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Abstract

Strategies to fit molecular simulation data sets to low parameter fundamental equation of state
correlations are reported. The Lennard-Jones model system truncated and shifted at interatomic
distance rc/σ = 2.5 is used as an example. Homogeneous fluid states, vapor-liquid equilibrium
including estimation of the critical point, and the Joule-Thomson inversion curve are investigated.
The results suggest that small molecular simulation data sets at homogeneous states are sufficient
to provide consistent thermodynamic information over large portions of the fluid state.
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1 Introduction

Molecular simulation has evolved to a point of general acceptance in the applied sciences. It is therefore
natural to promote its potential use in engineering. Due to low cost computational hardware capabilities,
thermodynamic property files of arbitrary size can be generated on a time scale of days. Such unlimited
data files, however, are of little value for practical engineering. For practical benefit, molecular simulation
data must be rationalized by correlation to serve as inter- and extrapolation schemes. Data correlations
are typically done for special purposes, such as phase equilibrium data, or thermal equations of state
(EOS) relating pressure p, density ρ, temperature T (pρT ) data. Complete thermodynamic knowledge,
including the above, is given by thermodynamic fundamental equation of state (FEOS) correlation.
Although EOS and FEOS correlation for molecular simulation data exist [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16], they constitute a negligible fraction of the molecular simulation literature. Molecular
simulators tend to publish selective data, such as phase equilibrium data, which are interesting and
needed, but not ready for use in process designs. In this work we are not interested in matching
molecular models to real compounds. The effort is on the investigation of thermodynamic correlation
possibilities for model systems only, in particular FEOS correlation.

The use of model systems in molecular simulation is a statistical mechanical exercise. It is there-
fore natural to attempt correlation of molecular simulation data with as much theoretical evidence as
possible [5]. Thermodynamic perturbation theory is one very successful underlying strategy for such an
approach [17, 18]. The two currently best FEOS correlations for the Lennard-Jones system [5, 6] are
prime examples for the power of the hard body reference system approach in FEOS correlations. The
underlying statistical mechanical hard body theory for molecular fluids is due to Boublik, Nezbeda, and
their coworkers as summarized in reference [19]. The resulting semi-empirical FEOS correlations [5, 6]
are by far superior to earlier fully empirical correlations [2, 4].

The perturbation theoretical approach to thermodynamic correlation, however, may require specifics
beyond simple for more complex molecular models. In such cases semi-empirical approaches may very
well become impracticable. Fully empirical correlations may still be tried. They divide into two classes:
Compound specific correlations and compound group specific correlations. The former class of correla-
tions is intended to rationalize thermodynamic data as accurate as possible, which requires sophisticated
numerical optimization strategies, individually applied to each compound under consideration. Refer-
ences [20, 15, 16] are recent examples. The latter class of correlations is intended to cover groups of fluids.
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An example is the group of non-polar fluids as opposed to the group of polar fluids. The former class of
correlations requires a very high degree of expertise due to simultaneous correlation and optimization
of mathematical models. The latter class of correlations reduces to pure fitting given a mathematical
model, which is straightforward and may be automated. In this work we focus on identifying all-purpose
correlations which may be added to any molecular simulation package for rationalizing vast amounts
of thermodynamic data for any group of fluids. Some guidelines are established to maximize profits of
fully empirical thermodynamic correlation.

To date, successful FEOS correlation development exclusively stems from the employment of real
laboratory data for real compounds [21, 22]. In the present work we investigate to what extent state-of-
the-art knowledge can be transfered to model systems as they are used in molecular simulation. Span
[22] assessed the quality of FEOS correlations as follows.

(1) Group one reference FEOS: Scientific standard for equipment calibration and evaluation. FEOS
for about 10 compounds fall in this class. Examples are argon, nitrogen, carbon dioxide, water,
methane, and ethylene. The number of fit parameters is around 50.

(2) Group two reference FEOS: Aim at reaching the standards of group one reference FEOS, but
are prohibited by less accurate experimental data. Available for some 20 technically important
substances, such as rare gases, lower alkanes, alcohols, refrigeration fluids, and air. The number
of fit parameters is around 30.

(3) Group three or technical FEOS: These FEOS aim at a significantly improved performance over
cubic type EOS, as they are discussed in reference [23]. Alternatives, considered here are based
on fully empirical low parameter modified Benedict-Webb-Rubin (MBWR) [24] type FEOS, as
advocated by Span [22]. To date, about 100 compounds have been treated by such an approach.
The number of fit parameters is around 15.

Molecular simulation, as an alternative source of thermodynamic data generation, can not replace real
laboratory experiments in general. However, it is believed to constitute a credible complement [25, 26,
27]. In particular, thermodynamic properties not directly measurable in the laboratory, are rigorously
accessible in molecular simulation. A recent study on a variety of distinct compounds has uniquely
verified such claims [20]. Group one reference FEOS can presently not be the target of molecular
simulation. However, the lower end of group two reference FEOS and the full range of group three
FEOS may. Therefore, the present work is an attempt to investigate technical grade FEOS correlations
using molecular simulation data. These low parameter FEOS correlations were simultaneously optimized
for a variety of real fluids. They are therefore candidates for routine correlations of thermodynamic data
from molecular simulation as discussed above. With this work we begin planned investigations of the
usefulness of laboratory-based correlation strategies, using the Lennard-Jones truncated and shifted
(LJTS) model fluid as a first example.

The paper is organized as follows. Section 2 describes low parameter FEOS correlations. The model
fluid is specified in section 3. Section 4 details the generated data set and subsequent manipulations.
Some details of fitting procedures are outlined in section 5. Section 6 presents results. Conclusions are
drawn in section 7.

2 Low parameter FEOS correlations

State-of-the-art FEOS correlations stem from utilization of experiments for real compounds. Thermo-
dynamic properties directly accessible in the laboratory are restricted to pρT data, heat capacities, and
speeds of sound. Occational use of phase equilibrium data or virial coefficients does not extend the
available data, since they are still pρT data. As mentioned in section 1, this work focusses on group
three or technical grade FEOS correlations. Span’s requirements for technical accuracy are [22, sec. 6.2]:

(1) In homogeneous states, density must be reproduced within ±0.2% for p < 300 bar and ±0.5% for
p < 1000 bar.

(2) In homogeneous states, heat capacity and/or speed of sound must be reproduced within ±2%.
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(3) Vapor-liquid equilibrium must be reproduced within 0.2% for vapor pressure and bubble density,
and within 0.4% for dew density. The immediate vicinity of the critical point is excluded.

Technically and scientifically most important fluid states [22, sec. 5] are temperatures up to T = 500
K and pressures up to p = 300 bar. In molecular simulation, model systems replace real compounds.
As explained in section 3, temperature and pressure in physical units have no immediate counterpart in
molecular simulation. Global statements on accuracy requirements for thermodynamic properties then
require reference states, which exist for both real compounds and molecular models, such as the critical
point or others. Here, we suggest a rule of thumb stating that 300 bar corresponds to roughly five times
the critical pressure pc for a large amount of technically relevant compounds. Assement of an upper
limit of temperature requires ambiguity. However, other rules of thumb exist for both real compounds
and molecular models relating characteristic temperatures. For methane, 1000 K corresponds to roughly
five times the critical temperature Tc. In section 6.3 we indicate how such ratios may be approximated
for molecular models by statistical mechanics. The first of the above accuracy requirements for group
three FEOS correlations using molecular simulation data is then (quite arbitrarily) redefined:

(1) The most important fluid states are limited by T/Tc < 2.5. The highest technically relevant
temperature is considered to be T/Tc = 5. In homogeneous states, density must be reproduced
within ±0.2% for p/pc < 5 and ±0.5% for p/pc < 20.

The above suggests that T/Tc < 2.5, p/pc < 5 are primary and T/Tc < 5, p/pc < 20 are secondary state
point margins for data sets to be used in routine correlation of molecular simulation data to technical
grade FEOS correlations.

In correlation work one typically uses dimensionless independent variables such as

τ ≡ Tr/T , and δ ≡ ρ/ρr , (1)

where Tr and ρr are reference values, which may or may not be the critical values Tc or ρc. If they
are the critical values, then τc = δc = 1, as supported by the theorem of corresponding states, which
becomes vital in sections 5 and 6.

It is common to decompose the Helmholtz energy A(τ, δ) into a residual part Ar(τ, δ) and a part
relating to an ideal gas Ai(τ, δ) at the same temperature and density by [28]

A(τ, δ)

NkBT
≡ a(τ, δ)

kBT
≡ αr(τ, δ) + αi(τ, δ) , or

∂m+nα(τ, δ)

∂τm∂δn
≡ αmn(τ, δ) = αr

mn(τ, δ) + αi
mn(τ, δ) . (2)

One is left with a correlation of the residual part of the total Helmholtz energy. The ideal part can
be obtained by independent means. Eq. (6) in section 3 is a simple example. We identified four low
parameter FEOS correlations for the present paper: One 10 parameter FEOS [22, sec. 7], two 12
parameter FEOS [22, 29, 30], and one 14 parameter FEOS [31]. The structure of these four FEOS
correlations are identical and of MBWR type

Ar(τ, δ)

NkBT
≡ ar(τ, δ)

kBT
≡ αr(τ, δ) =

I∑
i=1

nifi(τ, δ) =

IP∑
i=1

niτ
tiδdi +

IP+IE∑
i=IP+1

niτ
tiδdi exp(−γiδpi) , (3)

with I = 10, 12, 14 basis functions fi(τ, δ): IP polynomials and IE combinations of polynomials and
density dependent exponentials. The most important and most difficult part of FEOS correlation
is the simultaneous establishment of optimized sets IP, IE, and the particular exponents ti, di, pi,
and γi. Traditional trial and error optimization strategies for the purpose are nowadays replaced by
sophisticated procedures based on genetic algorithms [22], methods borrowed from statistical mechanics,
such as simulated annealing [32, 31], or non-linear deterministic schemes [33]. In all previous work on
generalized correlations [22, 29, 30, 31], γi = 1. This paper is not the place to ponder optimization
procedures, however, since we use the outcomes, some observations must be communicated.

