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Abstract	

	

Cooling	of	photovoltaic	(PV)	devices	increases	voltage	and	power	output,	but	 in	stand‐

ard	applications,	cooling	measures	are	only	beneficial	 if	 the	associated	costs	are	 lower	

than	the	cumulative	profit.	A	technical	and	economic	analysis	of	a	passive	cooling	meas‐

ure	based	on	phase	change	materials	(PCMs)	is	conducted	here.	Three	PV	modules,	one	

standard	 reference	module	 and	 two	 equipped	with	 PCMs,	 are	 studied	 experimentally.	

Although	both	have	the	same	melting	temperature,	one	of	the	PCMs	has	a	significantly	

higher	thermal	conductivity	and	a	lower	heat	storage	capacity	than	the	other.	The	analy‐

sis	of	the	present	experimental	data	considers	the	energy	price	variation	at	the	Europe‐

an	Power	Exchange	(EPEX)	spot	market	during	the	day	without	considering	any	costs.	

Because	additional	power	 is	 supplied	before	noon	 for	PCM	charging,	 favorable	 results	

are	 observed	 during	 this	 period.	 However,	 higher	 operating	 temperatures	 of	 the	 PV	

modules	occur	later	in	the	day	due	to	the	thermal	insulation	effect	of	the	PCM	layer	at‐

tached	to	the	back	side	of	the	modules.	In	total,	this	results	in	a	negative	economic	yield	

on	most	days.	The	PCM	with	a	higher	thermal	conductivity	had	significantly	lower	tem‐

peratures	after	charging	and	a	corresponding	higher	yield.	
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2	

Nomenclature	

	

Symbols	 	 	

cp	 Average	specific	isobaric	heat	capacity	 kJ/(kg∙K)

	ܧ Energy	yield	 Wh	

e	 Relative	energy	yield	difference	 %	

݄	 Specific	enthalpy	of	fusion	(20	°C	‐	30	°C)	 kJ/kg	

ܲ	 Electrical	power	output	 Wp	

	ݎ Energy	price	 €/kWh	

	ݐ Time	 s	

Y	 Economic	yield	 €	

y	 Relative	economic	yield	difference	 %	

	ߛ Temperature	coefficient	of	Pmax	 %/K	

	ߟ Conversion	efficiency	 %	

	ߠ Temperature	 °C	

	ߣ Thermal	conductivity	 W/(m∙K)

	ߩ Specific	density	 kg/m³	

߱  Mass	fraction	 g/g	

∆	 Difference	 	

	

Index	 	

݀	 Based	on	a	daily	trading	period	

	ݍ݁ Equipped	with	PCM	or	PCM+	

݅	 Counting	variable	

݆	 15	min	or	1	h	time	block	energy	price	

݉	 Melting	point	

	ݔܽ݉ Maximum	point	

݊	 Summation	limit	

	݂݁ݎ Reference		

	ݍݑ Unequipped	(no	PCM	or	PCM+)	

	

Abbreviation	 	

EPEX	 European	Power	Exchange	

ISFH	 Institute	for	Solar	Energy	Research	Hamelin	

MPP	 Maximum	power	point	

PV	 Photovoltaic	

PCM	 Phase	change	material	

PCM+	 Phase	change	material	with	improved	thermal	conductivity	
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STC	 Standard	test	conditions	

	

1.	 Introduction	

	

The	negative	effect	of	elevated	operating	 temperatures	on	 the	conversion	efficiency	of	

crystalline	silicon	solar	cells	is	well	known	(Radziemska,	2006).	Interventions	to	reduce	

operating	 temperatures	 are	 usually	 considered	 to	 increase	 the	 electrical	 energy	 yield.	

Low	operating	temperatures	of	photovoltaic	(PV)	modules	also	have	a	positive	effect	on	

degradation	(Meyer	and	van	Dyk,	2004;	Junsangsri	and	Lombardi,	2010).	Furthermore,	a	

damping	 of	 short‐term	 temperature	 fluctuations	 may	 increase	 PV	 module	 lifetimes	

(Köntges	et	al.,	2014).	

