
GROW: A Gradient-based Optimization Workflow for the Automated
Development of Molecular Models

Marco Hülsmanna, Thorsten Köddermanna, Jadran Vrabecb, Dirk Reith∗,a

aFraunhofer-Institute for Algorithms and Scientific Computing (SCAI), Schloß Birlinghoven, 53754 Sankt
Augustin, Germany

bInstitut für Thermodynamik und Energietechnik (ThEt), Universität Paderborn, Warburger Str. 100, 33098
Paderborn, Germany

Abstract

The concept, issues of implementation and file formats of the GRadient-based Optimization
Workflow for the Automated Development of Molecular Models ’GROW’ (version 1.0) software
tool are described. It enables users to perform automated optimizations of force field parameters
for atomistic molecular simulations by an iterative, gradient-based optimization workflow. The
modularly constructed tool consists of a main control script, specific implementations and sec-
ondary control scripts for each numerical algorithm, as well as analysis scripts. Taken together,
this machinery is able to automatically optimize force fields and it is extensible by developers
with regard to further optimization algorithms and simulation tools. Results on nitrogen are
briefly reported as a proof of concept.
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1. Introduction

Molecular simulation methods, most prominently molecular dynamics (MD) or Monte–Carlo
(MC), are used nowadays in many scientific fields as powerful tools, e.g. to gain insight into
microscopic processes that govern the macroscopic behavior of matter. Driven by the ongoing
progressive growth in computational resources, it can be expected that these molecular methods
will be even more useful in the next decades.
One key element that has to be specified as accurately as possible for a molecular simulation is
the force field that describes the intra- and intermolecular interactions. Force fields comprise a
semi-empirical ansatz to represent these interactions, e.g. a set of Lennard–Jones (LJ) sites [1]
or point charges, and the associated parameters. While the model approach is usually straight-
forward, the parameterization of force fields is often tedious.
Numerous authors have worked over the past decades to develop force fields for a variety of
areas, such as thermodynamic properties of fluids [2–8], mechanic properties of solids [9–11],
phase change phenomena [12–14], transport processes in biologic tissue [15, 16], protein folding
[17–19], transport processes in liquids [20–22], polymer properties by using different length scales

∗Corresponding author
Email address: dirk.reith@scai.fraunhofer.de (Dirk Reith)

Preprint submitted to Elsevier October 23, 2009



[23–26] or generic statistic properties of soft matter [27].
Quantum mechanical methods are useful to specify force field parameters, e.g. for geometry
and electrostatics. However, weak short-range interactions like dispersion are hard to tackle by
quantum mechanics, particularly when the regarded molecules are composed of more than few
atoms.
Hence, the force field parameters for these weak interactions have to be fitted to experimental
or theoretical target values. Thereby, a manual adjustment is usually not feasible or at best
extremely time-consuming. Hence, an automated parameterization is essential, which can be
achieved by iterative procedures. In Faller et al. [30], the Nelder–Mead simplex algorithm was
applied, in order to optimize a variety of atomistic force fields. This algorithm is robust in
finding a local optimum but its convergency is very slow, as it does not lead directly to the opti-
mum, which implies numerous consecutive iterations associated with time-consuming molecular
simulation runs. Furthermore, at some point, it hops around the minimum.
Ungerer and coworkers [32, 33] presented a direct gradient-based approach, resulting in the so-
lution of a linear equation system (LES). In their studies on small molecules like olefins, this
method delivered very accurate results. However, the drawback of that method is that the
number of physical properties considered in the optimization must be greater than the number
of force field parameters. Otherwise, the problem is underdetermined, the matrix of the LES is
thus singular and the method is not applicable. However, this method enables the application
of efficient gradient-based numerical algorithms to the automated development of force fields.
In recent years, some automatic parameterization software packages have been developed, in
order to solve special optimization tasks on different kinds of granularity levels. On the quan-
tum mechanical level, a tool named ’Parmscan’ was published by [28, 29], which optimizes
intramolecular force field parameters only, e.g. bond lengths and torsional angles, for the rea-
sons mentioned above.
As an example on the coarse-grained level, a software package for a high-quality automated force
field design named ’CG-OPT’ has been developed by Reith et al. [31]. It maps a fully detailed
atomistic model of a polymer system to a coarse-grained mesoscale model and parameterizes
the associated force field automatically by the simplex algorithm.
In this work, an optimization workflow, based on efficient gradient-based numerical algorithms,
for the automated development of atomistic force fields is presented. The main advantage of
this kind of methods is that they converge faster and that the search is directed to the optimum
because of the use of descent directions. Moreover, the algorithms can handle overdetermined
and underdetermined optimization problems.
GROW is a tool kit of programs and scripts to facilitate the use of gradient-based numerical
optimization of force field parameters. The components of the presented tool kit can be grouped
as follows:

