure 6. The accuracy of these data was already within the
specification for the optimization. This shows that a successful model parameter optimization
can be performed automatically. Note here that the cost function was monotonically falling,

except for model m
〈4〉
C2H3N, although the variations of the molecular model parameters seem to

be arbitrary for each iteration step, cf. Figure 3.
To test whether even better results can be achieved, the automation was continued. This led

to model m
〈7〉
C2H3N, which showed large deviations for all considered VLE properties. Such a

behavior was expected, since close to the minimum of the cost function, the sensitivity of the
parameters on the reference observables is small. It is well known that gradient based algorithms
show difficulties predicting better parameter sets under such conditions [22].

Performing an additional iteration, the model m
〈8〉
C2H3N again described the VLE data with the

specified accuracy, cf. Figures 4 to 6. The quality of m
〈8〉
C2H3N is similar to the one of model

m
〈6〉
C2H3N, although the model parameters differ significantly. This shows that there are various

parameter sets that solve the optimization problem. Furthermore, it shows that the optimization
scheme proposed here, is convergent from different physically reasonable parameter sets.
Note that all results discussed above were obtained with simulation runs containing 500 molecules

in the liquid phase and 864 molecules in the vapor phase, cf. Appendix B. The models m
〈6〉
C2H3N

and m
〈8〉
C2H3N, however, were further assessed with simulations containing 1372 molecules in the

liquid phase and again 864 molecules in the vapor phase. The results obtained with these simu-
lations confirmed the quality of these models.

3.2 Final molecular model

A molecular model for acetonitrile based on the LJ approach with a superimposed dipole was
developed. The geometry of the molecule and its electrostatics were calculated by ab initio QM,
while four LJ parameters were adjusted to experimental VLE data of the pure fluid [24] using
an automated optimization procedure. This resulted in two parameter sets that reproduce the
experimental data according to the specifications. Note that of both the parameter sets are given
in Table 1.
The molecular model m

〈6〉
C2H3N reproduces the experimental reference data with average devia-

tions of 0.5%, 4.9% and 3.7% for saturated liquid density ρ′, vapor pressure p and enthalpy of

vaporization ∆hv over a temperature range 0.6 < T/Tc,Exp < 0.99. For model m
〈8〉
C2H3N, the

according deviations are 0.1%, 4.7% and 3.9%. The agreement with the experiment for both of
these molecular models is hence superior in comparison to the one reported by Eckl et al. [18].

The critical data for acetonitrile determined by molecular simulation with models m
〈6〉
C2H3N and

m
〈8〉
C2H3N match with the experimental data excellently, cf. Figures 4 to 6. The critical density



June 22, 2012 7:34 Molecular Simulation Paper˙Deublein

7

from simulation deviates from measurements [30, 31] by roughly 2%, being 5.61 mol/l for both

m
〈6〉
C2H3N and m

〈8〉
C2H3N, where the experimental value is 5.78 mol/l. The critical temperature is

within 0.4% and 0.1% of the experimental value of 545.46 K [30, 31] and the vapor pressure

within 1.6% and 1.4% of the experimental value of 4.83 MPa [31, 32] for model m
〈6〉
C2H3N and

m
〈8〉
C2H3N, respectively.

Based on these results, both models can be applied in predictive calculations of thermodynamic

properties. Nevertheless, the use of model m
〈8〉
C2H3N is recommended, since it best solves the

optimization problem, cf. Eq. (8).

4 Conclusion

An automated procedure was presented for the parameter optimization of molecular models
based on the LJ approach with superimposed point charges to experimental VLE data. It was
developed and tested in combination with the simulation program ms2, the Grand Equilibrium
method for the calculation of VLE data and an optimization algorithm proposed by Stoll [23], but
it can be easily adapted to other simulation programs and optimization schemes. The parameter
optimization is fast in terms of model development time and requires no user interaction. The
automation works in a Linux environment and requires no commercial software installation.
The functionality of the automation and the convergence of the optimization scheme according
to Stoll [23] was shown for acetonitrile. Thereby, a new molecular model for acetonitrile was
developed that reproduces the VLE data of this pure fluid with a high accuracy.
The automation algorithm is publicly available upon prior registration on http://www.ms-2.de.