	

Both	active	cooling	measures,	such	as	water	cooling	on	the	module	back	(Bahaidarah	et	

al.,	 2013;	 Moharram	 et	 al.,	 2013)	 or	 front	 side	 (Krauter,	 2004),	 and	 passive	 cooling	

measures	adapted	from	latent	heat	storage	consisting	of	selected	phase	change	materi‐

als	(PCMs)	have	been	investigated	(Norton	et	al.,	2011;	Hasan	et	al.,	2014).	The	scientific	

interest	in	using	PCM	for	the	thermal	management	of	PV	modules	has	increased	rapidly	

over	the	last	decade.	Numerous	experimental	and	computational	studies	have	been	con‐

ducted	for	the	use	of	PCM	to	manage	the	temperature	issues	of	electronic	devices	such	

as	 PV	modules	 (Browne	 et	 al.,	 2015).	Meanwhile,	 it	 is	well	 known	 that	 the	 operating	

temperature	of	PV	modules	can	be	decreased	significantly	due	to	the	melting	of	the	at‐

tached	PCM.	However,	at	high	temperatures,	PCM	layers	may	cause	unwanted	and	sig‐

nificant	thermal	insulation	due	to	their	typically	low	thermal	conductivity.	One	possibil‐

ity	of	combating	this	problem	is	 to	mix	the	PCM	with	expanded	graphite	(Mehling	and	

Cabeza,	2008).	
	

The	 first	 investigation	into	 integrating	PCM	with	a	PV	module	was	conducted	 in	1978;	

this	study	showed	that	the	beneficial	cooling	effect	of	PCM	can	be	enhanced	by	increas‐

ing	its	thermal	conductivity	and	increasing	the	heat	transfer	from	the	PV	module	to	the	

PCM	at	the	thermal	interface	(Stultz	and	Wen,	1977).	Recently,	one	of	the	main	research	

objectives	of	Huang	et	al.	(Huang	et	al.,	2011)	was	to	promote	the	heat	transfer	into	and	

out	 of	 PCM	 using	 fins	within	 the	 aluminum	 container	 encapsulation.	 They	 also	 devel‐

oped	a	validated	numerical	model	for	a	PV‐PCM	module.	Hasan	et	al.	(Hasan	et	al.,	2015)	

compared	the	effects	of	two	different	PCMs	encapsulated	in	an	aluminum	container	with	

internal	fins	for	two	different	climate	conditions	(Dublin,	Ireland	and	Vehari,	Pakistan)	

using	outdoor	measurements	and	simulations	using	the	numerical	model	 from	(Huang	

et	al.,	2011).	Two	main	conclusions	were	drawn:	First,	the	deviation	between	the	simula‐
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tion	and	experiment	results	was	very	 low	 in	 terms	of	 the	average	temperatures	of	 the	

front	 surface	of	both	PV‐PCM	modules.	 Second,	 the	highest	 temperature	drop	was	ap‐

proximately	21	K	 compared	 to	 the	 reference	PV	module	was	observed	 in	Vehari	 for	a	

PV‐PCM	module	based	on	a	salt	hydrate.	

	

Laboratory	experiments	combined	with	a	computational	study	were	conducted	by	(Jay	

et	 al.,	 2010).	Two	PV‐PCM	systems,	 a	PV	module	with	a	 thermally	 insulated	back	 side	

and	a	 reference	PV	module,	were	simultaneously	exposed	 to	 three	different	 insolation	

intensities	(600,	800	and	1000	W/m²)	using	a	solar	simulator.	Both	paraffin‐based	PCMs	

(with	melting	temperatures	of	27	°C	and	45	°C)	were	filled	into	a	honeycomb	aluminum	

structure,	which	was	closed	on	both	sides	by	an	aluminum	plate	to	promote	heat	trans‐

fer	from	the	PV	module.	A	15‐25	%	increase	in	energy	yield	compared	to	the	reference	

PV	module	due	to	temperature	regulation	was	measured.	

The	 combination	 of	 PCM‐infused	 graphite	 and	 finned	heat	 sinks	 for	 the	 thermal	man‐

agement	of	PV	modules	(Atkin	and	Farid,	2015)	achieved	a	13%	increase	in	energy	yield	

through	reduced	peak	temperatures	and	a	temporary	time	shift	in	the	temperature	rise.	