• Force field parameter optimizers,

• Simulation programs,

• Analysis scripts,

• Input/output handling,

• General computation utilities.
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Most of the scripts of the tool are written in python (version 2.4.3). Some help scripts are written
in S+ (version 2.7.1), a scripting language originating from the statistics package R1, and shell
(tcsh). The reason for this choice is the fact that python is object-oriented and an interface to
other tools, executed by shell commands, can be easily realized. Moreover, many computation
utilities, e.g. the solution of a LES, can be performed by R-built-in functions. Therefore, all
help scripts for such tasks are written in S+.

As a proof of concept, an automated parameter optimization for a force field for nitrogen was
performed. In this case, fit functions developed by Stoll et al. [34] were used to compute the
physical properties instead of running molecular simulations, as their use saves a lot of compu-
tational time and hence gives a fast insight into the quality of the behavior of the numerical
optimization algorithms. Those fit functions, however, do not contain statistical noise so that
a successful application to molecular simulations data is not guaranteed. The main problem of
gradient-based algorithms is given by the fact that it is not predictable to what extent they can
handle statistical noise. A detailed assessment of various numerical optimization algorithms,
also with respect to noise, is given in [35]. Note that this approach allows us to clearly separate
the basic technical issues from the more scientific questions of the optimization procedure.

2. Problem Definition

The central role in the optimization workflow is played by a quadratic loss function between the
calculated (e.g. from simulation) and target (e.g. from experiment) data:

F (x) =
n∑
i=1

wi

(
f exp
i − f sim

i (x)

f exp
i

)2

, (1)

where x = (x1, ..., xN )T ∈ RN is the force field parameter vector, N is the number of force
field parameters, n is the number of physical properties considered in the optimization, f sim

i (x)
is the ith property dependent on the force field parameters, and f exp

i is the respective target
value. The weights wi account for the fact that some properties may be easier to reproduce than
others. This loss function has to be minimized with respect to x.
In an ideal situation, some xopt can be found for which F (xopt) = 0. However, the primary goal
is to find a local minimum in an admissible compact parameter domain, where a range for each
of the force field parameters has to be defined.
A smooth dependency of F on the force field parameters has to be guaranteed, which is usually
the case. Hence, it is aimed to find a minimum at xopt for which

∇F (xopt) = 0. (2)

This goal can be achieved by gradient-based numerical optimization algorithms, several of which
are presented in section 4. The gradient can be expressed in terms of the partial derivatives

∂F

∂xj
(x) = −2

n∑
i=1

wi
f exp
i − f sim

i (x)

(f exp
i )

2

∂f sim
i

∂xj
(x),

where j = 1, ..., N . Finally, the partial derivatives of the properties can be approximated
numerically by

∂f sim
i

∂xj
(x) =

f sim
i (x1, ..., xj + h, ..., xN )− f sim

i (x)

h
,

1http://www.r-project.org
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Figure 1: The optimization workflow: The physical properties are calculated for an initial guess of the force field parameters.
If the calculated physical properties do not agree sufficiently well with the target properties, the optimization is executed,
until a stopping criterion is fulfilled and the final parameters are found.

with h > 0.
The number of physical properties does not have to obey any constraints. Hence, n > N
is not required, as in the case of the method developed by Ungerer and coworkers [32, 33].
Any properties can be used. It is also possible to consider one or more properties at different
temperatures or pressures.
Please note that whenever the simulated physical properties are affected by noise, it is always
necessary to perform some statistical proofs concerning the quality of the resulting force field.
This will be discussed in more detail in section 8.
In many cases, the force field parameters as well as the target data have physical units, which
makes the results physically interpretable. Please note that this does not have any effect on the
loss function, as the target data only differ by a constant factor, when units are changed. As
relative errors are summed up, these factors are canceled out. The loss function itself does not
have any unit but its gradient has units on its axes, namely the reciprocal value of the units of
the respective force field parameter. In extreme cases, it might happen that some components
of the gradient are much greater than others, leading to deformations of the loss function. This,
in turn, can cause numerical problems in finding the minimum and the norm of the gradient
cannot be computed in a straightforward way. To avoid this, one can simply divide each force
field parameters by its unit, or by a certain physically meaningful reference value, which leads
to a force field that is physically better defined. However, one can do this retroactively, i.e.
by dividing the resulting optimal force field parameters by their reference values. It should be
clear that the choice of reasonable units cannot be handled automatically and hence lies in the
responsibility of the user.
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3. Optimization Workflow