Table 1 shows details of the selected FEOS correlations. The Span-Wagner 12 parameter FEOS
were designed separately for non-polar (SW12) and polar (SWp

12) compounds, because both types of
compounds could not be satisfactorily fitted with identical 12 basis functions [22, 29, 30]. We assume that
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the notion polar refers to the presence of permanent multipole moments such as dipoles or quadrupoles.
The Sun-Ely 14 parameter FEOS (SE14) is an attempt to cover both non-polar and polar compounds in
one single correlation [31]. Obviously, the number of basis functions needed an increase from 12 to 14.
We explain in Table 1 why we consider the SE14 FEOS a minor alteration of the original developments
of Span and Wagner.

Molecular simulation, as a numerical experiment, comes with errors, including fundamental statistical
uncertainties, systematic errors, and possible correlations among the two. We treat statistical errors
in molecular simulation data sets thoroughly [34, 35, 36], but we ignore possible systematic errors. In
this paper we are devoted to the concept of stability of empirical FEOS, which has been discussed by
Span [22]. Stability of FEOS correlation assesses both transferability from one compound to another
and insensitivity to the size of underlying data sets, all with identical basis functions. Span shows that
reducing the number of basis functions from 12 to 10 (S10, by two only) not only increases the stability
of a FEOS correlation, it increases it significantly [22]. He also shows that thinning a large data set from
thousands of data to some ten may not have a significant effect on accuracy of such FEOS correlations.
Here, we investigate such findings for routine correlation of molecular simulation data.

3 A simple realistic model fluid

The LJTS model system used here is a prototype of a perfectly simple realistic non-polar model fluid,
defined by a pair potential u = u(r) according to

uLJTS(r) =

{
uLJ(r)− uLJ(r = 2.5σ) , for r ≤ 2.5σ
0 , for r > 2.5σ

, with uLJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
. (4)

The potential parameters ε and σ denote the minimum energy and the distance r where the energy
goes through zero. They provide a molecular energy and length scale which can be used to reduce any
thermodynamic property to dimensionless numbers of order unity. Examples are

T ∗ = kBT/ε , ρ∗ = ρσ3 , p∗ = pσ3/ε , e∗ = e/ε , s∗ = s/kB , c∗v = cv/kB , . . . (5)

for temperature T , density ρ, pressure p, internal energy e, entropy s, isochoric heat capacity cv, and
so on. The scheme is similar to eq. (1) by using Tr = ε/kB and ρr = σ−3. It is common practice to
use stars as superscripts for reduced quantities, which is unfavorable here, due to multiple superscripts
and subscripts in FEOS correlations. Therefore, we omit stars with the understanding that reduced
quantities are indeed referred to. Note that τ and δ in eq. (1) are unchanged in the starred system of
units. Furthermore, we use lower case letters for molar quantities (per particle, for example s = S/N).

The LJTS system is a classical (c) atomic interaction model for which the ideal part of the Helmholtz
energy in eq. (2) is αi

mn = αi,c
mn with [37]

[
αi,c
mn(τ, δ)

]
=


3
2 ln τ + ln δ δ−1 −δ−2 · · ·

3
2τ
−1 0 0 · · ·

− 3
2τ
−2 0 0 · · ·

...
...

...
. . .

 , for m,n ≥ 0 . (6)

We have very recently proposed a fully optimized FEOS correlation for the LJTS model fluid [15]

αr(τ, δ) =

6∑
i=1

niτ
tiδdi +

12∑
i=7

niτ
tiδdi exp(−δpi) +

21∑
i=13

niτ
tiδdi exp

[
−χi(τ − εi)2 − ηi(δ − ϕi)2

]
. (7)

The model is of type eq. (3) augmented by nine Gaussians with additional parameters χi, εi, ηi, ϕi for
enhanced accuracy. With 21 terms this compound specific correlation essentially represents all known
molecular simulation data (Section 4) within their estimated uncertainty. In this work we use eq. (7) as
a benchmark for generalized correlations of type eq. (3).
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4 Data set

The data set used in this work is identical to the one used for the development of the benchmark FEOS
correlation [15]. Our open source molecular simulation tool ms2 [36] was used to generate a variety
of thermophysical properties at 705 state points in NV T molecular dynamics mode. Thermodynamic
data include pressure p, residual internal energy er, volume derivative of the residual internal energy
(∂er/∂v)T , and residual isochoric heat capacity crv. 1372 LJTS particles were sufficiently equilibrated
and then run for 2 to 5 million production time steps of length t∗ = t/(σ

√
m/ε) = 0.001.

System size effects were investigated and found to be irrelevant for the purpose of this work [15].
Note that the LJTS model is designed to not involve any bias through potential energy cut-offs.

Figure 1 (top left) shows the original data set in the T, ρ plane. The highest temperature is T =
11 ≈ 10Tc (about 2000 K for methane). The highest pressure is p = 6.8 ≈ 70pc (about 3000 bar for
methane). Those limits hugely exceed the projected range of accurate data correlation as indicated in
section 2. State points were selected to not be within neither the vapor-liquid nor the liquid-solid two-
phase region. The former condition is secured because the vapor-liquid phase equilibrium of the LJTS
system is known [38]. The liquid-solid phase equilibrium is unknown, therefore the molecular simulation
strategy advocated here suffers from ignorance of possible solid states in the original data set. We did
encounter this problem with a significantly larger original data set. Deviation plots as in section 6.1
revealed gross outliers at high density. In all cases the diffusion coefficient (which is measured in our
tool) dropped by orders of magnitude. Such state points must then be removed from the data set. In
summary, an oversized data set is available, allowing for investigations of varying fitting conditions as
indicated in Figure 1. Generalized FEOS correlations and their verifications can be tested against the
raw data and the benchmark FEOS based on the same data set.

5 Fits

According to eqs. (2), (3), (6), and the outlines in reference [39], multiproperty fits require data (with
parameters Tr and ρr) for αr

mn(τ, δ). The properties measured in the current application of ms2 yield

αr
01 =

(
p

ρT
− 1

)
δ−1 , αr

10 = er T−1r , αr
11 = −

(
∂er

∂v

)
T

δ−2 T−1r ρ−1r , αr
20 = −crv τ−2 . (8a)

Since we intend weighted fits, we apply the standard error propagation law with the statistical errors
∆p, ∆er , ∆(∂er/∂v)T

, and ∆crv
to eqs. (8a) to yield approximately

∆αr
01

=
∆p

ρT
δ−1 , ∆αr

10
= ∆er T

−1
r , ∆αr

11
= ∆(∂er/∂v)T

δ−2 T−1r ρ−1r , ∆αr
20

= ∆crv
τ−2 . (8b)

If the critical point of a fluid is known precisely, it would typically serve as a constraint in FEOS
correlation. In that case, Tr = Tc and ρr = ρc are enforced to yield τc = δc = 1, which is vital
for corresponding states considerations [40]. If the critical point is unknown, a guess for Tr and ρr is
necessary. An a posteriori computation of the critical point will most likely yield Tr 6= Tc or ρr 6= ρc
or both. In this situation the computed critical point becomes a function of the assumed reducing
parameters. Although the vapor-liquid phase equilibrium including the critical point of the LJTS system
are known approximately [38, 15], we do not use this knowledge for the fits, as discussed in more detail
in section 7. Here we emulate the most likely scenario that the critical point of a model fluid is not
known. We investigate to what extent generalized FEOS correlation of only homogeneous state data
can find a natural unconstrained critical point which occurs at τc = δc = 1:

(1) Use Tr and ρr to form τ = Tr/T and δ = ρ/ρr in eq. (1).

(2) Perform the FEOS fit with molecular simulation data, weighted by their uncertainties.

(3) Use the FEOS correlation to determine a critical point Tc, ρc. If the reducing (r) and critical (c)
points do not agree to satisfaction, update Tr ≡ Tc, ρr ≡ ρc, and go back to (1).
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In essence, the current implementation operates as follows. Given initial reducing parameters, which
need not be precise, a preliminary FEOS is fitted. Then, isothermal vapor-liquid equilibrium is de-
termined starting at low temperature using equality of chemical potentials versus pressure in both
phases. Full use is made of the preliminary FEOS correlation in some Newton-Raphson scheme. With
increasing temperature, the procedure will cease to yield ”phase equilibrium” with distinct coexisting
densities: The critical temperature has been surpassed and two limiting temperatures are at disposal
for refinement. Extrapolation of the rectilinear diameter [40] to the critical temperature determines a
critical density ρc to be used for ρr in the next pass. Upon convergence, the critical point conditions
(∂p/∂ρ)T=Tc

= (∂2p/∂ρ2)T=Tc
= 0 are automatically fulfilled. If the underlying data set is within the

projected limits in section 2, the procedure iterates to arbitrary numerical accuracy.
Except for our very recent own work [20, 15], to the best of our knowledge, EOS or FEOS correlation

from molecular simulation has never been performed with data other than pρT data and residual internal
energies er. Examples for such standards are the currently best semi-empirical FEOS for the full
Lennard-Jones system by Kolafa and Nezbeda [5] and Mecke et al. [6]. Occasional uses of virial
coefficients do not extend the physical data pool: Virial coefficients are still sole pρT data. Here, we
limit our investigations to:

(1) Use current standards (pρT, er) to assess the generalized FEOS correlations in section 2. Investi-
gate stability by reducing the data set.

(2) Increase the number of thermodynamic properties used in the fits.