	

In	 the	present	work,	a	commercial	paraffin	RUBITHERM®	RT	28	HC	with	an	 improved	

thermal	conductivity	of		=	2.4	W/(m·K)	and	the	same	PCM	compound	with	the	stand‐
ard	thermal	conductivity	of		=	0.19	W/(m·K)	were	studied.	The	high	thermal	conductiv‐
ity	was	achieved	by	adding	expanded	graphite	to	the	PCM	compound.	Although	the	im‐

proved	 PCM	 (hereafter	 referred	 to	 as	 PCM+)	 has	 a	 reduced	 heat	 storage	 capacity	 be‐

cause	of	 a	decreased	mass	 fraction	of	 the	effective	phase	 change	material,	 it	promises	

better	 performance	 and	 applicability.	 Therefore,	 one	 PV	 module	 was	 equipped	 with	

PCM+	 and	 another	 PV	 module	 was	 equipped	 with	 the	 conventional	 PCM;	 both	 were	

compared	with	 a	 standard	 reference	PV	module,	 simultaneously	measured	 at	 outdoor	

summer	conditions	during	the	year	2013	in	Paderborn,	Germany.	A	technical	compari‐

son	of	the	two	PV‐PCM	modules	was	conducted	to	assess	the	temperature	development	

and	energy	yield.	

	

In	general,	due	to	the	rapid	decrease	of	PV	module	costs,	cooling	interventions	are	often	

less	 cost‐effective	 in	 terms	of	direct	power	gain.	On	 the	other	hand,	 the	 typical	power	

generation	shift	to	the	morning	hours	with	PV‐PCM	modules	may	nonetheless	be	favor‐

able,	 considering	 the	higher	electricity	prices	before	noon	on	 the	European	Power	Ex‐

change	(EPEX)	spot	market,	cf.	Fig.	1.	In	this	investigation,	no	costs	were	considered,	and	

the	economic	analysis	focused	exclusively	on	the	yield	differences	due	to	the	use	of	PCM	

and	PCM+.	
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Temperature	coefficient	of	Pmax	 	ߛ ‐0.41	 ‐0.40	 ‐0.42	 %/K	

	

Significant	differences	 in	 the	 temperature	 coefficient	of	 the	power	output	 and	 conver‐

sion	 efficiency	 were	 detected	 among	 the	 three	 PV	 modules,	 so	 the	 measured	 energy	

yield	 of	 the	 PV‐PCM	 modules	 cannot	 be	 directly	 compared.	 Therefore,	 the	 following	

basic	assumptions	were	made	to	ensure	a	satisfactory	comparability	of	the	results:	

 All	three	PV	modules	have	the	same	operating	temperature	at	identical	operating	

conditions.	

 Differences	between	the	measured	temperature	values	are	caused	exclusively	by	

the	attached	PCM	or	PCM+	bags.	

 The	 temperature	values	measured	by	 the	 thermometers	Ref,	 PCMIn	 and	PCM+In	

represent	the	operating	temperature	of	the	corresponding	module.	

The	measured	 temperature	of	 the	Ref	 thermometer	was	used	as	a	 reference	value	 for	

comparison.	Thus,	the	measured	electrical	power	output	of	the	PCM	module	as	well	as	

that	of	 the	PCM+	module	was	adjusted	according	 to	 the	measured	 temperature	of	 the	

Ref	thermometer	and	the	temperature	coefficient	of	the	PCM	and	PCM+	modules	given	

in	Table	2.	A	detailed	description	of	these	adjustments	is	given	in	Section	3.2.	

	

3.		 Energy	performance	and	economic	yield	

	

3.1.	 Influence	of	PCM	on	temperature	

	

Due	to	the	strong	influence	of	the	PCM	on	the	temperature	of	the	PV	modules,	a	detailed	

analysis	of	the	measured	diurnal	temperature	variations	is	necessary.	For	this	purpose,	

two	days	with	high	insolation	and	very	clear	sky	conditions	were	selected.	Both	condi‐

tions	were	fulfilled	on	the	1st	and	2nd	of	August	2013.	The	surface	temperatures	meas‐

ured	on	these	days	are	shown	in	Fig.	5	as	a	function	of	time.	 	
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“charging”	in	Fig.	5.	Coincidentally,	the	melting	processes	of	PCM	and	PCM+	terminated	

at	approximately	the	same	time.	After	complete	melting,	the	PCM	temperature	increased	

more	 rapidly	 than	 that	 of	 PCM+	due	 to	 the	higher	 thermal	 resistance	 to	 heat	 transfer	

through	 the	PCM	package;	 both	 temperatures	 increased	 above	 the	 temperature	of	 the	

reference	 PV	 module.	 During	 the	 saturation	 stage,	 a	 smaller	 difference	 occurred	 be‐

tween	PCM+In	and	the	PCM+Out	surface	temperatures	compared	to	the	temperature	dif‐

ference	between	PCMIn	and	PCMOut,	 cf.	 Fig.	5.	 In	addition,	 it	 can	be	 concluded	 that	 the	

increased	thermal	conductivity	of	PCM+	leads	to	significantly	lower	operating	tempera‐

tures	after	complete	melting.	Finally,	it	was	observed	that	PCM	needed	approximately	4	

h	 for	 complete	 solidification,	 whereas	 PCM+	 needed	 only	 approximately	 3	 h,	 which	

means	 that	 approximately	 25%	more	mass	 of	 PCM+	 can	 be	 solidified	 overnight	 com‐

pared	to	PCM.	