Acknowledgements

The authors gratefully acknowledge financial support by the BMBF ”01H08013A - Innovative
HPC-Methoden und Einsatz für hochskalierbare Molekulare Simulation” and computational
support by the Steinbuch Centre for Computing under the grant LAMO and the High Perfor-
mance Computing Center Stuttgart (HLRS) under the grant MMHBF. The present research
was conducted under the auspices of the Boltzmann-Zuse Society of Computational Molecular
Engineering (BZS).

Appendix A - Automation details

The automation procedure presented here was developed for the optimization of molecular model
parameters with respect to VLE data, namely saturated liquid density, vapor pressure and en-
thalpy of vaporization of the pure fluid. During the optimization, no interaction with the user
is required.
The employed algorithms were specifically designed for the use of external computing resources
(ECR) for the time consuming molecular simulation runs, e.g. at computing centers. All remain-
ing process steps are executed on a local computing resource (LCR) in order to avoid difficulties
imposed by constraints on the ECR, such as maximum disc space, missing permissions for the
automated execution of programs, maximum run time, etc. The connection between LCR and
ECR was realized via the secure shell approach (ssh) and public key authorization, the common
route for login on external information technology resources.
Currently, the automation algorithm makes use of the simulation program ms2 [2], which de-
termines VLE data with the Grand Equilibrium method [26]. ms2 exploits current multicore
computing hardware by an efficient parallelization of simulations with the molecular dynamics
(MD) as well as the Monte-Carlo (MC) technique. However, an adaption of the automation
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to other optimization schemes, e.g. steepest gradient [22], other simulation methods, e.g. the
widely used Gibbs-Ensemble-MC method [33], or other programs, e.g. MCCCS Towhee [34], is
straightforward.
The structure of the automation is illustrated in Figure 7. The different tasks are divided into
two executables: Autochecker and Optimization.sh. In both files, intrinsic Linux functions were
used, thus no proprietary software is required.
The first executable Autochecker contains all algorithms that are required to transfered data
from LCR to ECR and vice versa. The execution of these task relies on the scp command, which
is based on the secure shell approach. In addition, Autochecker contains algorithms to man-
age the molecular simulation runs that are executed on the ECR remotely triggered from the
LCR, i.e. molecular simulations are initiated and checked with respect to their execution status.
The checks are performed in regular time intervals, taking advantage of the Linux concept of
crontabs1. The time span between two checks is recommended to be less than one hour. Using
ms2 for the molecular simulations, a simulation run has terminated, if the simulation run restart
file (*.rst) has been created. Applying other simulation programs, the tag for termination has
to be replaced, which can straightforwardly be done in Autochecker.
The second executable Optimization.sh is a bash script that focuses on the optimization of the
model parameters based on the simulation results and the experimental target data. This script
employs resources on the LCR only so that no connection with the ECR has to be established.
The most important tasks initiated by Optimization.sh are: extraction of the relevant data
from the simulation result files, evaluation of that data with respect to the experimental data
aExp, data storage, optimization of the model parameters and termination of the entire process.
Note that most of the algorithms required for these tasks are stored in separate files so that
the Optimization.sh file has a modular structure. This approach allows for a straightforward
modification, which is necessary when using other simulation programs rather than ms2 or when
using a different optimization algorithm.
VLE data are extracted from the simulation result files using the Perl script res2vledata, which
is designed for the simulation result file format generated by ms2. All data are summarized in
a tabular form in an ASCII file labeled V LEDATA. For each force field sampled during opti-
mization, such a file is generated. The pooled data as well as the raw information are stored in
a directory for documentation.
The V LEDATA files form the basis for the evaluation of the quality of the employed parameter
set as well as the parameter optimization. The result of the optimization, i.e. the optimized force
field parameters, is written to the potential model file in ms2 format (*.pm). Additionally, all
parameter sets required for the subsequent optimization step are generated.
The optimization algorithm itself is implemented in MATLAB R2009b2. For an automated exe-
cution initiated by the script Optimization.sh, the algorithm has to be translated into standard
C code using the commercial MATLAB-C converter of the MathWorks group, since native m-
code can not be called by Linux bash scripts. Throughout the ongoing optimization process, the
quality of the current parameter set as well as the expected quality of the optimized molecular
model are plotted along with the experimental target data and stored in encapsulated postscript
format for analysis and documentation. Note that for the use of the automation procedure, the
freely accessible MATLAB runtime environment is sufficient. A MATLAB license is only required
for changes of the optimization scheme.