The complete optimization workflow is shown in Figure 1: All optimization algorithms require
an initial parameter vector x0, which must be reasonably close to the minimum. The output of
a simulation tool, i.e. the calculated physical properties, is inserted into the loss function (1).
Then it is compared with the experimental or theoretical target data. If a specified stopping
criterion is fulfilled, the parameters are final and the workflow ends. Otherwise, the current pa-
rameter vector is passed on to the optimization algorithm, which finds a new parameter vector
with a lower loss function value via one of the different investigated gradient-based methods.
The stopping criterion depends on what can be expected from the molecular model and the
optimization workflow. E.g., if the problem is overdetermined (n > N), the loss function cannot
be expected to be zero for any parameter vector. This is usually the case, if the properties
are fitted at different temperatures or pressures simultaneously. Furthermore, the calculated
physical properties may contain statistical noise, and in that case, an exact prediction of the
optimal parameters is not possible. If the error on a specific property is situated within the
error bar of the simulated value due to noise, the result cannot be improved. If the noise is too
high, gradient-based methods are not applicable.
The optimization procedure has to be performed within an admissible parameter domain, when-
ever the range of vailidity of force field parameters is limited. Moreover, if the problem is un-
derdetermined, an infinite number of minima can be present and it has to be assured that a
physically meaningful minimum is found.
In order to stay in the admissible domain, there are two possibilities: The first one is to use
optimization algorithms with constraints but most of them use penalty functions, whose La-
grangian multipliers are determined by another iteration procedure. This leads, firstly, to an
excessive complexity and, secondly, to penalty functions needing evaluations in the prohibited
domain. This is not feasible in the present context, as simulation tools cannot be executed with
’forbidden’ parameters. Another possibility is to use a step length control algorithm so that the
iteration direction does not lead out of the admissible domain. This approach was chosen here
but the main disadvantage is the fact that a fast convergency of the step length control algo-
rithm, without significantly increasing the number of function evaluations, cannot be expected.
Especially in a neighborhood of the minimum, the convergency will be quite slow, as another
goal of the step length control is to find a new parameter vector with a lower loss function value,
which becomes more difficult close to the minimum. At some point, the step length control is
not capable anymore to find a significantly lower loss function value within a reasonable number
of iterations and the resulting steps will be very small in relation to the norm of the descent
direction. This leads to a slower convergency of the whole optimization algorithm. Additionally,
the graph of the loss function may have the shape of a steep rain drain falling down slowly to
the minimum. This shape cannot be handled well by gradient-based algorithms, as they only
realize the functional decrease at the walls of the rain drain and not the much smaller one in
the direction of rain drain itself. This is because the component in the direction of the walls
is much greater than the other one and has therefore a much higher impact. This ”rain drain
phenomenon” has already been discussed in [36]. Hence, the stopping criterion

||∇F (x)|| ≤ τ,

where τ > 0 is a small number, e.g. 10−3, will not be fulfilled within a reasonable number of
iteration steps. Hence, a stopping criterion was used, which only refers to the loss function value
itself and not to its gradient. The employed stopping criterion was

F (x) ≤ τ,
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where τ = 10−4 or even τ = 10−5. Of course, the attainable value of τ depends on the loss
function itself, the number of considered properties and the amount of noise. In GROW, the
parameter τ has to be specified by the user.

4. Numerical Optimization Algorithms

We suppose to use gradient-based iteration procedures, i.e. it is started with an initial parameter
vector x0 which is updated within the first iteration to x1. In general, optimization algorithms
can be described by an updating formula

xk+1 = g(xk).

The optimization algorithms should converge to the minimum xopt, e.g.