	

3.2.	 Temperature	dependent	energy	yield	

	

As	mentioned	in	Section	2.2,	the	surface	temperature	ߠ௥௘௙	of	Ref	was	used	as	a	reference	

value	for	calculating	the	power	differences	caused	by	PCM	and	PCM+.	Explicitly	consid‐

ering	the	differences	between	the	electrical	parameters	of	the	studied	modules	(cf.	Table	

2),	the	hypothetical	electrical	power	output	 ௨ܲ௤	of	the	PCM	and	PCM+	modules	without	

the	attached	phase	change	material	was	determined	according	to	equation	(1).	The	tem‐

perature	 variation	 due	 to	 the	 presence	 of	 the	 phase	 change	material	 ௘௤ߠ) െ 	was	௥௘௙)ߠ

measured	by	the	thermometers	PCMIn	and	Ref	or	PCM+In	and	Ref.	The	measured	electri‐

cal	power	output	of	the	modules	is	denoted	by	 ௘ܲ௤	 	

	

	 ௨ܲ௤ ൌ ௘ܲ௤ െ ߛ ∙ ௠ܲ௔௫ ∙ ൫ߠ௘௤ െ 	௥௘௙൯ߠ 	 	 	 (1)	

	

where	ߛ	is	the	temperature	coefficient	of	maximum	power	output.	Based	on	these	power	

output	values,	 all	days	within	 the	measurement	period	were	analyzed	by	applying	 the	

following	three	steps:	

 First,	the	temperature	dependent	energy	differences	were	determined.	

 Second,	they	were	weighted	with	the	EPEX	spot	market	price.	

 Third,	four	energy	economic	difference	values	for	the	comparison	of	the	PV‐PCM	

modules	were	defined	for	each	day.	

Because	 the	measured	data	were	 recorded	every	Δt=10	 s,	 it	was	necessary	 to	 assume	

constant	values	until	the	next	sampling.	Thus,	the	power	output	values	 ௘ܲ௤	and	 ௨ܲ௤	were	

multiplied	by	∆ݐ	to	obtain	the	generated	energy	ܧ௘௤	and	ܧ௨௤	over	∆ݐ.	Subsequently,	the	
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3.3.	 Economic	evaluation	

	

For	the	second	step,	the	following	boundary	conditions	were	considered	in	the	present	

evaluation:	

 Electrical	 energy	 is	 traded	 on	 the	 EPEX	 intraday	 spot	market	 of	 Germany	 and	

Austria.	

 Electrical	energy	is	preferably	traded	in	15‐min	periods;	1‐h	period	trades	are	al‐

so	allowed.	

 The	generated	photovoltaic	electrical	power	equals	the	actual	traded	power	at	all	

times.	

 The	daily	trading	period	ranges	from	6	a.m.	to	9	p.m.	 	

Moreover,	the	studied	modules	were	linearly	scaled	up	to	10	MWp	plants	to	comply	with	

the	prequalification	requirements	 for	EPEX	trading	such	that	 the	minimum	trading	 in‐

crement	volumes	of	0.1	MW	could	be	offered.	Therefore,	the	15‐min	energy	blocks	ܧത௘௤	

and	ܧത௨௤	were	multiplied	by	the	ratio	of	the	assumed	peak	power	of	the	PV	plant	and	the	

maximum	power	 ௠ܲ௔௫	of	 the	PV	module.	 In	addition,	 the	upscaled	energy	blocks	were	

monetarily	weighted	by	real	average	energy	prices	retrieved	from	the	EPEX	online	data‐

base	(EPEX	Spot	SE,	2013)	

	

௞ܻ,௝ ൌ ത௞,௝ܧ ∙
ଵ଴	୑୛౦

௉೘ೌೣ
∙ 		௝ݎ with	݇ ൌ 	,ݍݑ	or	ݍ݁ 	 (4)	