Fitting procedures employed in this work follow the outlines of Hust and McCarthy [39] for weighted
multiproperty fits with or without constraints. Quantities needed are: Identification of properties p =
1 · · ·P , state pointsm = 1 · · ·M(p), thermodynamic properties xpm from molecular simulation with their
associated uncertainties ∆xpm

, and the corresponding properties xFEOS
pm resulting from the correlation.

As mentioned in section 2, associated uncertainties ∆xpm
are purely statistical and were obtained as

described in references [34, 35, 36]. Quality assessments of FEOS correlations are then attempted by
what may be called the overall weighted deviation

σPM =

[∑P
p=1

∑M(p)
m=1 (∆xpm)

2
/∆2

xpm∑P
p=1M(p)− I

]1/2
, with ∆xpm ≡ xpm − xFEOS

pm , (9)

where I is the number of correlation parameters in eq. (3). The denominator represents the degree of
freedom of the fit problem. In general, the smaller σPM , the closer the fit data are to the underlying
experimental data. More detailed, the following fit scenarios are possible:

1) σPM ≈ 1: The correlation properly represents the underlying data set essentially within all un-
certainties.

2) σPM >> 1: The number of correlation parameters is insufficient, uncertainties ∆xpm are underes-
timated i.e. reported too low, or both.

3) σPM << 1: Data noise is fitted, the number of correlation parameters is too high.

All reported x in this work relate to p, er, (∂er/∂v)T , crv.

6 Results

Span [22, sec. 7.2.2.3] describes a dramatic reduction of a data set for methane from more than thou-
sand data to about 10, without significant detoriation of the FEOS correlation (S10), thereby proving
extraordinary stability. It is therefore natural to investigate effects of such reduction for data sets from
molecular simulation. For the purpose, we discriminate data reduction into shrinking and thinning.
Shrinking is reducing the margins of state points, keeping data within. Thinning is removing state
points from a data set within given margins. Span’s reduction of the data set for methane is thinning.
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Table 2 quantifies both kinds of reductions illustrated in Figure 1. As indicated in section 2, low pa-
rameter FEOS correlations with technical accuracy were optimized with data sets not exceeding the
margins T/Tc < 2.5 and p/pc < 5, which corresponds to the data set M = 271 in Figure 1 and Table
2. The technically relevant margins T/Tc < 5 and p/pc < 20 with M = 481 state points are considered
upper limits for sensible applications. In this section we report some very general findinds for the FEOS
correlations considered. The quantities used for the fits are αr

01, α
r
10 from p, er. More detailed analyses

follow in subsequent sections.
As discussed in section 5, it is possible to find reducing parameters Tr and ρr so that τc = δc = 1

simultaneously. Table 2 shows that the SWp
12 and SE14 FEOS with the oversized data set M = 705 are

the only exceptions. In those two cases we were unable to enforce convergence of the overall iteration
procedure described in section 5. If one of the conditions Tr = Tc or ρr = ρc is lifted, the artifact
disappears. In view of the outlines in section 2 the artifact is irrelevant for this work. Oversized
data sets should only be used for assessments of stability and extrapolation behavior. Although the
correlation results for the SW12 and S10 FEOS are by no means gross outliers, we do not include the
direct correlations using the D = 705 data set in the following discussion.

The emerging critical points from data at only homogeneous states are absolutely realistic for all
FEOS correlations under all fit conditions. Across Table 2 the critical temperature varies within 1.077 <
Tc < 1.093. Approximately, Tc ≈ 1.085± 0.008. No case deviates by more than 1% from the estimated
value 1.080 from molecular simulation. Similarly, the critical pressure varies within 0.096 < pc < 0.104,
or approximately pc ≈ 0.100 ± 0.004. Again, all cases agree within 1% with the estimated value
0.097 from molecular simulation. The critical density is least stable across Table 2 and varies within
0.294 < ρc < 0.360. The uncertainty is up to 10% relative to the estimated value 0.318 from molecular
simulation. It becomes evident in section 6.2, however, that molecular simulation faces similar problems.
As is, critical compressibility factors vary within Zc ≈ 0.280 ± 0.034. Again, the uncertainty is up to
10% relative to the estimated value 0.282 from molecular simulation.

The Boyle and Joule-Thomson inversion temperature at zero density vary within 2.63 < TB < 2.89
and 4.85 < TJT < 5.26, or approximately TB ≈ 2.76± 0.13 and TJT ≈ 5.11± 0.25. Across Table 2, the
maximum deviation from the exact values 2.81 and 5.26 is about 8%.

Table 2 demonstrates shrinking the data set from M = 705 → 481 → 271 → 101. Fit quality is
assessed by eq. (9) with p, er as P = 2 properties xpm. The deviation σ2M assesses the quality of the
FEOS correlation with respect to the data set used for the fit. The deviation σ2D assesses the quality of
the FEOS correlation with respect to a larger data set. In that case, P (D−M) FEOS data are outside
the fit margins representing extrapolations. Therefore, σ2D is used as a measure for relative stability.

As mentioned above, the margins for D = 481 limit an extended fluid range for technical applications,
whereas the margins for D = 705 serve as an extreme test. Numerical values for σ’s certainly depend
on unknown peculiarities of the data sets. We therefore attempt to crop out only trends from Table 2
for decreasing M by data set shrinking. As to be expected, the deviation σ2M slightly decreases for all
FEOS. Also, both σ2,481 and σ2,705 increase for all FEOS. We believe that σ2M in Table 2 does not allow
for a clear ranking of the FEOS correlations concerning reproduction of p and er. Given that all FEOS
originate from sophisticated optimization procedures, the result is surprising because one would expect
the most flexible FEOS (SE14) to perform better than the least flexible FEOS (S10). Both deviations
σ2,481 and σ2,705 clearly reveal that the S10 FEOS is most stable, in accord with what was found for real
compounds [22]. The SW12 FEOS is clearly more stable than its polar counterpart SWp

12. As expected,
due to its increased length the SE14 FEOS is significantly less stable than SW12.

Data set thinning was performed as M = 271 → 22. Besides one outlier, both σ2,481 and σ2,705
are roughly independent of M for all FEOS, which may be plausible but by no means obvious. The
observation is in accord with Span’s thinning experiment for methane [22]. Apparently, using generalized
FEOS correlations, data sets as small as some 20 state points are perfectly acceptable for orientations
if nothing is known about a fluid. Comparing the generalized FEOS correlations against each other
leads to the same conclusions as above: The S10 FEOS is clearly the most stable correlation followed
by SW12. The SWp

12 and SE14 FEOS are less stable.
In summary, Table 2 shows that drastic changes in fitting conditions cause little response in the

outcome. In general, the resulting critical points appear to be within the uncertainties quoted in section
6.2. The SWp

12 FEOS correlation is clearly inferior to the SW12 FEOS correlation, as it should. The
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SE14 FEOS correlation is clearly inferior to both the SW12 and S10 FEOS correlations, despite its
superior flexibility. From the general considerations of this section it appears that the S10 FEOS as the
shortest generalized FEOS correlation performs best for the LJTS model fluid.

In the following, thermodynamic properties at state points of the original data set are recomputed
from an established FEOS correlation by the inverses of eqs. (8a)

p = (δαr
01 + 1) δτ−1 Trρr , er = αr

10 Tr ,

(
∂er

∂v

)
T

= −αr
11 δ

2 Trρr , crv = −αr
20 τ

2 . (10a)

The derivative (∂er/∂v)T is related to the probably more familiar thermal pressure coefficient γv [28]
through

γv ≡
(
∂p

∂T

)
v

=
1

T

[
p− 1

ρ

(
∂er

∂v

)
T

]
= [1 + δ (αr

01 − ταr
11)] δ ρr , (10b)

which describes slopes of isochores in a p, T diagram and is used in section 6.2.

6.1 Homogeneous states

We now turn to a more detailed analysis of the four generalized FEOS correlations. The discussion in
sections 2 and 6 supports use of eqs. (8) with α01 and α10 at D = 271 or D = 481 state points for the
establishment of fit parameters ni in eq. (3) according to Table 1. The iteration procedure outlined in
section 5 yields the parameters in Table 3 so that the reducing state point (Tr, ρr) equals the a posteriori
critical state point from the FEOS correlation (Tc, ρc).

Table 4 displays an average weighted deviation from eq. (9) resolved individually for p, er, (∂er/∂v)T ,
and crv. If the FEOS is determined from the data sets D = 271 or D = 481 with only p and er, the
S10 FEOS performs best for all properties, with SW12 second, SWp

12 third, and SE14 fourth. In general,
the more detailed results here confirm those in section 6. Extrapolation behavior is clearly best for the
shortest correlation (S10) and clearly worst for the longest correlation (SE14). Interpolation behavior
of the shortest correlation, on the other hand, is not necessarily inferior to the longer ones. Only for
pressure and internal energy the ranking is not as obvious as above. For the derivative properties
(∂er/∂v)T and crv, the superiority of S10 pertains.

From the results so far it appears that internal energy is probably that property least satisfactorily
reproduced by all FEOS correlations. This is not surprising because er is not directly accessible in
laboratory experiments with which all FEOS correlations were optimized. Thermal pressure coefficients
γv involving (∂er/∂v)T according to eq. (10b), on the other hand, are not difficult to establish from
accurate pρT data. Likewise, heat capacities cv are also directly accessible in the laboratory, although
with diminished experimental accuracy. It is therefore obvious that among the properties available
here from molecular simulation, internal energy er and isochoric heat capacity crv are predominant for
targeted improvements of generalized FEOS correlations.