∃C<1 ∀k≥0 ||xk+1 − xopt|| ≤ C||xk − xopt||m,

for some m > 0 (convergency of mth order). For example, if m = 1, the convergency is termed
linear, if m = 2, it is quadratic. The behavior and speed of convergency is different for each
algorithm, which only differ by the choice of g. In this study, some state-of-the-art gradient-
based methods were used, which can be found in [37, 38] and can be grouped into two general
types:

1. Descent methods,

2. Trust Region methods.

This choice is due to the fact that these algorithms have very good convergency properties—most
of them are at least superlinearly convergent—and that the search is directed to the optimum.
The Descent methods consistently have the iteration instruction

xk+1 = xk + tkd
k, (3)

where dk is a descent direction, i.e. 〈∇F (xk),dk〉 < 0, and tk is a step length, controlling how
far the descent direction is followed. As mentioned in section 3, the boundary conditions for
the parameter vector require an efficient step length control algorithm. Therefore, the descent
direction was divided here by its norm so that

xk+1 = xk + t̃k
dk

||dk||
.

Then, only the step length tk controls the iteration procedure and not the length of the descent
direction. Particularly in the initial iteration steps, ||dk|| can be huge so that it may lead far
out of the admissible domain. This, in turn, may lead to very small step lengths tk because of a
slow convergency of the step length control, which is not desired at the beginning, when the loss
function is steep. Hence, in this case, large steps into the direction of the minimum are wanted.
Of course, in a neighborhood of the minimum, dividing by the norm would falsify the algorithm,
which may not converge further. Therefore, the descent direction was not normalized here, as
soon as ||∇F || ≤ 1.
Before the step length control is described in detail, the descent methods are briefly outlined. An
important feature of most of the algorithms is their high convergency quality as they converge
superlinearly

∀k≥0 ||xk+1 − xopt|| ≤ ck||xk − xopt||,

where limk→∞ ck = 0.
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• Steepest Descent: dk = −∇F (xk). This is the simplest method, where dk is the
direction of the steepest descent. The main drawback is that the convergency is not
guaranteed: If ∀k F (xk+1) < F (xk), then each accumulation point of the iteration sequence
is a stationary point of F .

• Newton Raphson: dk = −(D2F (xk))−1∇F (xk). This is the multidimensional analogon
of the popular root finding 1D-Newton method. If the Hessian D2F is Lipschitz continuous
in a neighborhood of xopt, then the convergency is quadratic. The complexity increases
with the computation of the Hessian, but the gain in speed of convergency compensates
this drawback. However, in practice, the Hessian can be singular. Therefore, if this is the
case or if the descent is not steep enough, i.e.

〈∇F (xk),dk〉 > −ρ||dk||p

for some user-defined ρ > 0, p ∈ N>2, the steepest descent direction −∇F (xk) was taken.
There are two problems arising when using the Newton Raphson method:

1. the Hessian must be computable within a reasonable time,

2. the Hessian must be robust with respect to noise.

• Quasi Newton: dk = −H−1
k ∇F (xk), where Hk is an approximation of the Hessian. The

Quasi Newton methods are a heuristic solution to the two problems mentioned above. The
approximation is updated at each iteration: Hk → Hk+1, where H0 = D2F (x0). Thereby,
the so-called secant condition for the theorem of Dennis and Moré

Hk+1

(
xk+1 − xk

)
= ∇F (xk+1)−∇F (xk)

must be fulfilled. Three Quasi Newton methods were considered in this study, which only
differ in the updating procedure of Hk:

– Powell Symmetric Broyden (PSB): If Hk is symmetric, F is Lipschitz continuous in a
neighborhood of xopt and

∑∞
k=0 ||xk−xopt|| <∞, then the convergency is superlinear.

– Davidon Fletcher Powell (DFP): If Hk is symmetric positive definite (spd), the con-
vergency is superlinear under the same assumptions as in the case of PSB.

– Broyden Fletcher Goldfarb Shanno (BFGS): Herein, the inverse Hessian is updated:
Bk → Bk+1, whereB0 = (D2F (x0))−1. If F is Lipschitz continuous in a neighborhood
of xopt and ||D2F (xk)||F is bounded for all k ≥ 0, where || · ||F is the Frobenius norm
for matrices, the convergency is superlinear as well.

• Conjugate Gradients (CG): dk+1 = −∇F (xk+1)+βkd
k, d0 = −∇F (x0). The descent

direction is updated at each step by using the gradient in the following step, which has
to be computed before. The method is a transfer of the CG method for LESs, where the
residuals, which are the negative gradients of the respective quadratic form that has to be
minimized, are conjugated, i.e.

