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The curvature dependence of the surface tension is related to the excess equimolar radius of
liquid drops, i.e., the deviation of the equimolar radius from that defined with the macroscopic
capillarity approximation. Based on the Tolman [J. Chem. Phys. 17, 333 (1949)] approach and its
interpretation by Nijmeijer et al. [J. Chem. Phys. 96, 565 (1991)], the surface tension of spherical
interfaces is analysed in terms of the pressure difference due to curvature. In the present study, the
excess equimolar radius, which can be obtained directly from the density profile, is used instead of
the Tolman length. Liquid drops of the truncated-shifted Lennard-Jones fluid are investigated by
molecular dynamics simulation in the canonical ensemble, with equimolar radii ranging from 4 to
33 times the Lennard-Jones size parameter σ. In these simulations, the magnitudes of the excess
equimolar radius and the Tolman length are shown to be smaller than σ/2. Other methodical
approaches, from which mutually contradicting findings have been reported, are critically discussed,
outlining possible sources of inaccuracy.

PACS numbers: 05.70.Np, 68.03.-g, 05.20.Jj, 68.03.Cd

I. INTRODUCTION

The macroscopic capillarity approximation consists in
neglecting the curvature dependence of the surface ten-
sion γ of a spherical liquid drop. Accordingly, the surface
tension of a curved interface in equilibrium is approxim-
ated by the value γ0 in the zero-curvature limit, i.e., for a
planar vapour-liquid interface. The Young-Laplace equa-
tion [1–3] for spherical interfaces relates the macroscopic
surface tension to a characteristic radius Rκ of the liquid
drop

γ0
Rκ

=
1

2
(p′ − p′′) = ϕ, (1)

which will be referred to as the capillarity radius here.
Both the factor 1/Rκ and the difference between the li-
quid pressure p′ and the vapour pressure p′′ characterize
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the extent by which the surface is curved; the notation
ϕ = (p′−p′′)/2 for half of the pressure difference is intro-
duced for convenience. At equilibrium, the temperature
is the same for both phases, and the pressures p′ and
p′′ correspond to states with the same chemical poten-
tial. The surface tension γ0 of the planar vapour-liquid
phase boundary, which is relatively easy to access exper-
imentally, couples these two measures of curvature as a
proportionality constant.

In combination with an equation of state for the bulk
fluid, microscopic properties such as the radius of a small
liquid drop can thus be deduced from the macroscopic
state of the surrounding vapour, i.e., from its supersat-
uration ratio, and vice versa. This approach is the most
widespread interpretation of the Gibbs theory of inter-
faces [4, 5], and it is the point of departure for the clas-
sical nucleation theory (CNT) as introduced by Volmer
and Weber [6] and further developed by Farkas [7] as
well as subsequent authors [8–10]. With the Gibbs ap-
proach one presumes a sharp dividing surface between
the phases, a conceptual picture that does not reflect
the physical phenomena present at the molecular length
scale. However, this abstraction is precisely its strength.
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Instead of discussing thermodynamic properties such as
the density, the pressure tensor and the free energy dens-
ity in a localized way, interfacial excess quantities can be
assigned to the formal dividing surface as a whole.

It should be recognized that significant size effects on
interfacial properties had already been detected experi-
mentally by Weber [11] at the turn of the last century.
This was also known to Farkas [7] who stated explicitly
that the capillarity approximation should be expected
to fail for radii at the length scale of the intermolecular
interactions. In the absence of a better approximation,
however, the surface tension of the planar phase bound-
ary had to be used for nucleation theory, and little has
changed in this respect in the meantime.

In case of significant deviations from the macroscopic
capillarity approximation, liquid drops cannot be charac-
terized sufficiently by a single effective radius. Instead,
the capillarity radius Rκ is distinct from the equimolar
radius Rρ, which is also known as the Gibbs adsorp-
tion radius. For a single-component system, the latter
is defined by the zero excess density criterion

∫ Rρ

0

dz z2 [ρ(z)− ρ′(µ, T )]

+

∫ ∞

Rρ

dz z2 [ρ(z)− ρ′′(µ, T )] = 0, (2)

i.e., by comparing a step function based on the bulk li-
quid and vapour number densities ρ′(µ, T ) and ρ′′(µ, T )
as functions of the chemical potential µ and the temper-
ature T , respectively, with the microscopic radial density
profile ρ(z). By convention, the density ρ corresponds
to the number of particles per volume here, rather than
their mass, and z denotes the distance from the centre
of mass of the liquid drop. In the following discussion,
T is treated as a parameter (instead of a variable), so
that total differentials are to be understood as partial
differentials at constant temperature.

For curved interfaces in equilibrium, the chemical po-
tential deviates from its saturated value µs for a flat in-
terface. In case of a drop, both phases are supersat-
urated. To realize this, it is sufficient to consider the
Gibbs-Duhem equation for a curved phase boundary

d (p′ − p′′) = (ρ′ − ρ′′) dµ. (3)

For a planar interface, both phases coexist at the satur-
ation condition (µ = µs) and the pressure difference is
zero. Raising the value of the liquid pressure p′ over the
vapour pressure p′′ therefore increases the chemical po-
tential µ, which must be equal for both phases in (stable
or unstable) equilibrium, so that its value for a system
with a liquid drop will exceed µs. The precise conditions
can be determined from the pressure difference between
the fluid phases by means of an equation of state.

Beside Rκ and Rρ, a thermodynamically relevant defin-
ition of the liquid drop size is given by the surface of
tension radius

Rγ =
γ

ϕ
, (4)

which is also known as the Laplace radius. It can be ob-
tained by inserting the actual value of the surface tension
γ of the system with the curved interface (not the planar
limit value) into the Young-Laplace equation. This ra-
dius can be related to the surface area a and to the
volume V of the drop

Rγ da = 2 dV. (5)

The excess grand potential Σ of the surface thus evalu-
ates to

Rγ dΣ = 2γ dV, (6)

in terms of the surface tension

γ =
dΣ

da
. (7)

Modified versions of the Young-Laplace equation, which
allow for the use of different radii in an analogous way,
were introduced by Buff [12, 13] and Kondo [14].