	

where	the	index	j	indicates	whether	a	15‐min	or	a	1‐h	period	was	chosen.	The	resulting	

economic	yield	 ௨ܻ௤,௝	of	the	PV	power	plant	was	subtracted	from	the	resulting	economic	

yield	 ௘ܻ௤,௝	of	the	PV‐PCM	power	plant.	Finally,	the	economic	yield	difference	values	∆ ௝ܻ	

were	calculated	by	

	

∆ ௝ܻ ൌ ௘ܻ௤,௝ െ ௨ܻ௤,௝,	 	 	 	 	 	 (5)	

	

to	isolate	the	contribution	of	PCM	and	PCM+	in	terms	of	economic	profit	or	loss.	

By	 considering	 the	 boundary	 conditions	mentioned	 above,	 the	 example	 diurnal	 varia‐

tions	of	energy	economic	comparisons	of	the	PCM	plant	and	the	PCM+	plant	are	shown	

in	Fig.	7.	Due	to	the	low	energy	yields	in	the	morning	and	evening	on	August	2nd,	the	pe‐

riods	from	6	a.m.	to	7	a.m.	and	from	8	p.m.	to	9	p.m.	were	traded	in	1‐h	blocks;	the	re‐

mainder	was	traded	in	15‐min	blocks.	 	
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light,	an	increase	in	thermal	mass	could	be	considered.	However,	further	improvements	

of	the	thermal	conductivity	or	optimization	of	the	heat	transfer	on	the	back	side	of	the	

PV‐PCM	module	seems	to	be	more	appropriate.	A	short	study,	exemplified	for	both	days	

discussed	 above,	 is	 showing	 that:	 The	 minimum	 mass	 increase	 of	 PCM,	 respectively	

PCM+,	to	reach	the	economic	threshold	has	been	assessed:	To	do	so,	the	measured	oper‐

ating	 temperature	 curves	of	 the	 charging	 stages	of	PCM	and	PCM+	have	been	 linearly	

interpolated.	As	a	result,	a	minimum	mass	increase	of	about	50%	has	been	found	for	the	

PCM+.	 In	 addition,	 it	 was	 found	 out	 that	 under	 those	 circumstances	 PCM	 never	 may	

reach	 an	 economic	 feasible	 threshold.	 Therefore,	 a	 maximum	mass	 increase	 of	 about	

70%	has	been	identified;	that	limit	is	given	by	the	intercept	point	of	the	reference	tem‐

perature	and	the	trend	line	of	the	operating	temperature.	Using		

those	numbers,	the	following	improvements	in	relative	daily	economic	yield	occur:	

01.08.2013:	PCM	from	‐1.55%	to	‐1.07%;	PCM+	from	‐0.41%	to	0.001%.	 	

02.08.2013:	PCM	from	‐1.46%	to	‐0.87%;	PCM+	from	‐0.1%	to	0.278%.	

	

5.	 Conclusion	

	

The	assumption	that	a	PV	module	equipped	with	a	layer	of	phase	change	material	on	its	

back	side	can	achieve	a	better	economic	yield	than	a	standard	PV	module	was	evaluated	

for	 a	 specific	 configuration.	Despite	 promising	 results	 before	noon,	 the	 resulting	daily	

energy	and	economic	yields	were	almost	all	negative.	In	the	studied	configuration,	high‐

er	prices	for	electricity	on	the	spot	market	in	the	morning	combined	with	the	higher	en‐

ergy	 yield	 during	 that	 period	 are	 not	 sufficient	 for	 profitability.	 However,	 the	 phase	

change	material	with	a	higher	thermal	conductivity	is	more	appropriate	for	a	PV	module	

application	than	a	conventional	phase	change	material.	Next,	higher	energy	prices	on	the	

EPEX	 spot	market	 in	 the	morning	 provide	 better	 results	 than	 considering	 the	 sum	 of	

daily	generated	electricity	only.	

	

To	 further	 investigate	 the	 economic	 feasibility	 of	 different	 configurations,	 the	 energy‐

economic	 tradeoff	 between	 thermal	 conductivity,	 heat	 storage	 capacity	 and	 resulting	

layer	thickness	as	well	as	the	back	side	heat	transfer	of	the	PCM	with	respect	to	the	re‐

lated	 costs	 should	 be	 investigated	 and	 optimized	 via	 computational	 simulations	 and	

evaluated	based	on	enhanced	prototypes.	
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