Figure 2 shows deviations in pressure. If the data set with D = 271 state points is used for the fits
all FEOS yield deviations in the region of extrapolation. In all cases the predicted pressures are too low
at high temperature and too high at low temperature. The low density region is reproduced accurately
throughout. The trend pertains if the data set with D = 481 is used, however the uncertainties are
significantly reduced in all cases. It is clear from this comparison that the correlations become less
accurate as soon as the absolute pressure margin of the data set is surpassed. This observation suggests
that pressure margins larger than the projected coverage of state regions should be used. Since the low
density low pressure region appears to be easy to correlate [22, Sec. 3.1.4], it could very well be that
our distribution of state points is unfortunate: At least for pressure correlations the low density region
should probably be thinned relative to the high density high pressure regions.

The residual internal energy is analyzed in Figure 3. The behavior of the FEOS is more complicated
than for pressure. Positive and negative deviations from the molecular simulation results take multiple
turns across the T, ρ plane predominantly along T , not along ρ. These variations are different for
different correlations. Using the data set D = 271, the predicted residual internal energies are not
negative enough. These deviations set in less abruptly than for pressure. In general, positive and
negative deviations do not differ much in magnitude. The low density region for accurate correlations
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is significantly smaller than for pressure correlations. Using the data set D = 481, the uncertainties
become significantly smaller for SW12, SWp

12, and SE14. Regions of previous negative deviations may
be turned into regions of positive deviations and vice versa. Curiously, neither improvement nor change
of behavior is observed for the S10 FEOS. We favor this correlation because it is clearly seen that the
average weighted deviations in Table 4 come from a relatively small part of the phase diagram at high
density and low temperature. Furthermore, the low density region is reproduced accurately over a much
larger range than for the other FEOS, which supports the statement made for pressure with respect to
targeted distributions of molecular simulation points in the T, ρ plane. Overall, residual internal energy
appears to be much more difficult to correlate than pressure. Alternating signs of deviations along T
signals potential problems for the correlation of heat capacities, as will be seen below.

Figure 4 shows a comparison of the volume derivative of the residual internal energy, which we call
γrT ≡ (∂er/∂v)T . The property is related to the isochoric pressure coefficient γv ≡ (∂p/∂T )v through
eq. (10b). Note that γrT was not used in the fits of this section and is therefore a prediction at all
state points. The behavior of the FEOS predictions is similar as for pressure. Using the data set
D = 271, the correlation values are too low for high temperatures and too high for low temperatures
beyond the pressure margin in Table 2. The low density region is accurately correlated. Again, the S10

correlation performs outstandingly. Using the data set D = 481, changes the results only marginally for
SWp

12 and SE14 by introducing some positive deviations at supercritical densities and low temperatures.
The SW12 FEOS, however, develops a strong positive peak at those conditions. The S10 FEOS is
virtually unchanged and behaves best. In general, it appears that γrT it not a serious challenge for
any of the FEOS. This can be understood from the fact that isochores in a p, T diagram are close to
linear, irrespective density [28]. The results suggest that adding γrT to multiproperty fits may not yield
significant correlation improvements.

The residual isochoric heat capacity crv ≡ (∂er/∂T )v is illustrated in Figure 5. As another second
order derivative property it was not used in the fits of this section. From the above discussion of
the residual internal energy, correlation problems are anticipated. It is clearly seen that the largest
deviations occur in the vicinity of the vapor-liquid phase boundary. In general, the correlations predict
values significantly higher than the molecular simulation results. Those deviations peak at the critical
point, fall off rapidly with increasing temperature, and slowly with density tracing out a bell shaped
curve. At high density and low temperature strong positive deviations may develop. For supercritical
temperatures the predictions are too high throughout. As for residual internal energy, alternating signs
for deviations may be observed along isochores. The data set D = 271 increases deviations continuously
beyond the pressure margins of Table 4. For crv the use of data set D = 481 induces very little
improvement.

As to the S10 FEOS: The size of the data set has no effect on the correlation, it performs well under
all fit conditions. Whereas beyond slightly supercritical temperatures the predictions are very good,
the behavior detoriates around the critical point. In general, it is confirmed that group three FEOS
are not designed to reproduce neither the immediate nor the extended critical region. In section 6.4 we
investigate the effect of adding crv to the multiproperty fits.

Figures 2 to 5 show absolute rather than relative deviations for all properties for the following
reason. Unlike multiple equipments in the laboratory, molecular simulation emulates one single virtual
equipment, which can not be technologically fine-tuned for certain experimental circumstances. For
example, pressures in the dense liquid state vary over orders of magnitude, whereas molecular simulation
uncertainties are essentially constant, so that relative errors would obscure FEOS correlation assessments
in such cases.

This work is based on correlation experience with real compounds. We therefore revisit the accuracy
requirements for technical grade FEOS correlations in section 2. Pressure deviations ∆p(T, ρ) = pms −
pFEOS reported in Figure 2 are converted into density deviations ∆ρ(T, p) = ρms−ρFEOS by propagating
state points along isotherms from the FEOS correlation until pFEOS = pms = p. The shift in density
is then considered to be ∆ρ(T, p). Doing so, density deviation requirements stated in section 2 are
essentially met throughout the fluid range by all FEOS correlations. Outliers occur around the critical
point, which was intentionally neglected for the original optimization of technical grade quality of FEOS
correlations.

In summary, the results of this section reveal that the S10 FEOS is not only more stable than
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SW12, SWp
12, and SE14, it is also the overall most accurate correlation for all molecular simulation data

considered here, which contradicts Span’s findings for real compounds [22, Sec. 6.2.1.1] in this case.

6.2 Vapor-liquid equilibrium

We now investigate vapor-liquid equilibrium (VLE) as it results from the FEOS correlations fitted to
D = 481 state points in homogeneous regions using only αr

01 (from pressure p) and αr
10 (from residual

internal energy er). No predetermined critical point (Tc, ρc) is used for the reducing parameters (Tr, ρr)
in eq. (1). The FEOS parameters are those reported in Table 3. Previous VLE data for the LJTS model
fluid are given in references [41, 42, 43, 44, 45, 46, 47, 38]. Here, we add our own updates at states close
to the critical point. The results in Table 5 are obtained as in reference [38] with significantly larger
system sizes and longer simulation runs.

Figure 6 compares dew and bubble density ρv,l, vapor pressure ps, and evaporation enthalpy ∆hs
from the predictions of the FEOS correlations and directly simulated vapor-liquid equilibrium data of
reference [38] and Table 5. Th = 1.05 ≈ 0.97Tc is a threshold temperature. Below Th, state of the
art molecular simulation yields VLE data with statistical uncertainties within the required accuracy
stated in section 2 (0.2% in ps and ρl, 0.4% in ρv). Above Th those requirements may not be strictly
maintainable. From Table 5, at T = 1.076 ≈ 0.995Tc simulation uncertainties for dew and bubble
density exceed 3 and 1% respectively. Therefore, for a correlation to qualify as a group three FEOS
with technical accuracy, it should pass through the errorbars of the simulations. All FEOS considered
here do so for T < Th.

We now ponder the fit strategy of section 5 using the critical point established by Vrabec et al.
[38] as a reference. Figure 7 magnifies the extended critical region displayed in Figure 6. The critical
temperature from the FEOS correlations are too high by 1.4% for SW12 and SE14, and by 0.8% for SWp

12

and S10. For orientation, if noble gases or methane are used as representative real compounds [38], such
deviations amount to less than 3 K. The critical density from the FEOS correlations is significantly
more uncertain. The deviations are 10% (SW12), -7.1% (SWp

12), -4.5% (SE14), and -3.5% (S10). It is
interesting that, except SW12, the rectilinear diameters from the FEOS correlations miss the critical
density from molecular simulation by only ±1%. The larger discrepency at the critical point comes
from a sharp bend in either direction. The behavior depends on the numerical values of the reducing
point (Tr, ρr) in eq. (1) relative to the critical point and is also responsible for the failure of fits enforcing
Tr = Tc and ρr = ρc under extreme conditions in Table 1. In the laboratory the critical density is usually
determined by fitting the rectilinear diameter to a straight line for temperatures from 50 to 3 K below
Tc [28]. Using methane as a representative, such an interval corresponds to roughly 0.80 < T < 1.06.
As can be seen from Figure 7, application of the method to FEOS correlation with molecular simulation
data may entirely miss the probable bend. In fact, we find it necessary to compute VLE from the FEOS
closer to the critical point than 0.9999Tc for a proper linearization of the rectilinear diameter beyond the
probable bend. Although it is known that the rectilinear diameter may significantly deviate from truely
linear behavior for real compounds close to the critical point [48], we are currently unable to provide
further comments on this matter. The behavior is also present in the benchmark FEOS correlation for
the LJTS model fluid [15].

Vrabec et al. [38] have correlated the vapor pressure curve by an empirical 3 parameter model
ps = ps(T ), which visually performs excellently. Such models can be tested against the Clapeyron
equation [28]

dps
dT

=
∆hs

T
(
ρ−1v − ρ−1l

) , or
d ln ps
dT−1

= − T∆hs

ps
(
ρ−1v − ρ−1l

) , (11)

they must obey. All quantities on the right hand sides are direct molecular simulation results with
overall statistical errors determined by the standard error propagation law. Figure 8 reveals that the
vapor pressure correlation in reference [38, eq. (3)] is inconsistent with eq. (11). All FEOS correlations
considered here remove these inconsistencies. Those results convincingly demonstrate that individual
VLE correlations are obsolete once a sophisticated FEOS with built-in thermodynamic consistency is
available.