The present study deals with the deviation between
the capillarity radius Rκ, the equimolar radius Rρ and
the surface of tension radius Rγ of a liquid drop in equi-
librium with a supersaturated vapour. As Tolman [15–
17], following Gibbs, showed on the basis of axiomatic
thermodynamics, one of these differences, now commonly
referred to as the Tolman length

δ = Rρ −Rγ , (8)

is sufficient to characterize the curvature dependence of
the surface tension [17]

d lnRγ

d ln γ
= 1 +

1

2

(

δ

Rγ
+

[

δ

Rγ

]2

+
1

3

[

δ

Rγ

]3
)−1

. (9)

It is important to point out that this relation is exact,
strictly following the approach of Gibbs, i.e., without neg-
lecting any of the higher-order curvature terms. The cu-
bic expression derives from an integral over the spherical
density profile. However, Eq. (9) is often transformed
into a polynomial expansion for γ0/γ, which contains an
infinite number of terms and has to be truncated, e.g.,
after the second-order contribution in terms of curvature
[18]

γ0
γ

= 1 +
2δ0
Rγ

+ 2

(

λ

Rγ

)2

+O
(

R−
γ

)

. (10)

Here, δ0 is the Tolman length in the zero-curvature (in-
finite radius) limit. Castellanos et al. [19] have conjec-
tured that «the Tolman length is related to the interfacial
width ∆σ according to ∆σ ≈ 2δ.» The Block length λ,
which characterizes the effect of Gaussian curvature that
becomes predominant when δ is very small or for systems
where, due to an inherent symmetry, δ = 0 holds by con-
struction, has recently been investigated by Block et al.

[18]; a similar leading term, proportional to R−2
γ lnRγ ,
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has also been deduced by Bieker and Dietrich [20] from
DFT based on a Barker-Henderson perturbation expan-
sion.

One should keep in mind that the Tolman equation
as given by Eq. (9) is valid for curved phase boundaries
of pure fluids in general, whereas truncated polynomial
expansions in terms of the curvature 1/Rγ like Eq. (10)
necessarily break down for liquid drops at the molecu-
lar length scale. In practice, one of the major problems
of the Tolman approach is that it analyses the surface
tension in terms of the radii Rρ and Rγ . While Rρ can
be immediately obtained from the density profile, Rγ is
by definition related to γ itself. Since for highly curved
interfaces the value of γ is disputed or unknown [21, 22],
the surface of tension radius Rγ is correspondingly un-
certain.

To resolve this issue, we reformulate Tolman’s theory
in terms of Rκ and Rρ. This leads to greater transpar-
ency, since the capillarity radius Rκ can be obtained on
the basis of the surface tension in the planar limit γ0,
which is experimentally accessible, and properties of the
(stable and metastable) bulk fluid. It is related to the
pressure difference between the coexisting phases in equi-
librium, which is a bulk property as well, since it can be
determined from µ and T with an equation of state for
the fluid. All information on the molecular structure of
the curved interface can thus be captured by a single
undisputed quantity here, namely the equimolar radius
Rρ.

For this approach, the excess equimolar radius, defined
as

η = Rρ −Rκ, (11)

plays a role similar to the Tolman length, and the mac-
roscopic quantity ϕ is used instead of 1/Rγ as a measure
of the influence of curvature on the thermophysical prop-
erties of the interface and the bulk phases. In this way,
the thermodynamics of liquid drops are discussed by fol-
lowing a new route that relies on the density profiles and
bulk properties only, avoiding the intricacies of defining
the pressure tensor or the change in the surface area as
required by other approaches.

The present method is related to the «direct determin-
ation» of δ0 proposed by Nijmeijer et al. [23], as recently
applied by van Giessen and Blokhuis [24] on the basis of
a representation of ϕRρ over 1/Rρ with

− δ0 =
1

γ0

(

lim
Rρ→∞

d

d(1/Rρ)
ϕRρ

)

, (12)

as depicted in Fig. 1. However, the implementation sug-
gested here is methodologically different from that of van
Giessen and Blokhuis which relies on a pressure tensor to
obtain ϕ, whereas in the present work, the pressure dif-
ference is determined by molecular dynamics (MD) sim-
ulation of the bulk fluids. Applying the definitions of the
capillarity radius and the excess equimolar radius, Eq.

Figure 1. Representation of van Giessen and Blokhuis [24],
showing ϕRρ as a function of the equimolar curvature 1/Rρ

for liquid drops of the truncated-shifted Lennard-Jones fluid
at T = 0.9 ε/k, where the equimolar radius Rρ is determined
from the density profiles and ϕ from the difference between
the values of the normal component of the Irving-Kirkwood
pressure tensor in the homogeneous regions inside the liquid
drop as well as outside, i.e., in the homogeneous supersatur-
ated vapour. In comparison with the results of van Giessen
and Blokhuis (�), the data of Vrabec et al. [25] (◦), which
were obtained by the same method, are included here along
with a data point (△) where ϕ is determined by MD sim-
ulation of the homogeneous fluid. The data for the planar
surface tension γ0 are taken from simulations of Vrabec et al.

(•) and van Giessen and Blokhuis (�) as well as the correla-
tion of Vrabec et al. (N). The continuous lines are guides to
the eye: In the planar limit, a positive slope corresponds to a
negative Tolman length and vice versa, cf. Eq. (12).

(12) transforms to

− δ0 = lim
Rρ→∞

d(Rρ/Rκ)

d(1/Rρ)
= lim

Rρ→∞

d(η/Rκ)

d(1/Rρ)
, (13)

facilitating an analysis of interface properties in terms of
the radii Rκ and Rρ as well as the deviation η between
them.

This article is structured as follows: In Section II, a re-
view is made of the available routes to the Tolman length
and the surface tension by molecular simulation. MD
simulation methods immediately related to nucleation it-
self, from which information of the excess free energy of
curved interfaces can also be deduced [26–29], are not
included in that discussion; in this regard, the reader is
referred to Chkonia et al. [30]. Section III is dedicated to
a brief outline of how Tolman’s thermodynamic approach
can be transformed by analysing the surface tension in
terms of η and ϕ rather than δ and 1/Rγ. The meth-
odology and the results of a series of canonical ensemble
MD simulations, where the excess equimolar radius is ob-
tained solely on the basis of density profiles, are presented
in Section IV. An interpretation of these results is given
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in Section V, placing the present findings in the context
of the multitude of mutually contradicting hypotheses
proposed in the literature.