Appendix B - Automation input and output

Only at the beginning of the automation process, user interaction is required. The user has to set
up the simulation conditions, to specify the set of molecular model parameters that are consid-

1http://www.crontab.org
2The MathWorks, Inc.
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ered for optimization, together with their initial values, and to assign the computing resources
where the simulation runs are to be executed. The according basic data are specified in form of
two ASCII files:
ControlData.dat : This file contains all information with respect to the optimization process, i.e.
the number of parameters that are considered for parameterization, the current status of the
parameterization, the current iteration step and the number of temperatures at which VLE data
are simulated.
DirectoryPath: This file contains the information about the ECR, i.e. login name and directory
path, where the simulations are executed.
The parameter set considered for adjustment is specified directly in the potential model file. The
parameters are marked by the tag “#adjust“.
Apart from these data, the model optimization runs fully independently. User interference may
occur, however, at any time during the parameter optimization if wanted. I.e., the user may
extend the scope of adjustable parameters within an ongoing optimization process by simple
declarations.
The automation logs all important information throughout the process into one output file called
auto log. I.e., the current status of the parameterization is written to that file as well as the num-
ber of terminated simulation runs over time. Furthermore, detailed information is given upon
possible errors that occurred in a simulation step as well as after the successful termination of
the entire parameterization process.
Visually, the optimization process is logged in the form of plots of the simulation results together
with the experimental target data. These plots cover the full range of simulated temperatures for
saturated liquid density, vapor pressure and enthalpy of vaporization. The plots are generated
during the optimization process in MATLAB format and are converted automatically into en-
capsulated postscript format. In addition to the simulation data, each plot contains the expected
quality of the optimized parameter set.

Appendix C - Simulation details

In this work, the Grand Equilibrium method [26] was used for VLE calculations. To determine the
chemical potential in the liquid, gradual insertion [35, 36] was used for temperatures T < 360 K,
while for higher temperatures, Widom’s test molecule method [37] was applied. For gradual
insertion, MC simulations in the NpT ensemble were performed using 500 molecules. Starting
from a face-centered cubic lattice, 3,000 MC cycles were sampled for equilibration with the
first 1,000 time steps in the canonical (NV T ) ensemble and 20,000 for production, each cycle
containing 500 displacement moves, 500 rotation moves and 1 volume move. Every 100 cycles,
15,000 fluctuating state change moves, 15,000 fluctuating particle translation/rotation moves
and 75,000 biased particle translation/rotation moves were performed to determine the chemical
potential. For Widom’s test molecule method, MD simulations were performed. Again starting
from a face-centered cubic lattice, 25,000 time steps were sampled for equilibration with the
first 5,000 time steps in the canonical (NV T ) ensemble. The production run was performed for
200,000 steps. The time step was set to 1.2 fs, the integrator used in this study was the Gear-
predictor corrector. The chemical potential using Widom’s test molecule method was determined
by inserting 2,000 virtual molecules into the simulation volume and averaging over all results.
For the corresponding vapor, MC simulations in the pseudo-µV T ensemble were carried out.
The simulation volume was adjusted to lead to an average number of 500 molecules in the vapor
phase. After 1,000 initial NV T MC cycles, starting from a face centered cubic lattice, 5,000
equilibration cycles in the pseudo-µV T ensemble were performed. The length of the production
run was 40,000 cycles. One cycle is defined here to be a number of attempts to displace and
rotate molecules equal to the actual number of molecules plus two insertion and two deletion
attempts.
Thermodynamic properties were determined in the production phase of the simulation on the
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fly. The statistical uncertainties of all results were estimated by block averaging according to
Flyvbjerg and Petersen [38] and the error propagation law.
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Table 1. Molecular model parameters for acetonitrile. The dipole moment magnitude was set to µ = 4.04 D, its negative end was

oriented towards the nitrogen atom.