Above findings for the immediate vicinity of the critical point are confirmed: Bends in the rectilinear
diameter in Figure 7 have counterparts in bends in the slopes of the vapor pressure curve in Figure 8.
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The vapor pressures can be subject to a further thermodynamic consistency test. At the critical point
[28]

γs ≡
dps
dT

=

(
∂p

∂T

)
v

≡ γv , for T = Tc and ρ = ρc . (12)

In words, the slope of the vapor pressure curve γs must equal the homogeneous thermal pressure coef-
ficient γv of eq. (10b). Figure 8 shows five distinct critical points in this context, one from the direct
molecular simulations of Vrabec et al. [38], and four from the FEOS correlations quantified in Table 5
for D = 481. As for the FEOS correlations, the computation of γs at the critical point from eq. (11)
involves an undetermined 0/0, which requires a proper numerical limiting process. The computation of
γv from eq. (10b) is straightforward. Eventually, we confirm consistency γs = γv in eq. (12) with the
specific results 0.624 (SW12), 0.503 (SWp

12), 0.532 (SE14), and 0.545 (S10) for the distinct critical points
in Table 3. If one were to accept the critical point from direct molecular simulation [38] (Tc = 1.078,
ρc = 0.319, γs = 0.450) as true, γv from the FEOS correlations is 0.555 (SW12), 0.532 (SWp

12), 0.554
(SE14), and 0.560 (S10), inconsistent with eq. (12) by about 20% in all cases.

In summary, the results of this section numerically confirm internal consistency of all FEOS corre-
lations used here. It shows that group three FEOS are not designed to describe the immediate vicinity
of the critical point accurately. Sudden bends in the rectilinear diameter and the slope of the vapor
pressure curve are possible. These bends may very well be in violation of physical behavior, however,
they still satisfy thermodynamic consistency.

6.3 Virial coefficients and ideal curves

The virial EOS
p/ρT = 1 +B2(T )ρ+B3(T )ρ2 + · · · (13a)

is a meaningful power expansion of pressure about the density limit ρ → 0. It defines the nth virial
coefficient Bn(T ) as

Bn(T ) = lim
ρ=0

∂n−2

∂ρn−2

(
p/ρT − 1

ρ

)
T

= ρ−(n−1)r lim
δ=0

αr
0,n−1 . (13b)

Virial coefficients are molecular properties, which can be rigorously computed. For pair potentials of
the form u = u(rij) [49, 50]

B2(T ) = −2π

∫ ∞
0

f(r12)r212 dr12 , (14a)

B3(T ) = −8

3
π2

∫ ∞
0

∫ ∞
0

∫ 1

−1
f(r12)f(r13)f(r23) r212r

2
13 d cosα dr13 dr12 , (14b)

with f(rij) ≡ exp [u(rij)/T ]− 1 and r223 = r212 − 2r12r13 cosα+ r213 , (14c)

with α being the angle between r12 and r13 and no further refinement for symmetries of the problem.
The integrals are solved numerically.

Figure 9 shows comparisons for second and third virial coefficients. Obviously, all empirical FEOS
correlations can predict the second virial coefficient. The correlations begin to fail quantitatively for
the third virial coefficient. Higher virial coefficients can not be reproduced by the generalized FEOS
correlations considered here. However, virial coefficients are of no practical importance if sophisticated
FEOS correlations are available. It would therefore be purely academical to discuss virial coefficients
beyond the second.

Experts in the field of thermodynamic data correlation demand from FEOS correlation realistic
reproduction of so-called ideal curves [51, 22]. Such curves relate to properties of a compound as if at
vanishing density, the ideal gas state. In statistical mechanics, ideal curves are univocally accessible in
the limit of zero density for any given molecular interaction model with arbitrary numerical accuracy.
Here we consider two such state points:
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(1) The Boyle temperature TB tags the state point at zero density, where the second virial coefficient
B2(T ) in the virial EOS eq. (13b) equals zero. It is the origin of both the Boyle curve and the
ideal curve [22].

(2) The Joule-Thomson inversion temperature TJT tags the state point at zero density, where the
Joule-Thomson coefficient µJT ≡ (∂T/∂p)h equals zero. It is the origin of the Joule-Thomson
inversion curve [22].

The conditions are therefore

B2(T = TB) = 0 , and lim
ρ=0

µJT(ρ, T = TJT) = 0 . (15a)

Such conditions involve no more than pρT data, as can be seen through eq. (13b) and the thermodynamic
identities

lim
ρ=0

µJT(ρ, T ) = −d[B2(T )/T ]

dT−1
= T

dB2(T )

dT
−B2(T ) . (15b)

In the laboratory, the above conditions are derived properties (impossible to measure directly). In statis-
tical mechanics they constitute pρT data, albeit without statistical errors. The rigorous determination
of TB and TJT for a variety of molecular interaction models is described in references [49, 52, 53]. In
summary, the conditions in eq. (15a) are fullfilled, with eq. (4), if∫ ∞

0

[exp[−u(r)/T ]− 1] r2 dr = 0 , and

∫ ∞
0

[(1− u(r)/T ) exp[−u(r)/T ]− 1] r2 dr = 0 , (15c)

where it is to be remembered that all quantities are reduced (starred) quantities. We obtain TB = 2.806
and TJT = 5.256. Using the critical temperature Tc = 1.082, it is interesting that the ratios TJT : TB :
Tc = 4.8 : 2.6 : 1 are consistent with what was found for a variety of other models [52, 53] and real
compounds [54]. In terms of FEOS correlations the above discussed state points are determined by

δ = 0, τ = τB : lim
δ=0

αr
01 = 0 , and δ = 0, τ = τJT : lim

δ=0
(αr

01 + δαr
02 + ταr

11) = 0 . (16)

The results of the above outline are displayed in Figure 10 with parameters fromD = 481 state points,
as specified in Table 3. The Joule-Thomson inversion curve is presented in three-dimensional pρT -space.
Clearly, from low temperatures to the maximum, the Joule-Thomson inversion curve is predicted almost
identically by all FEOS correlations. Beyond the maximum, deviations occur and culminate only in the
p, T -projection at very low density. In summary, the Joule-Thomson inversion curve, as computed
from the FEOS correlations, appears to not violate established behavior, as other correlations may
[22, Secs. 4.6.3 and 6.2.1.1]. In this work, we did not attempt to verify the predicted Joule-Thomson
inversion curves by molecular simulation, as current standards constitute a major undertaking to do so
[55]. However, a rigorous measuring prescription for the Joule-Thomson coefficient in molecular NV T
simulation has been devised recently [37, 56]. Therefore, direct checks of the predictions in Figure 10 are
possible in principle. We will implement the measuring prescription in ms2 [36]. Here, Joule-Thomson
inversion curves are predicted through FEOS correlation only. If the four correlations are considered
to be independent prediction models, we state from Table 6 that the Joule-Thomson inversion curve
has a maximum most likely to occur at Tm = 2.42 ± 0.08, pm = 1.14 ± 0.01, ρm = 0.38 ± 0.01, and
an intersection with the bubble line most likely to occur at Ts = 0.878 ± 0.003, ps = 0.0270 ± 0.0005,
ρl = 0.678±0.003. Using similar arguments for a prediction of the Joule-Thomson inversion temperature
at zero density from FEOS correlations yields TJT = 5.16±0.23, consistent with the exact value of 5.256.

6.4 Effects of increasing the number of fit properties

The previous sections were concerned with current standards of using pressure and internal energy
for thermodynamic data correlation. We now turn to addition of thermodynamic properties beyond
current standards. The last sections confirm that, using pressure p and residual internal energy er

only, all FEOS correlations represent pρT , er data and their temperature and density derivatives well.
One may anticipate that additional thermodynamic properties may distort the fits. Agreements with
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(∂er/∂v)T and crv ≡ (∂er/∂T )v will become better if they are included, whereas agreements with p and
er may worsen. The inclusion of properties not accessible in the laboratory have, of course, never been
analyzed for usefulness in FEOS correlation. To do so, we start from current standards using the data
set D = 481 outlined in Table 2 and create the four scenarios in Table 7:

(1) Use αr
01 ∝ p and αr

10 ∝ er as outlined in previous sections.

(2) Add αr
11 ∝ (∂er/∂v)T .

(3) Add αr
20 ∝ crv ≡ (∂er/∂T )v.

(4) Add αr
11 and αr

20 simultaneously.

Several overall weighted deviations according to eq. (9) are used:

(1) σ2,481: Uses the fit data set for assessment. Quantifies to what extent the p and er representations
by the FEOS correlations worsen by including additional properties.

(2) σ4,481: Uses the fit data set for assessment. Quantifies to what extent the overall fit quality
improves by including additional properties.

(3) σ2,705: Uses an oversized data set for assessment. Quantifies to what extent the extrapolation
behavior of p and er is worsend by including additional properties.

(4) σ4,705: Uses an oversized data set for assessment. Quantifies to what extent the overall extrapo-
lation behavior improves by including additional properties.

A horizontal examination of those weighted deviations in Table 7 allows for a clear ranking of the
generalized FEOS correlations. As already concluded and outlined in sections 6 and 6.1, the S10 FEOS
performs best in all scenarios, followed by SW12, SWp

12, and SE14. Again, such ranking does by no
means imply failure. We still consider the SE14 FEOS a very good correlation, much better than
any cubic type EOS could be. We stress again that these FEOS correlations are outcomes of purely
mathematical models: No physical concept whatsoever is involved. As molecular thermodynamicists,
we find it frustrating albeit amazing how dominantly these models defeat any semi-empirical attempt
we were involved in or are aware of.

A vertical examination of Table 7 reveals that inclusion of αr
11 has no effect. Inclusion of αr

20, however,
does have an effect on the correlations, which we now discuss using the above weighted deviations.
σ2,481 increases by a factor of roughly 2. This means that inclusion of αr

20 worsens the p and/or er

representations for all FEOS correlations. σ4,481 decreases by a factor of roughly 2. Inclusion of αr
20

overcompensates the worsening of p and/or er globally. σ2,705 increases by a factor of roughly 1.5.
This means that inclusion of αr

20 worsens the p, er extrapolation (in excess of representation) behavior
for all FEOS correlations. σ4,705 stays about constant, which means that the inclusion of αr

20 globally
compensates the worsening extrapolation behavior for p and er. All mentioned effects are significantly
less pronounced for the S10 FEOS, which is another advocacy for its superior stability. Table 7 also
contains the critical points, Boyle, and Joule-Thomson inversion temperatures at zero density.