II. THE TOLMAN LENGTH FROM

MOLECULAR SIMULATION

A. Analysis of the planar interface

For the planar interface, the definition of the Tol-
man length given by Eq. (8) ceases to be applicable, as
the surface of tension radius Rγ becomes ill-defined in
the absence of curvature, since the pressure is equal on
both sides of the interface in this case. Therefore, the
planar interface Tolman length δ0 necessarily has to be
derived from considerations pertaining to curved geomet-
ries. It can be obtained either by extrapolating results
for δ to the macroscopic limit ϕ → 0 (i.e., Rγ → ∞) or
by constructing the limit explicitly from expressions for
the radii Rρ and Rγ . The latter approach was followed
by Fisher and Wortis [31] who, on the basis of Landau
(square-gradient) theory, derived the relation

− δ0 =

(
∫ z=∞

z=−∞

dρ0(z)
dρ0(z)

dz

)−1 ∫ z=∞

z=−∞

dρ0(z)
dρ0(z)

d ln z

+
1

∆ρ

∫ z=∞

z=−∞

dρ0(z) z, (14)

in terms of the density profile ρ0(z) of the planar inter-
face. This expression can also be extended to account
for the pair density profile, whereby Eq. (14) becomes a
limiting case [32, 33].

The available computational methods for evaluating
the Tolman length of curved interfaces, however, involve
the determination of the surface tension γ. It is usually
the methodology related to the evaluation of γ that is
both the crucial and the most debatable step, which is
made evident by the contradictory findings for γ (and
consequently also for δ0) obtained from different meth-
ods. Three routes to the surface tension of liquid drops
will now be discussed briefly: the mechanical route as
implemented by Thompson et al. [34], the grand canon-
ical route of Schrader et al. [35] and the variational route
developed by Sampayo et al. [22].

Many different versions and combinations of these ap-
proaches exist [36–38], but it would be inappropriate to
attempt a full appreciation of the complete body of work
here. The reader is directed to the excellent review by
Henderson [39] for a detailed discussion of the underlying
statistical mechanical approaches.

B. The mechanical route

The mechanical route to the surface tension is based
on the Bakker-Buff equation for spherical interfaces [13,

34, 40, 41]

γ = R−2
γ

∫ z=∞

z=0

dz z2 [pn(z)− pt(z)] , (15)

in terms of the normal component pn(z) and the two
(equal) tangential components pt(z) of the diagonalized
pressure tensor, which is considered as a spherical aver-
age, and where the integration is from the centre of the
drop (z= 0). With this relation one expresses the work
required for a reversible isothermal deformation of the
system that leads to an infinitesimal increase of the sur-
face area at constant volume, which coincides with the
associated free energy difference. It is sufficient to com-
pute either the normal or the tangential pressure profile,
since both are related by [34, 42]

dpn
d ln z

= 2 (pt − pn) . (16)

At mechanical equilibrium, Eq. (15) can thus be trans-
formed to [34]

2γ3 = −ϕ2

∫ z=∞

z=0

dpn(z) z
3, (17)

a term in which Rγ no longer appears. The surface of ten-
sion radius Rγ can be obtained from the Young-Laplace
equation once the surface tension γ is known.

The most widespread implementation of this approach
in terms of intermolecular pair potentials makes use of
the Irving-Kirkwood (IK) [43] pressure tensor, which was
first applied to (spherical) interfaces by Buff [13] and un-
derlies the simulation studies of Vrabec et al. [25] as well
as those of van Giessen and Blokhuis [24]. Its normal
component is given by [34, 43]

pn(z) = kTρ(z) +
∑

{i,j}∈S

−
duij

drij

|z · rij |

4πz3 rij
, (18)

wherein k is the Boltzmann constant and the summation
covers the set S containing all sets of particles i and j that
are connected by a line intersecting a sphere of radius z
around the centre of mass. The intersection coordinates
relative to the centre of mass of the liquid drop are rep-
resented by z and the distance between the particles by
rij with rij = |rij |, while −duij/drij is the force acting
between the two particles i and j.

Regarding the mechanical route as described here, vari-
ous issues arise:

• It is not clear to what extent the spherical average
of the pressure tensor succeeds in accounting for the
free energy contribution of capillary waves, i.e., the
excited vibrational modi of the interface [44, 45].

• Irving and Kirkwood [43] originally proposed their
expression for the special case of «a single compon-
ent, single phase system». Its derivation relies on
truncating an expansion in terms of derivatives of
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the pair density ρ(2) after the first term, thereby
disregarding the density gradient completely. For
a liquid drop, this can lead to inaccuracies: «at a
boundary or interface . . . neglecting terms beyond
the first may not be justified» [43].

• By construction, the mechanical route cannot be
separated from the assumption of a mechanical
equilibrium that underlies both the basic approach,
i.e., Eqs. (15) to (16), and the derivation of the IK
pressure tensor, cf. Eq. (18). For nanoscopic liquid
drops, however, configurations deviating from the
equilibrium shape correspond to a significant frac-
tion of the partition function.

• The non-unique nature of the pressure tensor,
which for a planar interface does not have a con-
sequence on the computed value of the surface
tension [46], leads to an inconsistent description
for a curved interface [38, 39, 47]. However, the
Harasima pressure tensor [41], where the set S is
defined differently and the tangential pressure pro-
file pt(z) is computed instead of the normal com-
ponent pn(z), has been found to agree rather well
with the IK tensor [25, 37, 46].

C. The grand canonical route

From an analysis of the canonical partition function
and its dependence on the characteristic length L of
otherwise similar systems, Binder [45] derived very use-
ful scaling laws for the probability ω(ρmin) of relatively
small subvolume to have the density ρmin corresponding
to a maximum of the local free energy, i.e., the least prob-
able local density between ρ′ and ρ′′. It follows that «the
probability of a homogeneous state with order parameter
ρmin decreases exponentially fast with the volume» while
for cases where the corresponding subvolume is situated
within a phase boundary the probability «decreases ex-
ponentially fast with the interface area» [45]. The surface
excess of the grand potential (per unit surface area) can
thus be determined as

fE = lim
a→∞

Σ

a
= kT lim

L→∞

lnω(ρmin)

a(L)
, (19)

which is related to the surface tension by γ = dΣ/da.
Therein, the term a(L) describes the dependence of the
surface area on the characteristic length of the system
[45], e.g., a(L) = 2L2 for a planar slab in a cubic volume
V = L3 with standard periodic boundary conditions.