Unit CH3 C N Dipole

x Å 0 0 0 0

y Å 0 0 0 0

z Å -1.29 0.05 1.15 0.46

m
〈6〉
C2H3N

σ Å 3.88 2.81 3.27 -
ε/kB K 184.31 10.64 43.19 -

m
〈8〉
C2H3N

σ Å 3.82 2.81 3.37 -
ε/kB K 180.58 10.64 58.58 -
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Table 2. Contributions to the cost function (8) at various temperatures for the individual models m
〈s〉
C2H3N

. The last row contains

the total cost function over the entire property and temperature range from 0.6 < T/Tc < 0.99.

Quantity T / K
m

〈s〉
C2H3N

s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8
270 0.3 1.6 0.1 0.3 0.0 0.0 1.1 0.0

360 0.9 2.5 0.2 1.1 0.1 0.0 1.3 0.0
(

ρ′
Exp−ρ′

Sim

ρ′
Exp

)2
420 3.6 5.6 0.1 1.3 0.1 0.0 2.0 0.0

490 ∞ 16.6 0.2 3.1 0.5 0.0 3.5 0.0

518 ∞ ∞ 0.6 0.7 2.3 0.2 6.3 0.0

270 1.9 1.8 10.3 6.2 5.6 10.2 16.9 4.9

360 12.0 5.9 0.5 0.1 0.5 0.2 3.4 0.5

103
(

pSim−pExp

4pExp

)2
420 12.7 7.1 0.2 0.2 0.0 0.0 1.5 0.3

490 ∞ 4.5 0.1 0.1 0.3 0.0 0.7 0.0

518 ∞ ∞ 0.0 0.0 0.2 0.1 0.2 0.0

270 0.3 0.7 7.8 9.8 3.9 4.7 8.1 4.3

360 0.7 0.4 1.3 0.2 0.6 1.3 4.8 2.0

105
(

∆hv,Sim−∆hv,Exp

(14∆hv,Exp

)2
420 8.6 6.3 0.1 0.3 0.0 0.0 3.1 0.8

490 ∞ 23.6 1.0 2.2 2.8 0.1 3.2 0.0

518 ∞ ∞ 1.5 1.0 6.1 0.8 5.1 0.0

10 * Total - - 0.7 1.6 1.4 0.3 5.1 0.3
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Figure 1. Structure of the molecular acetonitrile model. The arrow indicates the point dipole, located at the bullet.
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Figure 2. Absolute deviations between simulation results and experimental data [24] as a function of iterations for various
temperatures: (•) 270 K, (H) 420 K and (⋆) 518 K. Top: saturated liquid density ρ′, center: vapor pressure p, bottom:
enthalpy of vaporization ∆hv. Error bars indicate the statistical uncertainty of the simulation data, if they exceed symbol
size. Data points that are out of scale are not shown.
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Figure 3. Relative deviations between the LJ size parameter σ and the LJ energy parameter ε from the values of

model m
〈6〉
C2H3N

over iteration steps: (N) CH3 site and (•) nitrogen site. The lines are guides for the eye.
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Figure 4. Saturated densities of acetonitrile for various temperatures. Simulation data for (N) model m
〈6〉
C2H3N

and (•)

model m
〈8〉
C2H3N

are compared to (×) experimental data and (—) the DIPPR correlation [24]. The critical point is denoted
by empty symbols, the experimental value is denoted by ♦. The statistical uncertainties of the simulation data are within
symbol size.
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Figure 5. Vapor pressure of acetonitrile for various temperatures. Simulation data for (N) model m
〈6〉
C2H3N

and (•) model

m
〈8〉
C2H3N

are compared to (×) experimental data and (—) the DIPPR correlation [24]. The critical point is denoted by
empty symbols, the experimental value is denoted by ♦. The statistical uncertainties of the simulation data are within
symbol size.
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Figure 6. Enthalpy of vaporization of acetonitrile for various temperatures. Simulation data for (N) model m
〈6〉
C2H3N

and (•)

model m
〈8〉
C2H3N

are compared to (×) experimental data and (—) the DIPPR correlation [24]. The critical point is denoted
by empty symbols, the experimental value is denoted by ♦. The statistical uncertainties of the simulation data are within
symbol size.
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Figure 7. Schematic of the individual steps required for the optimization of a molecular model. The tasks in the boxes are
performed by the automation, the employed programs are denoted in italics. The text along the arrows indicates data that
are transfered between the steps.