If αr
20 is added, the overall accuracy decreases. The finding is probably least surprising in view

of eq. (10b), showing that αr
11 solely depends on pρT data, accurately accessible in the laboratory,

whereas αr
20 is not so. Calorimetric laboratory experiments do not only exhibit larger errors than

pρT experiments, they are also more expensive to perform. Simply, much less experimental data are
available for caloric than for thermal thermodynamic properties. All FEOS correlations were optimized
using laboratory data. Therefore, if properties correlate less satisfactorily, it should be αr

10 and αr
20,

which appears to be the case here.

7 Conclusions

Our compound specific and fully optimized benchmark FEOS correlation for the LJTS model fluid with
21 terms [15] is more accurate than any of the correlations considered here. However, in this work the
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emphasis is on generalization. We wish to rationalize molecular simulation data routinely, possibly on
the fly. The benchmark FEOS was optimized with the D = 705 data set using αr

01, α
r
10, α

r
11, α

r
20. Neither

reducing the data set nor effects of the nature of thermodynamic properties included in the fits were
investigated in that work. Here, we have exhausted generalized fully empirical correlation possibilities
of molecular simulation data based on established evidence from real compounds.

It is confirmed through this work that molecular simulation data can be efficiently correlated by
FEOS. In particular, correlations can be accomplished with low parameter FEOS exhibiting technical
accuracy. Whereas empirical data correlation is compound specific, it can still be generalized to classes of
compounds by employing state-of-the-art multiproperty correlation strategies. In this work we examined
four particular FEOS correlations developed for the classes of non-polar and polar compounds from real
laboratory experiments, here applied to molecular simulation data. The LJTS model fluid is simple and
non-polar. If the concept of generalized FEOS correlation based on real laboratory evidence does carry
over to molecular simulation data, then it should be the generalized correlations for polar compounds
to rank last in the present case: They do.

The strategy advocated here is meant as a generalized supplement to large scale molecular simulations
of molecular interaction models for fluid systems. Usually, nothing is known about details of the phase
behavior of models. In particular, for the purpose at hand, possible two-phase regions involving fluid
and solid states must be identifiable. Based on the experience gained in this work, there is no need
to identify vapor-liquid, vapor-solid, or liquid-solid phase equilibrium a priori. All FEOS correlations
considered here will signal the presence of two phases by gross fit outliers. The overall fit procedure will
then consist of iterations removing unwanted data points.

The use of constraints [39] is popular in thermodynamic correlations. They pin a FEOS correlation
to exact predetermined values. As such, they have a pronounced effect on overall performance and must
not be used excessively. In reference FEOS correlations, an accurate knowledge of the critical point is
always used as a constraint to enforce τc = δc = 1, as in eq. (1). As indicated around Table 5, critical
points for model fluids update as computing power increases. Our own update from 2006 [38] suggests a
conservative estimate of uncertainties ∆Tc

≈ ∆ρc ≈ ∆pc > ±0.01, which is higher than laboratory based
estimates. Therefore, unlike for real compounds, we would not use estimated critical properties as fit
constraints if a ciritical point can not be established more accurate than 0.1 percent in both temperature
and pressure, and 1 percent in density. All is not the case to date for molecular simulation data. Other
state points, such as in eq. (16), can be computed for molecular models with arbitrary accuracy, so that
they could serve as constraints. Here, Boyle and Joule-Thomson inversion temperatures at zero density
are sufficiently represented without constraints. Use as constraints would not enhance practical benefits.

For all four generalized FEOS correlations considered in this work, stability criteria, as defined by
Span [22], are fullfilled, but to varying degree: Low parameter FEOS correlations appear to tolerate
extremely small molecular simulation data sets. Some 700 original homogeneous state points cover
extreme conditions. Reduction in various scenarios to some 20 homogeneous state points, covering
mildly ambient conditions, does not alter the quality of the resulting FEOS correlation discernibly.
Currently, we are not in a position to project far reaching consequences onto other model fluids.

FEOS correlation has a built-in guarantee of thermodynamic consistency. Vapor-liquid equilibrium
correlations on the other hand, as in reference [38], are most likely subject to inconsistencies. Corre-
sponding findings for the LJTS fluid using FEOS correlation are therefore no surprise. As outlined by
Span [22], vapor-liquid equilibrium correlations have no rigorous meaning other than providing start-
ing values for iterations in case an accurate FEOS correlation for a compound is available, which is
confirmed here.

We suggest that fully empirical FEOS correlations be considered an unavoidable complement to
molecular simulation for practical purposes. The four alternatives considered here cover non-polar and
polar compounds. We feel that those choices can be routinely and confidentially used for molecular
simulation data reduction. One of them will perform better than others for particular cases. In the
present case, for a simple non-polar model fluid, the non-polar versions S10 and SW12 performed best,
as should be. Recent requests to make molecular simulation a more mainstream tool in engineering [27]
are definitely satisfied by the results of this work.

Thermodynamic correlation of real laboratory data and molecular simulation data differ in the un-
derlying uncertainties. Whereas thermal (pρT ) data have lower uncertainties in the real laboratory,
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residual caloric data have much lower uncertainties if measured for a model system in molecular simu-
lation. Weighted deviations eq. (9) of molecular simulation data (for example Tables 2, 4, 7) are then
significantly larger than real laboratory counterparts (for example [22, sec. 6.2]) simply because of lower
associated uncertainties ∆xpm

. Scenario (2) in section 5 applies to most of the uncertainties reported in
this work: Molecular simulation uncertainties are not reported too low, they are low indeed. Increased
correlation deviations for residual internal energy er of all generalized FEOS models are due to extraor-
dinary low molecular simulation uncertainties. Such numbers are not alarming because er can not be
measured in the real laboratory directly, and has therefore never been used for correlation assessment.
In the context of this work it appears that fully empirical generalized FEOS correlation would benefit
from a systematic investigation of well-defined model systems in molecular simulation.
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Span-Wagner (12) polar Span-Wagner (12) Sun-Ely (14) Span (10)
# pi di ti i pi di ti i pi di ti i pi di ti i

1 (1) - 1 1/8 = 0.125 1
2 (3) - 1 2/8 = 0.250 1 - 1 2/8 = 0.250 1 - 1 2/8 = 0.250 2
3 (2) - 1 9/8 = 1.125 2 - 1 9/8 = 1.125 2
4 (2) - 1 10/8 = 1.250 2 - 1 10/8 = 1.250 3
5 (3) - 1 12/8 = 1.500 3 - 1 12/8 = 1.500 3 - 1 12/8 = 1.500 1
6 (1) - 2 10/8 = 1.250 3
7 (2) - 2 11/8 = 1.375 4 - 2 11/8 = 1.375 6
8 (4) - 3 2/8 = 0.250 5 - 3 2/8 = 0.250 4 - 3 2/8 = 0.250 4 - 3 2/8 = 0.250 4
9 (3) - 7 7/8 = 0.875 6 - 7 7/8 = 0.875 5 - 7 7/8 = 0.875 5

10 (1) - 8 6/8 = 0.750 5

11 (1) 1 1 0/8 = 0.000 7
12 (2) 1 1 19/8 = 2.375 6 1 1 19/8 = 2.375 8
13 (2) 1 2 5/8 = 0.625 7 1 2 5/8 = 0.625 6
14 (2) 1 2 16/8 = 2.000 7 1 2 16/8 = 2.000 9
15 (1) 1 3 16/8 = 2.000 7
16 (1) 1 5 14/8 = 1.750 8
17 (2) 1 5 17/8 = 2.125 8 1 5 17/8 = 2.125 10

18 (2) 2 1 28/8 = 3.500 9 2 1 28/8 = 3.500 11
19 (1) 2 1 29/8 = 3.625 9
20 (1) 2 1 33/8 = 4.125 8
21 (2) 2 1 52/8 = 6.500 10 2 1 52/8 = 6.500 12
22 (1) 2 4 29/8 = 3.625 10
23 (1) 2 4 33/8 = 4.125 9
24 (2) 2 4 38/8 = 4.750 11 2 4 38/8 = 4.750 13

25 (2) 3 2 25/2 = 12.50 12 3 2 25/2 = 12.50 14
26 (1) 3 3 29/2 = 14.50 11
27 (1) 3 3 34/2 = 17.00 10
28 (1) 3 4 24/2 = 12.00 12

Table 1: Comparison of the Span-Wagner and Sun-Ely FEOS, referred to in this paper as SW12, SWp
12, SE14,

and S10. All FEOS are of MBWR type and have the specific form of eq. (3) with γi = 1. Labels i refer to the
labels in the original sources [22, eqs. (6.12), (6.13), (7.20), (7.21), Table 7 ] and [31, eq. (16), Table 1]. The
first column numbers all 28 basis functions shared by the four correlations, with their occurences in parantheses.
The sorting is with ascending first ti, second di, and third pi. It is clearly seen through this representation,
that the three Span-Wagner FEOS (SW12, SWp

12, and S10) are largely independent developments, because they
have little basis functions in common. These authors initially offered their genetic algorithm a bank of basis
functions with 584 members for selection [22]. The Sun-Ely FEOS (SE14) was selected out of some bank of basis
functions not further specified by a simulated annealing strategy [31, 57]. Since the two optimization strategies
are entirely unrelated, it is puzzling that the resulting SE14 correlation is an almost perfect linear combination
of SW12 and SWp