Small subvolumes of a canonical system in the thermo-
dynamic limit (N → ∞) are equivalent to systems with
constant µ, V and T so that grand canonical Monte Carlo
(GCMC) simulation can equally be applied. Umbrella
sampling may be used to fully sample the relevant range
of values for the order parameter [48, 49], corresponding
to the number of particles N present in the grand canon-
ical system. Thereby, a profile is obtained for the free

energy density f(N) or f(ρ), i.e., the dependence of the
grand potential per volume unit on the order parameter.

To analyse liquid drops of a certain size, however, the
limit a → ∞ cannot be applied since the area a of the
surface of tension is fixed. Instead, the surface excess
term fE(Rρ) is determined from expressions based on
the equimolar radius [35]

f(ρ) =
V ′

V
ρ′(Rρ)µ(Rρ)

+
V ′′

V
ρ′′(Rρ)µ(Rρ) +

4πR2
ρ

V
fE(Rρ). (20)

V ′ = 4πR3
ρ/3 is the volume associated with the liquid

phase here, V ′′ = V − V ′ is the remainder of the volume
and ρ′(Rρ) as well as ρ′′(Rρ) are bulk densities related to
the liquid drop and the surrounding vapour. The chem-
ical potential µ(Rρ) is equal for the vapour and liquid
regions, but different from both the saturated bulk value
µs and the chemical potential µ used for the grand canon-
ical simulation itself. This formalism has recently been
employed by Schrader et al. [21, 35] as well as Block et

al. [18], to examine the interfacial properties of drops,
bubbles, and symmetric mixtures in great detail.

The original method of Binder [45] was developed for
planar interfaces. In the case of systems with a spherical
geometry, the following points should be kept in mind:

• Following the approach of Schrader et al. [35], the
surface tension γ can be accessed only indirectly,
e.g., from Eq. (6), based on the surface of tension
radius Rγ which also has to be obtained in a cir-
cuitous manner. Thereby, care should be taken not
to confuse fE with γ, or Rρ with Rγ .

• Since the infinite size limit, cf. Eq. (19), does not
apply to nanoscopic liquid drops and the systems
under consideration can be extremely small, it is
not generally possible to neglect the contribution
of homogeneous configurations to f(ρ) [45].

• The assumption that 4πR2
ρ is the surface area as-

sociated with the surface excess for the grand po-
tential of the system, as in Eq. (20), essentially
amounts to applying the macroscopic capillarity
approximation. Such an approach may be justified
under certain circumstances, but for investigations
of the deviation from capillarity it is of limited use
only.

Other umbrella sampling based methods [50, 51], which
will not be discussed here in detail, are confronted with
similar difficulties, in particular regarding the relation
between the surface tension and the surface excess free
energy.

D. The variational route

The variational route to the surface tension is based
on Bennett’s [52] general considerations of the molecular
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simulation of free energies and entropic quantites. In
the canonical ensemble, the free energy difference ∆A =
A1 − A0 between two states with equal N , V and T is
given by the quotient of the respective canonical partition
functions Z0 and Z1, which can be evaluated as averages
in terms of internal energy differences [52]

exp

(

∆A

kT

)

=
Z0

Z1

=
〈min (1, exp ([E1 − E0]/[kT ]))〉1
〈min (1, exp ([E0 − E1]/[kT ]))〉0

, (21)

where the index of the angular brackets denotes the sys-
tem over which an ensemble average is taken. Bennett
proposed the determination of these energy differences
from «separately-generated samples» [52] for E0 and E1.
If the two systems differ in the area of a phase boundary,
then the free energy difference can be related to the sur-
face tension, assuming that all other deviations between
the two states are accurately taken into account.

Gloor et al. [36] introduced a version of this approach
where differences between the two states are obtained
from a single simulation run for an unperturbed system
with the partition function Z0. Corresponding config-
urations of the second, perturbed system are generated
by performing small affine transformations, keeping the
volume and the number of particles in both phases con-
stant. In the limit of an infinitesimal distortion of the
system, Eq. (21) can be simplified as [36, 53]

∆A

kT
= − ln

〈

exp

(

−∆E

kT

)〉

0

, (22)

where ∆E = E1 − E0, as the probability distribution
functions of the ensembles corresonding to the unper-
turbed and the perturbed system converge, so that a
separate sampling is no longer required. A third-order
expansion in the inverse temperature [53]

∆A

kT
=

〈∆E〉

kT
−

〈

∆E2
〉

− 〈∆E〉2

2(kT )2

+

〈

∆E3
〉

− 3
〈

∆E2
〉

〈∆E〉+ 2 〈∆E〉
3

6(kT )3
, (23)

can be used to increase the precision of the simulation
results [22, 36]. The surface tension is then immediately
obtained from ∆A/∆a, since the distortion of the inter-
face itself (as opposed to its increase in area) makes a
negligible contribution to the free energy difference [15].

In analogy with the Widom test-particle method [54],
this implementation of the variational route is also called
the test-area method [36, 55]. Following Sampayo et al.

[22], it can be applied to curved interfaces, where the
affine transformation scales one of the cartesian axes by
the factor 1/(1+ξ) and the remaining ones by (1+ξ)1/2.
For ξ > 0, this creates an oblate shape and the area of
the surface of tension is increased by [56]

∆a

πR2
ρ

= 2(1+ξ)+
ln([1 + Ξ]/[1− Ξ])

(1 + ξ)2Ξ
+O

(

δ ∆a

R
ρ

)

, (24)

with the ellipticity of the average equimolar surface in
the perturbed system given by Ξ = [1 − (1 + ξ)−3]1/2.
In the prolate case (ξ < 0), the corresponding term is
Ξ = [1− (1 − ξ)−3]1/2 with [56]

∆a

πR2
ρ

= 2

(

arcsinΞ

Ξ(1− ξ)1/2
− ξ − 1

)

+O

(

δ ∆a

R
ρ

)

. (25)

It can be shown that the first-order term in Eq. (23) is
equivalent to the Kirkwood-Buff [57] mechanical route
expression for the surface tension [58]. The higher-
order terms therefore presumably capture the deviation
between the mechanical and variational routes due to
fluctuations or, equivalently, the contribution of non-
equilibrium configurations to γ. Thus, the higher-order
contribution to Eq. (23) may be related to the closed ex-
pression derived by Percus et al. [59] for the deviation
between the actual free energy and an approximation
based on the local pressure.

From this point of view, the following aspects of the
method merit further consideration:

• While finite differences of higher order are taken
into account for the energy, no such terms are con-
sidered for the surface area here. Clearly, the vari-
ance of ∆E is partly caused by the variance of ∆a.
The use of Rρ for defining the surface area, cf. Eqs.
(24) and (25), may lead to further deviations.

• The variance of ∆E accounts for surface oscillations
such as long wave-length capillary waves, which dir-
ectly relate to equilibrium properties of the inter-
face and therefore do not depend on the statistical
mechanical ensemble [39]. However, it can also be
influenced by fluctuations regarding ρ′ (at constant
V ′) or V ′ (at constant ρ′). These modi are ensemble
dependent, since they are coupled to the density of
the vapour phase. Canonically, their amplitude in-
creases with the total volume and is ill-defined in
the thermodynamic limit V → ∞. Therefore, the
surface tension from the variational route may de-
pend on the constraints imposed on the system by
the ensemble.

• Although the volume associated with each of the
phases is invariant for test-area transformations,
there is still a distortion of the sample with respect
to the equilibrium conformation. The method is
therefore limited to isotropic phases, since shearing
an anisotropic phase will induce an elastic contri-
bution to ∆A from the bulk region as well.

III. DEVIATION OF THE EQUIMOLAR

RADIUS FROM CAPILLARITY

From the Tolman equation in its approximate poly-
nomial form, cf. Eq. (10), the excess equimolar radius η
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can be related to the Tolman length δ by

η = (δ +Rγ)−Rκ

= δ +Rγ

(

1−

[

1 +
2δ0
Rγ

+O
(

R−
γ

)

])

= −δ +O
(

R−
γ

)

, (26)

so that its magnitude in the zero-curvature limit is ob-
tained as

η0 = −δ0, (27)

which is essentially equivalent to Eq. (13).
Both in the planar limit and in the presence of

curvature effects, it is therefore possible to express the
Tolman relations in terms of the easily accessible quant-
ities η and ϕ, rather than δ and 1/Rγ. The point of
departure for such an expression is the exact closed form
of the Tolman equation, cf. Eq. (9). It should be re-
called that this expression is derived from the Gibbs-
Duhem equation, the Young-Laplace equation and the
Gibbs adsorption equation [17]; hence, it is based entirely
on an axiomatic thermodynamic treatment. As opposed
to truncated power series of the form of Eq. (10), the
alternative description remains valid when the radius Rγ

becomes similar or smaller in magnitude than the Tol-
man length. Polynomial expansions in terms of δ/Rγ

necessarily fail to capture this limit.

Figure 2. Density profiles from canonical MD simulations of
LJTS liquid drops at T = 0.75 ε/k with equimolar radii of
Rρ = 9.977 ± 0.001 (· — ·), 12.029 ± 0.003 (– –), 13.974 ±

0.002 σ (· · · ) and 15.967 ± 0.001 σ (—), cf. Tabs. I and II.

From the Young-Laplace equation, it follows that

dRγ

dϕ
=

1

ϕ

dγ

dϕ
−

γ

ϕ2
, (28)

while the reduced length scale appearing in the Tolman
equation can be transformed to

δ

Rγ
=

ηϕ+ γ0
γ

− 1, (29)

by using Eqs. (1), (4), (8) and (11). The Tolman relation
can thus be converted to

dγ

dϕ
= −

2γ

ϕ

(

δ

Rγ
+

[

δ

Rγ

]2

+
1

3

[

δ

Rγ

]3
)

(30)

=
2γ

3ϕ

(

1−

[

ηϕ+ γ0
γ

]3
)

. (31)

This representation of the Tolman result is fully equival-
ent to Eq. (9).

For ϕ → 0, further considerations are required. There,
the curvature dependence of γ as specified by Eq. (31)
is only self-consistent under an additional condition. To
demonstrate this, it is helpful to consider the exact Tol-
man equation in a different form

dγ

dϕ
=

2

γ2

(

1

3

[

ζ − η3ϕ2
]

− γ0η[γ0 + ηϕ]

)

, (32)

which follows from Eq. (31) by expanding the cubic term
where ζ has been defined as

ζ =
γ3 − γ3

0

ϕ
. (33)

For the sake of brevity, the notation qi = limϕ→0 d
iq/dϕi

is used here for the i-th derivative of a quantity q in the
zero-curvature limit. The slope of γ can be obtained by
inserting

ζ0 =
(

γ3
)

1
= 3γ2

0γ1, (34)

into Eq. (32), which yields

γ1 = 2η0. (35)

Expanding the excess equimolar radius as

η = η0 + η1ϕ+O(ϕ), (36)

and inserting this expression as well as Eq. (35) into the
planar limit for Eq. (32) leads to

(

γ3
)

2
= 12γ0η

2
0 , (37)

and

γ0γ2 = −4η20 . (38)

It is by considering the zero-curvature limit for the third
derivative of γ3 that a theorem for the slope of η can
now be deduced. Based on Eqs. (34) and (37), a Taylor
expansion for d(γ3)/dϕ in terms of ϕ

d

dϕ
γ3 =

(

γ3
)

1
+
(

γ3
)

2
ϕ+

1

2

(

γ3
)

3
ϕ2 +O(ϕ), (39)

yields

ζ =
1

ϕ

∫ ϕ

0

dϕ

(

d

dϕ
γ3

)

= 6γ2
0η0 + 6γ0η

2
0ϕ+

ϕ2

6

(

γ3
)

3
+O(ϕ). (40)
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From Eqs. (35) to (40)

6γ0
(

γ0η1 + η20
)

+
ϕ

6

(

γ3
)

3
= 0 +O(ϕ), (41)

follows by applying the full Tolman equation, cf. Eq. (32),
in the planar limit. However, this implies

η1 = −
η20
γ0

, (42)

which constitutes a necessary boundary condition for the
Tolman approach in terms of η and ϕ.

Thus, while there is a direct correspondence between
δ0 and η0, no such relation exists in case of δ1 and η1,
i.e., the respective derivatives (in terms of ϕ) in the zero-
curvature limit; instead, η1 is fully determined by η0 and
thus by δ0, the Tolman length of the planar interface.
This means that data on the excess equimolar radius for
large radii have a double significance regarding the planar
limit: on the one hand, they can be extrapolated to ϕ =
0, leading to an estimate for the planar Tolman length
and the curvature dependence of γ to first order in terms
of ϕ or 1/Rγ ; on the other hand, the slope of η is in itself
relevant, since its zero-curvature limit η1 also provides
information on η0.