12: Only basis function 11 is not contained in either SW12 or SWp
12.
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Tm ρm pm M σ2M σ2,481 σ2,705 Tr = Tc ρr = ρc pc Zc TB TJT
11.0 0.94 6.8 705 5.4 5.4 1.086 0.319 0.101 0.292 2.78 5.25
11.0 0.94 6.8 705 22.8 22.8 1.106 0.360 0.113 0.284 2.81 5.27

overall iteration failed for SWp
12 and SE14

16.1 16.1 1.084 0.322 0.100 0.288 2.81 5.30
5.0 0.85 2.0 481 52 52 158 1.093 0.350 0.104 0.279 2.82 5.26

47 47 209 1.086 0.296 0.099 0.308 2.68 4.93
57 57 232 1.093 0.305 0.102 0.307 2.78 5.12
57 57 84 1.086 0.308 0.101 0.301 2.84 5.35

2.5 0.85 0.5 271 30 75 233 1.084 0.348 0.100 0.264 2.85 5.29
26 91 300 1.087 0.316 0.101 0.294 2.71 4.99
39 153 480 1.086 0.335 0.101 0.277 2.78 5.05
20 37 80 1.086 0.308 0.101 0.300 2.82 5.31

22 55 75 222 1.077 0.360 0.096 0.246 2.84 5.28
68 110 338 1.090 0.324 0.103 0.293 2.73 5.01

1634 1299 1617 1.081 0.334 0.097 0.269 2.79 5.08
15 36 106 1.086 0.294 0.100 0.313 2.82 5.32

1.2 0.83 0.2 101 30 98 277 1.082 0.351 0.099 0.260 2.89 5.36
23 135 389 1.083 0.329 0.099 0.278 2.73 4.98
7 74 319 1.084 0.329 0.100 0.279 2.63 4.85
16 60 120 1.081 0.321 0.098 0.282 2.76 5.21

Table 2: FEOS correlation results. The first row presents our fully optimized benchmark correlation of reference
[15]. That FEOS was fitted to all available molecular simulation data at M = 705 state points. In subsequent
rows, that original data set was shrunk under limiting conditions (subscript m) for temperature, density, and
pressure as illustrated in Figure 1. The state point margins Tm = 5 and pm = 2 (M = 481) limit technically
sensible applications (see section 2). The state point margins Tm = 2.5 and pm = 0.5 correspond to the range
targeted for group three FEOS correlations. Those margins were used for arbitrarily thinning the M = 271 data
set. Consecutive rows are for the FEOS correlations SW12, SWp

12, SE14, and S10. Here, only αr
01 (from pressure

p) and αr
10 (from residual internal energy er) are used for the fits, so that P = 2 in eq. (9) for the fit assessments

σ2M , σ2,481, and σ2,705 (see text). The critical points emerge from convergence of the overall iteration procedure
described in section 5 so that τc = δc = 1 in all cases. Vrabec et al. [38] report for the critical point Tc = 1.0779,
ρc = 0.3190, pc = 0.0935, with a resulting critical compressibility factor Zc ≡ pc/ρcTc = 0.272. From eqs. (15)
the Boyle temperature and Joule-Thomson inversion temperature at zero density are precisely TB = 2.806 and
TJT = 5.256.
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D/i SW12 SWp
12 SE14 S10

271 Tr = Tc = 1.0837 Tr = Tc = 1.0873 Tr = Tc = 1.0858 Tr = Tc = 1.0863
ρr = ρc = 0.3484 ρr = ρc = 0.3164 ρr = ρc = 0.3348 ρr = ρc = 0.3084

1 0.96567442E + 00 0.85842741E + 00 0.83936920E + 00 0.62832230E + 00
2 −0.27247402E + 01 −0.30321803E + 01 −0.21235453E + 01 −0.16240298E + 01
3 0.70542114E + 00 0.10150787E + 01 −0.23928234E + 00 −0.56544070E − 01
4 −0.81497912E − 01 0.72042750E − 01 0.11282992E + 00 0.69371366E − 01
5 0.10508043E + 00 0.33024837E − 03 0.65184407E − 01 0.71178545E − 04
6 0.55698055E − 03 0.36120698E + 00 0.40999175E − 03 0.21742890E + 00
7 0.29208379E + 00 0.52457088E + 00 −0.50961391E − 02 0.10902180E + 00
8 −0.20029777E − 01 −0.15334104E − 01 0.63130580E + 00 −0.10368780E + 00
9 −0.19079453E + 00 −0.35359990E + 00 0.73363091E + 00 0.24531642E − 02

10 0.82713210E − 02 0.37227954E − 01 0.68254260E − 02 −0.17576068E − 01
11 −0.30012859E − 01 −0.83167416E − 01 −0.29492493E + 00
12 0.19238860E − 01 −0.23277092E − 01 0.32181335E − 02
13 −0.25300562E − 01
14 −0.20206682E − 01

481 Tr = Tc = 1.0925 Tr = Tc = 1.0860 Tr = Tc = 1.0927 Tr = Tc = 1.0858
ρr = ρc = 0.3496 ρr = ρc = 0.2964 ρr = ρc = 0.3048 ρr = ρc = 0.3078

1 0.10255408E + 01 0.85770007E + 00 0.89859893E + 00 0.62879477E + 00
2 −0.29883393E + 01 −0.34235103E + 01 −0.32980220E + 01 −0.16369988E + 01
3 0.93567437E + 00 0.16935903E + 01 0.13537245E + 01 −0.48132993E − 01
4 −0.40307217E − 01 0.54495303E − 01 0.51497465E − 01 0.68799944E − 01
5 0.10401008E + 00 0.17731470E − 03 0.53622643E − 01 0.66281256E − 04
6 0.60270067E − 03 −0.81911732E − 01 0.21657187E − 03 0.23776802E + 00
7 0.24151136E + 00 0.14110767E + 00 −0.34864858E − 01 0.96122569E − 01
8 −0.52932468E − 01 −0.32082965E − 01 0.20885830E + 00 −0.96494864E − 01
9 −0.20304201E + 00 −0.11025131E + 00 0.26059367E + 00 0.63081633E − 02

10 −0.45448678E − 01 0.50742097E − 02 −0.28835068E − 01 −0.19306343E − 01
11 −0.35478321E − 01 −0.54316035E − 01 −0.17205388E + 00
12 0.33959630E − 01 −0.32609596E − 01 −0.18945299E − 01
13 −0.58381045E − 01
14 −0.17638216E − 01

Table 3: Parameters ni of the SW12, SWp
12, SE14, and S10 FEOS correlations eq. (3) obtained from weighted

fits of α01 and α10 of eqs. (8). The numbering i is for consecutive terms in Table 1. The data set used has
D = 271 (top) and D = 481 (bottom) state points as described in Figure 1 and Table 2. The fits are not
constrained to a predetermined critical point. The reducing parameters (Tr, ρr) are identical with the critical
points (Tc, ρc) of the correlations. Therefore, in reduced units, the critical point occurs at τc = δc = 1 in all
cases.

p er (∂er/∂v)T crv
D σ1,271 σ1,481 σ1,705 σ1,271 σ1,481 σ1,705 σ1,271 σ1,481 σ1,705 σ1,271 σ1,481 σ1,705

271 3.2 18.6 87.9 43.0 105.3 318.5 2.3 3.7 6.8 9.3 25.6 40.5
5.5 38.3 150.8 36.9 123.2 397.5 2.7 5.6 9.0 13.0 34.7 56.1
3.2 46.9 183.7 56.1 213.1 657.2 1.8 6.7 12.1 15.7 51.4 71.8
3.4 19.1 75.1 27.9 48.2 85.4 1.6 2.2 4.0 7.1 7.6 21.6

481 5.8 10.2 73.2 62.8 73.2 212.4 4.5 3.9 6.1 9.7 19.9 38.2
9.3 21.4 74.5 49.1 63.9 286.9 2.6 3.0 5.8 9.2 33.1 57.7
7.7 11.9 61.0 67.5 80.8 323.3 2.7 3.0 6.3 9.9 34.6 63.6
6.0 14.3 59.8 73.8 79.6 103.3 1.8 2.2 4.0 8.7 9.3 21.1

T21 2.9 3.0 3.4 6.5 6.1 6.8 1.3 1.2 1.4 2.0 2.0 1.9

Table 4: FEOS correlation results from D = 271 and D = 481 state points as quantified in Table 2. Consecutive
rows are for the FEOS correlations SW12, SWp

12, SE14, and S10. Only αr
01 (from pressure p) and αr

10 (from residual
internal energy er) are used in those fits (542 and 962 independent thermodynamic properties). Fit assessments
σ1,M are from eq. (9) and refer to the one indicated property compared at M state points. The last row (T21)
refers to our fully optimized benchmark correlation [15] with 21 terms fitted to αr

01, α
r
10, α

r
11, α

r
20 at D = 705

state points (2820 independent thermodynamic properties).
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T ps ρv ρl φs hv hl ∆hs

1.010 0.0646(1) 0.1055(3) 0.5594(5) 0.3325(3) −1.254(4) −4.253(2) 2.999(7)
1.015 0.0668(1) 0.1105(4) 0.5545(5) 0.3325(3) −1.302(4) −4.222(2) 2.920(7)
1.020 0.0689(1) 0.1162(4) 0.5467(7) 0.3314(4) −1.362(5) −4.180(3) 2.818(8)
1.030 0.0725(1) 0.1240(4) 0.5305(8) 0.3272(4) −1.429(4) −4.090(3) 2.661(8)
1.040 0.0771(1) 0.1379(7) 0.514(1) 0.3261(7) −1.564(7) −3.999(4) 2.44(1)
1.050 0.0819(1) 0.1543(7) 0.497(2) 0.325(1) −1.716(7) −3.898(5) 2.18(1)
1.060 0.0861(1) 0.1683(9) 0.468(2) 0.318(1) −1.83(1) −3.75(1) 1.92(2)
1.065 0.0893(1) 0.188(1) 0.461(2) 0.325(1) −2.01(1) −3.709(9) 1.71(2)
1.068 0.0904(1) 0.195(2) 0.438(2) 0.317(1) −2.06(2) −3.60(1) 1.54(3)
1.070 0.0918(1) 0.206(2) 0.438(2) 0.322(1) −2.15(2) −3.59(1) 1.44(3)
1.072 0.0927(1) 0.210(2) 0.428(5) 0.319(3) −2.18(2) −3.54(2) 1.36(4)
1.074 0.0934(2) 0.231(6) 0.404(3) 0.317(4) −2.31(5) −3.42(3) 1.11(8)
1.076 0.0944(2) 0.256(7) 0.411(4) 0.334(4) −2.48(5) −3.45(3) 0.97(8)