The equivalent of the exact Tolman equation in terms
of the excess equimolar radius η and the pressure differ-
ence characterized by ϕ is Eq. (31). An expansion as a
power series, analogous to Eq. (10), can be expressed as

γ = γ0 + 2η0ϕ−
2η20
γ0

ϕ2 +O(ϕ). (43)

The planar limit, where higher order terms can be neg-
lected, can be treated accurately with expressions like
Eq. (43). Away from the planar limit, Eq. (31) applies
without any further condition (since the boundary con-
dition for the slope of η is only relevant for ϕ → 0), while
Eq. (43) becomes an approximation.

IV. THE EXCESS EQUIMOLAR RADIUS FROM

MOLECULAR SIMULATION

With the mardyn MD program, developed by
Bernreuther and co-workers [60–62], the canonical en-
semble was simulated for small systems, corresponding
to equilibrium conditions for nanoscopic liquid drops
surrounded by supersaturated vapours. The truncated-
shifted Lennard-Jones (LJTS) pair potential

u(r) =

{

4ε
[

(

σ
r

)12
−
(

σ
r

)6
]

+ ushift, for r < rc,

0, for r ≥ rc,
(44)

with the size parameter σ, the energy parameter ε and
a cutoff at rc = 2.5 σ is applied as a fluid model here,
including a shift by ushift = 4ε

[

(σ/rc)
6 − (σ/rc)

12
]

to
make the potential continuous. The LJTS model is an ad-
equate basis for investigating bulk and interfacial proper-
ties of simple spherical conformal fluids (e.g., noble gases

and methane) on a molecular level, cf. Vrabec et al. [25].
On account of this, numerous studies on nanoscopic li-
quid drops have been reported [18, 24, 25, 63–67]. The
LJTS fluid can thus be regarded as a key benchmark for
theoretical and simulation approaches to the problem of
curved vapour-liquid interfaces.

Certain of the general properties of this simple model,
taking only short-range interactions into account, can be
assumed to carry over to polar fluids as well [68], except
for temperatures in the vicinity of the critical point. It
is clear, however, that a qualitatively different behaviour
should be expected for liquid drops formed by water with
and without ionic species [69, 70], liquid crystals [71] and
similar complex organic molecules. Such systems are bey-
ond the scope of the present study.

Liquid drops are investigated at temperatures between
T = 0.65 and 0.95 ε/k, covering most of the range
between the triple point temperature (which is ≈ 0.55
according to Bolhuis and Chandler [72], ≈ 0.618 as de-
termined by Toxværd [73] and ≈ 0.65 ε/k according to
van Meel et al. [65]) and the critical temperature which
several independent studies have consistently obtained
as 1.08 ε/k for the LJTS fluid [25, 74, 75]. The Ver-
let leapfrog algorithm is employed to solve the classical
equations of motion numerically with an integration time
step of 0.002 in Lennard-Jones time units, i.e., σ

√

m/ε,
where m is the mass of a particle. Cubic simulation
volumes with 290 to 126 000 particles, applying the peri-
odic boundary condition, are equilibrated for at least 2
000 time units. Subsequently, spherically averaged dens-
ity profiles ρ(z), with their origin (z = 0) at the centre
of mass of the whole system, are constructed with a bin-
ning scheme based on equal volume concentrical spheres
using sampling intervals between 1 000 and 40 000 time

Figure 3. Density profiles from canonical MD simulations of
LJTS liquid drops at T = 0.65 and 0.95 ε/k, showing the av-
erage densities from simulation (•) and exponential approx-
imants (– –). The steeper profile corresponds to the lower
temperature.
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Figure 4. Density profiles from a single canonical MD sim-
ulation of a LJTS liquid drop at T = 0.85 ε/k, showing the
average densities from simulation (◦) and exponential approx-
imants (lines) corresponding to the sampling intervals 2 000 –
3 000 (· · · ; green), 3 000 – 4 000 (· · · – · · · ; red), 4 000 – 5 000
(– –; blue) and 5 000 – 6 000 time units (—; black) after the
onset of the simulation. The standard deviation between the
densities at an infinite distance from the interface, according
to the exponential fits for all sampling intervals of a single
MD simulation, is used to determine the error of the bulk
densities here.

units, depending on the (expected) total simulation time,
to gather multiple samples for each system. Examples of
the density profiles obtained according to this method
are shown in Figs. 2 – 4.

The density profiles of LJTS vapour-liquid interfaces
are known to agree well with an expression based on two
hyperbolic tangent terms, to which ρ(z) has been suc-
cessfully correlated for liquid drops by Vrabec et al. [25].
The present method, however, merely requires the bulk
densities ρ′ and ρ′′ corresponding to a certain value of µ
or ϕ, which are determined here by correlating the outer
part of the density profile and extrapolating it to regions
far from the interface. The densities of the coexisting
fluid phases are thus deduced from simulation results by
correlating the exponential terms

ρ′ = ρ(z) + α′ exp (β′[z − z′]) ,

ρ′′ = ρ(z)− α′′ exp (β′′[z′′ − z]) , (45)

to the data for the inner- and outermost spherical bins
of the density profiles, cf. Fig. 3. These terms, which are
based on those employed by Lekner and Henderson [58],
asymptotically agree with the hyperbolic tangent expres-
sion of Vrabec et al. [25]. From the liquid and vapour
densities ρ′ and ρ′′ of the fit to Eq. (45), the equimolar
radius Rρ is calculated according to Eq. (2). The respect-
ive margins of error are obtained as standard deviations
from the profiles belonging to different sampling intervals
of the same MD simulation, cf. Fig. 4, of which there are
at least three in all cases. The corresponding pressures

Figure 5. Equimolar radius Rρ as a function of the capillarity
radius Rκ for LJTS liquid drops, from density profiles and
bulk pressures determined with canonical MD simulations at
T = 0.75 (�) and 0.85 ε/k (◦), in comparison with results
from previous work of Vrabec et al. [25] at T = 0.75 (�) and
0.85 ε/k (•), using pressure differences based on evaluating
the IK tensor in the (approximately) homogeneous regions
inside and outside the liquid drop. The continuous diagonal
line is defined by Rρ = Rκ and thus corresponds to an excess
equimolar radius of η = 0, while the dotted lines correspond
to η = ±0.5 σ.

p′ and p′′ are computed by canonical MD simulation of
the bulk fluid at the respective densities.

For the surface tension in the zero-curvature limit,
the values γ0(0.65 ε/k) = 0.680 ± 0.009, γ0(0.75 ε/k) =
0.493±0.008, γ0(0.85 ε/k) = 0.317±0.007 and γ0(0.95 ε/
k) = 0.158 ± 0.006 εσ−2 are taken from the correlation
of Vrabec et al. [25]; the error corresponds to the indi-
vidual data points for γ0 from the same source. In case
of T = 0.9 ε/k, the higher precision of the computations
of van Giessen and Blokhuis [24] is exploited, using the
value γ0 = 0.227 ± 0.002 εσ−2 obtained from a linear
fit to data for the curved interface [24], cf. Fig. 1. The
assumption made for the error is rather generous in this
case, considering the even higher confidence suggested
by the agreement between the individual data points for
ϕRρ.

Combining these quantities leads to the capillarity ra-
dius Rκ and the excess equimolar radius η. Note that the
margin of error for η, as indicated in Tab. I, contains con-
tributions quantifying the accuracy of γ0 and the preci-
sion of the MD simulations of the liquid drop itself as well
as those of the homogeneous vapour and liquid phases.
While the vapour pressure p′′ and the equimolar radius
Rρ could be obtained with a high precision, the liquid
pressure and the surface tension in the zero-curvature
limit are major sources of uncertainty here. In both cases,
methodical changes can be expected to increase the pre-
cision significantly: regarding γ0, it can be seen from Fig.
1 that it is now possible to reach a level of confidence bey-
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Table I. An analysis of the error of the excess equimolar radius η of LJTS liquid drops at the temperature T = 0.75 ε/k.
The number of particles N , the volume V of the periodic simulation box and the total simulation time t for the simulations
of the liquid drops are indicated alongside the contributions to the uncertainty of η from the pressure p′ of the liquid phase
(determined by canonical MD simulation of the bulk liquid), the surface tension γ0 of the planar vapour-liquid interface, cf.
Vrabec et al. [25], the vapour pressure p′′ (analogous to p′) and the equimolar radius Rρ (from the density profiles of the liquid

drops). Note that the time unit, i.e., σ
√

m/ε, corresponds to 500 simulation time steps here. The flat symbols (♭) indicate the
fraction of the margin of error for η due to the respective quantities. All values are given in Lennard-Jones units, and the error
in terms of the last digit is specified in parentheses. In the subsequent discussion, the cases where the uncertainty of η exceeds
σ are disregarded.

N V [σ−3] t [σ
√

m/ε] p′ [εσ−3] ♭ p′ ♭ γ0 p′′ [εσ−3] ♭ p′′ Rρ [σ] ♭ Rρ η [σ]
497 10 648 60 000 0.6(1) 84% 5.9% 0.0135(3) 0.23% 4.33(5) 9.5% 2.5(5)

1 418 21 952 48 176 0.16(1) 82% 17% 0.01136(5) 0.37% 6.883(3) 0.5% 0.4(6)
1 766 21 952 6 000 0.14(3) 94% 5.3% 0.0110(2) 0.58% 7.61(1) 0.55% 0(2)
3 762 39 304 221 244 0.113(2) 53% 45% 0.01042(4) 1.0% 9.977(1) 0.28% 0.3(3)
5 161 54 872 64 219 0.096(3) 63% 34% 0.0104(1) 2.4% 11.089(4) 0.82% −0.4(5)
6 619 74 088 162 678 0.090(2) 59% 40% 0.01007(2) 0.75% 12.029(3) 0.57% −0.2(5)

10 241 110 592 185 460 0.080(1) 56% 43% 0.00985(2) 0.58% 13.974(2) 0.29% −0.1(5)
12 651 140 608 32 594 0.075(2) 66% 32% 0.00974(4) 1.2% 14.981(6) 0.78% −0.2(8)
15 237 166 375 135 348 0.070(2) 66% 33% 0.00969(1) 0.35% 15.967(1) 0.15% −0.5(8)
17 113 169 418 6 006 0.08(1) 89% 9.8% 0.00969(9) 0.78% 16.689(4) 0.18% 2(2)
24 886 238 328 27 272 0.069(9) 90% 9.7% 0.00947(3) 0.3% 18.969(5) 0.17% 2(3)
28 327 238 328 6 006 0.056(9) 92% 7.5% 0.00945(3) 0.28% 19.950(8) 0.18% −1(5)
38 753 247 673 6 000 0.050(7) 90% 8.8% 0.00932(5) 0.69% 22.391(7) 0.15% −2(4)

125 552 697 078 6 006 0.042(5) 89% 9.6% 0.00908(9) 1.6% 33.31(1) 0.21% 3(5)

Table II. Number of particles N , volume V of the periodic simulation box and temperature T of the present canonical ensemble
MD simulations of the LJTS fluid and equilibrium properties of the liquid drop as well as the surrounding vapour, i.e., the
respective densities ρ′, ρ′′ and pressures p′, p′′ as well as the capillarity radius Rκ, the equimolar radius Rρ and the excess
equimolar radius η. For drop radii above 8 σ, these values can be reliably regarded as identical with those corresponding
to the present theoretical approach, which is highlighted with the bold typeface. In case of smaller radii (cursive typeface),
inaccuracies can arise due to the application of exponential approximants, cf. Fig. 3 and Eq. (45), so that the respective values
can, at present, be acknowledged as phenomenological quantities only. All values are given in Lennard-Jones units, and the
error in terms of the last digit is specified in parentheses.