Table 5: New vapor-liquid equilibrium data for the LJTS model fluid. The molecular simulations were
performed as before with our tool ms2 [36, 38] using much larger simulation lengths and much larger system sizes.
The subscript s stands for saturation. Whereas our previous VLE data extended from T = 0.64 to 1.06 [38], the
present data cover the extended critical region from T = 1.010 to 1.076. Also shown is the computed rectilinear
diameter φs ≡ (ρv + ρl)/2 and enthalpy of evaporation ∆hs ≡ hv−hl. Statistical simulation uncertainties are in
the last digit: 0.97(8) means 0.97 ± 0.08. The highest temperature T = 1.076 corresponds to roughly 0.995Tc,
where deviations of the FEOS correlations are largest. Using the same strategy as in reference [38], an updated
critical point shifts insignificantly as Tc = 1.0779 → 1.0800, ρc = 0.3190 → 0.3176, pc = 0.0935 → 0.0969, and
Zc = 0.272→ 0.282.

Tm pm ρm Ts ps ρs TJT

SW12 2.405 1.145 0.386 0.881 0.0274 0.675 5.260
SWp

12 2.426 1.129 0.381 0.876 0.0267 0.680 4.933
SE14 2.362 1.142 0.392 0.876 0.0265 0.680 5.117
S10 2.500 1.148 0.374 0.880 0.0272 0.678 5.346
T21 2.413 1.166 0.389 0.882 0.0276 0.678 5.254

Table 6: Specific points on the Joule-Thomson inversion curves, as calculated from the FEOS correlations from
D = 481 state points in Table 3 and displayed in Figure 10: Maximum (m), intersection with the bubble line (s),
duplication of the Joule-Thomson inversion temperature at zero density from the exact eqs. (15) (TJT = 5.256)
and Table 2. The last row (T21) refers to our fully optimized benchmark correlation with 21 terms [15].
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SW12 SWp
12 SE14 S10 T21

(1) αr
01, α

r
10

σ2,481 52 47 57 57
σ4,481 38 37 44 40
σ2,705 158 209 232 84
σ4,705 113 150 167 60
Tc 1.093 1.086 1.093 1.086
ρc 0.350 0.296 0.305 0.308
pc 0.104 0.099 0.102 0.101
Zc 0.273 0.308 0.307 0.301
TB 2.82 2.68 2.78 2.84
TJT 5.26 4.93 5.12 5.35

(2) αr
01, α

r
10, α

r
11

σ2,481 54 48 56 57
σ4,481 39 37 43 41
σ2,705 160 208 229 84
σ4,705 115 149 165 60
Tc 1.093 1.086 1.092 1.086
ρc 0.349 0.297 0.306 0.308
pc 0.105 0.099 0.102 0.101
Zc 0.272 0.308 0.305 0.301
TB 2.82 2.68 2.78 2.84
TJT 5.26 4.93 5.11 5.34

(3) αr
01, α

r
10, α

r
20

σ2,481 40 53 60 28
σ4,481 29 39 44 20
σ2,705 135 165 180 76
σ4,705 97 119 130 55
Tc 1.106 1.075 1.083 1.086
ρc 0.342 0.250 0.264 0.310
pc 0.112 0.093 0.096 0.101
Zc 0.295 0.344 0.337 0.300
TB 2.81 2.63 2.71 2.82
TJT 5.25 4.88 5.03 5.32

(4) αr
01, α

r
10, α

r
11, α

r
20

σ2,481 39 53 62 28 4.8
σ4,481 28 39 46 20 3.5
σ2,705 135 165 180 76 5.4
σ4,705 97 119 130 54 4.0
Tc 1.105 1.077 1.083 1.086 1.086
ρc 0.342 0.254 0.264 0.310 0.319
pc 0.112 0.094 0.096 0.101 0.101
Zc 0.295 0.342 0.336 0.300 0.292
TB 2.81 2.63 2.71 2.82 2.78
TJT 5.25 4.88 5.03 5.32 5.25

Table 7: Several scenarios (1) to (4) further assess the correlations considered in this work. The underlying
data set consists of D = 481 state points as quantified in Table 2. All simulated properties αr

01 (from pressure
p), αr

10 (from residual internal energy er), αr
11 (from volume derivative of residual internal energy (∂er/∂v)T ),

and αr
20 (from residual isochoric heat capacity crv ≡ (∂er/∂T )v) are used in various combinations. Note that

scenarios (2) and (3) have never been tried before with molecular simulation data. Scenario (4) was first used
for our fully optimized benchmark correlation T21 [15]. Fit assessments σ2,481 and σ2,705 are as in Table 2, using
p, er, whereas σ4,481 and σ4,705 are obvious extensions of eq. (9) to (∂er/∂v)T , and crv, including all molecular
simulation results in all fits. Among the generalized correlations for the LJTS model fluid S10 performs best.

22



0 0.5 1
0

5

10

T

ρ

705

0 0.5 1
0

5

10

T

ρ

101

0 0.5 1
0.5

1.5

2.5

T

ρ

271

0 0.5 1
0.5

1.5

2.5

T

ρ

22

Figure 1: T, ρ state points used for FEOS correlation in this work. Four independent thermodynamic properties
at each state point are available: Pressure p, residual internal energy er, isothermal volume derivative of the latter
(∂er/∂v)T , and isochoric heat capacity crv = (∂er/∂T )v. The original data set is 705 state points. Maximum
temperature T = 11 corresponds to about 2000 Kelvin and maximum pressure p = 6.8 (northeast border of
states is isobaric) corresponds to about 3000 bar if methane is used as a representative for the LJTS model fluid.
Such states are beyond any practical application. A dramatic shrinkage of state points from 705 to 101 (top)
and thinning from 271 to 22 (bottom) is shown. Consequences for FEOS correlation are discussed around Table
2.
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Figure 2: Pressure deviations ∆p(T, ρ) ≡ p(T, ρ) − pFEOS(T, ρ) between molecular simulation raw data and
correlation (FEOS) results. The parameters of the FEOS correlations are from p and er at D = 271 state points
(left) and D = 481 state points (right) as quantified in Table 2. Note that molecular simulation uncertainties
∆p as defined in section 5 are too small to be visible on the scale of the plot. None of the displayed state points
is within the vapor-liquid two-phase region of any of the correlations.
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Figure 3: Residual internal energy deviations ∆er(T, ρ) ≡ er(T, ρ)− er,FEOS(T, ρ). Details are as in Figure 2.
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Figure 4: Deviations in volume derivative of the residual internal energy ∆(∂er/∂v)T (T, ρ) ≡ (∂er/∂v)T (T, ρ)−
(∂er,FEOS/∂v)T (T, ρ). Details are as in Figure 2.
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Figure 5: Deviations in residual isochoric heat capacity ∆crv(T, ρ) ≡ crv(T, ρ) − cr,FEOS
v (T, ρ). Details are as in

Figure 2.
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Figure 6: Vapor-liquid equilibrium for the LJTS system: Saturated density ρv,l and rectilinear diameter φ ≡
(ρv + ρl)/2 (top), vapor pressure ps (middle), evaporation enthalphy ∆hs (bottom). Symbols are molecular
simulation results from reference [38] (diamonds) and Table 5 (circles). Lines are the FEOS correlations.
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Figure 7: Vapor-liquid equilibrium for the LJTS system in the extended critical region: Symbols are saturated
densities ρv,l and rectilinear diameters φ ≡ (ρv + ρl)/2 from Table 5. Lines represent correlations. SW12: dash-
dotted, SWp

12: dotted, SE14: dashed, S10: solid. The solid line passing closest through the symbols represents
the independent density correlations of Vrabec et al. [38]. Full bullets represent the critical points from the
correlations.
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Figure 8: Consistency test using the Clapeyron eq. (11). Symbols are direct molecular simulation results of
Vrabec et al. [38]. Lines represent correlations. SW12: dash-dotted, SWp

12: dotted, SE14: dashed, S10: solid.
The solid line not passing through the symbols represents an independent vapor pressure correlation [38]. Full
bullets represent critical points as determined from the FEOS correlations.
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Figure 9: Second and third virial coefficients from rigorous computation and FEOS correlations. Symbols are
exact results. Stars: reference [58], open circles: numerical solution of eqs. (14). Lines represent correlations.
SW12: dash-dotted, SWp

12: dotted, SE14: dashed, S10: solid.
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Figure 10: Three-dimensional Joule-Thomson inversion curves, µJT ≡ (∂T/∂p)h = 0, and their projections as
computed from the FEOS correlations. SW12: red, SWp

12: blue, SE14: green, S10: black. Also included are the
projections of VLE data in Figures 6 and 7 for orientation. Bullets denote maxima and critical points. The single
bullet on the temperature axis is the exact Joule-Thomson inversion temperature at zero density, TJT = 5.256,
as computed from eqs. (15). The facts that the SW12 FEOS hits that point precisely and all FEOS correlations
appear to intersect in one point are satisfying but accidental. Numerical details are in Table 6.
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