N V [σ3] T [ε/k] ρ′ [σ−3] ρ′′ [σ−3] p′ [εσ−3] p′′ [εσ−3] Rκ [σ] Rρ [σ] η [σ]
291 8 999 0.65 0 .857 (5 ) 0 .0090 (2 ) 0 .65 (8 ) 0 .0054 (1 ) 2 .1 (3 ) 3 .90 (1 ) 1 .8 (3 )

1 022 17 576 0.65 0 .830 (1 ) 0 .00651 (7 ) 0 .22 (2 ) 0 .00397 (4 ) 6 .3 (6 ) 6 .407 (2 ) 0 .1 (6 )
497 10 648 0.75 0 .81 (1 ) 0 .0214 (6 ) 0 .6 (1 ) 0 .0135 (4 ) 1 .8 (5 ) 4 .33 (5 ) 2 .5 (5 )

1 418 21 952 0.75 0 .777 (1 ) 0 .0173 (1 ) 0 .16 (1 ) 0 .01136 (5 ) 6 .5 (6 ) 6 .883 (3 ) 0 .4 (6 )
3 762 39 304 0.75 0.7721(2) 0.01566(6) 0.113(2) 0.01042(4) 9.7(4) 9.977(1) 0.3(4)
5 161 54 872 0.75 0.7703(2) 0.0156(2) 0.096(3) 0.0104(1) 11.5(5) 11.089(4) −0.5(6)
6 619 74 088 0.75 0.7697(2) 0.01506(4) 0.091(2) 0.01007(2) 12.3(5) 12.029(3) −0.2(5)

10 241 110 592 0.75 0.7685(1) 0.01469(3) 0.080(2) 0.00985(2) 14.1(5) 13.974(2) −0.1(5)
12 651 140 608 0.75 0.7679(2) 0.01451(7) 0.075(2) 0.00974(4) 15.2(8) 14.981(6) −0.2(8)
15 237 166 375 0.75 0.7673(2) 0.01442(2) 0.070(2) 0.00969(1) 16.5(8) 15.967(1) −0.5(8)
1 119 14 172 0.85 0 .733 (7 ) 0 .0421 (5 ) 0 .23 (5 ) 0 .0273 (2 ) 3 .1 (9 ) 6 .79 (6 ) 2 .5 (9 )
3 357 32 768 0.85 0.7135(8) 0.0371(5) 0.097(5) 0.0249(2) 8.8(8) 9.11(1) 0.4(9)
2 031 21 952 0.9 0 .687 (3 ) 0 .0573 (8 ) 0 .13 (1 ) 0 .0369 (3 ) 5 .1 (8 ) 6 .79 (6 ) 1 .7 (9 )
4 273 29 791 0.9 0.6773(9) 0.0532(2) 0.082(4) 0.03516(7) 9.7(9) 10.086(9) 0.4(9)

11 548 85 184 0.9 0.6738(1) 0.0504(2) 0.0672(6) 0.03396(8) 13.7(4) 14.054(8) 0.4(4)
2 414 19 683 0.95 0 .662 (2 ) 0 .0825 (2 ) 0 .169 (7 ) 0 .05032 (8 ) 2 .7 (3 ) 6 .86 (3 ) 4 .2 (3 )
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ond that of the data of Vrabec et al. [25] which are also
used here. For the pressure of the liquid p′, approaches
based on the chemical potential, which can be determ-
ined in any region of the simulation volume (including
the vapour phase), can be expected to lead to significant
improvements in combination with a reliable equation of
state or high-precision simulations in the grand canonical
ensemble.

A full summary of the simulation results where η could
be determined with error bars smaller than σ is given in
Tab. II. Note that to achieve full consistency with the
Tolman approach, the bulk densities ρ′ and ρ′′ from Eq.
(45) have to match those of the bulk fluid at the same
temperature and chemical potential as the two-phase sys-
tem. Regarding liquid drops with Rρ > 8 σ, this is cer-
tainly the case, since constant density regions coexisting
with the interface are actually present, cf. Fig. 2. How-
ever, the values determined for the smallest drops here
rely on the validity of the correlation given by Eq. (45)
and can be considered valid only as far as this expression
itself does not introduce any major deviations, an asser-
tion that remains open to further examination; a version
of the present method computing p′ via µ could resolve
this issue.

V. DISCUSSION

Previous authors have made qualitatively contradict-
ory claims on the magnitude of the Tolman length as
well as its sign: Tolman himself expected δ to be pos-
itive and smaller than the length scale of the dispersive
interaction, a conjecture that Kirkwood and Buff [57] af-
firmed from a statistical mechanical point of view, based
on a mechanical approach. Subsequent studies, however,
have also found δ to be negligible or even equal to zero
[20, 63, 76], positive and larger than σ [25, 66], negat-
ive with −σ < δ < 0 [22, 24, 77] or negative and di-
verging (δ0 = −∞) in the planar limit [78], while others
have claimed that the sign of δ is curvature dependent it-
self [79, 80]. Thereby, they have only proven the mutual
inconsistency of their assumptions and methods, while
nothing is truely known about δ and the dependence of
the surface tension on curvature.

The new approach introduced in Section III is strictly
based on axiomatic thermodynamics and relies on the
fact that δ0 = −η0 holds in the planar limit. From the
values for η reported in bold face in Tab. II, correspond-
ing to Rρ > 8 σ, the excess equimolar radius for liquid
drops of the LJTS fluid is unequivocally shown to be
smaller in magnitude than σ/2, while its remains unclear
whether it is positive, negative, of both signs (depend-
ing on the curvature) or equal to zero. Since this means
that at the present level of accuracy, no significant de-
pendence of γ on the radius of the liquid drop could be
detected, the statement of Mareschal et al. [81] regarding
cylindrical interfaces also applies here: considering «the
large fluctuations in the bulk liquid phase», cf. the error

analysis presented in Tab. I, «we tentatively conclude
that the surface tension is independent of the curvature
of the liquid-vapor interface or else that this dependence
is very weak.»

The only view that can be definitely dismissed is that
of a large and positive Tolman length, previously held by
some of the present authors on the basis of results from
the mechanical route to the surface tension, employing
the IK pressure tensor [25, 66]. As Fig. 5 shows, the pre-
vious simulation results are actually consistent with those
from the present study if they are interpreted in terms
of the radii Rκ and Rρ. Thereby, following the approach
of van Giessen and Blokhuis [24], only the density profile
and the pressure in the homogeneous regions inside and
outside the liquid drop are taken into account, whereas
the normal pressure along the interface is not considered
at all. Since the deviation between present and previous
data disappears in such a representation, the disagree-
ment must be caused by the inadequacy of the pressure-
tensor (mechanical) route implemented by Thompson et

al. [34], as pointed out by Henderson [39, 82]. Possible
sources of error for this approach are outlined in Section
II. Nonetheless, more detailed methodological invest-
igations are expedient to determine which approxima-
tions are actually responsible for major inaccuracies, and
whether they can be corrected or whether the pressure-
tensor route to the surface tension has to be discarded
altogether.
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