∀k≥0 〈∇F (xk+1),∇F (xk)〉 = 0,

to the multidimensional case. In general, the gradients are not conjugated anymore. How-
ever, the transfer works naturally with new convergency proofs. There are two main CG
methods for optimization tasks, where the calculations of the βk are different:
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– Fletcher Reeves (FR): βFR
k = ||∇F (xk+1)||2/||∇F (xk)||2. This is a direct trans-

fer from the one-dimensional case. The convergency is guaranteed, if the level set
L(x0) = {x|F (x) < F (x0)} is compact and if F is uniformly convex on L(x0).
Those are conditions for global convergency. Therefore, it is not guaranteed that it
converges to a local minimum in the case of non-convexity.

– Polak Ribière (PR): βPR
k = 〈∇F (xk+1) − ∇F (xk),∇F (xk+1)〉/||∇F (xk)||2. In the

one-dimensional case, where the successive residuals rk are orthogonal, ||rk+1||2/||rk||2
= 〈rk+1 − rk, rk+1〉/||rk||2, and therefore, also βPR

k could be used instead of βFR
k in

the multidimensional case. This heuristic consideration leads to a good CG method
with new convergency proofs. If the level set is compact and if ∇F is Lipschitz
continuous in a ball containing the level set, the PR method converges.

All descent methods have the following assumptions in common: First of all, the initial parameter
vector must be close to the minimum and in the case of the Quasi Newton methods, also the
initial Hessian approximation H0 must be in a neighborhood of D2F (xopt), with respect to
some matrix norm, e.g. the Frobenius norm. Quite often, it is a challenge to find a good initial
parameter vector which has to be specified by the user. There is no automatic procedure to
solve this problem. Furthermore, a standard assumption is the existence of a global (or local)
optimum, i.e. ∇F (xopt) = 0 and D2F (xopt) spd. Also the iteration matrices D2F (xk), Hk and
Bk should be spd and regular. This is not always guaranteed, whereas all other assumptions
like Lipschitz continuity etc. are natural. The positive definiteness of the Hessian is guaranteed,
if the loss function is convex. But in the case of Hk and Bk, it is not. If they are not spd, the
corresponding direction dk is not a descent direction.
The step length control is essential for this kind of methods as well: At the beginning, when
the function is still steep, large steps are preferred, in order to get as rapidly as possible close
to the minimum. On the other hand, the steps must not be too large, as otherwise, it might
be jumped beyond the minimum. A very heuristic approach is to simply make large steps far
away and small steps near the minimum. These so-called heuristic step lengths are user-defined
and finding good heuristic step lengths is a trial-and-error procedure, which is not very effective,
because at some point, the algorithm will hop around the minimum. This is due to the fact that
also the smaller steps will be too large then. Hence, it is aimed for adapted, so-called efficient
step lengths tk, which are defined by

∃
θ 6=θ

(
xk,dk

)
, θ>0

F (xk + tkd
k) ≤ F (xk)− θ

(
〈∇F (xk),dk〉
||xk||

)2

.

There are two types of step lengths which fulfill this criterion, namely the Armijo and the
Wolfe-Powell step length. Both are again iterative procedures requiring function evaluations for
xk + t`kd

k, ` ≥ 0, with an initial step length t0k. The Wolfe-Powell algorithm is computationally
too costly, as it also requires ∇F (xk + t`kd

k) for each `, and therefore, it is not suitable in the
present case. Here, the Armijo step length control was used, which searches for step lengths of
the form

tA = max{β`A|` = 0, 1, ..., F (x + β`Ad) ≤ F (x) + ζAβ
`
A〈∇F (x),d〉}, (4)

with 0 < βA, ζA < 1. The Armijo step length only exists, if d is a descent direction. Then, the
convergency is guaranteed to be monotonous. Hence, the assumption ∀k F (xk+1) < F (xk) for
the convergency of the Steepest Descent algorithm is fulfilled by the use of the Armijo step length
control. Please note that there is a ’+’ instead of a ’-’, as 〈∇F (x),d〉 < 0 is required. The only
drawback, compared to the Wolfe-Powell step length, lies in the fact that the Armijo step lengths
rapidly become too small. In particular, this is true if the compliance of the boundary conditions
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is controlled by the step length. To achieve this, an admissible step length was calculated at each
iteration so that xk+1 remains within the admissible domain: Let [minki ,maxki ] be the admissible
interval of the ith component of xk (i = 1, ...,dim(xk)). Then, the admissible step length tadm

k

is given by

tadm
k = max{tk > 0|∀i=1,...,dim(xk) minki ≤ xki + tkd

k
i ≤ maxki },

where βA = tadm
k was set and the Armijo step length control was started at ` = 1, where

` = 1 is not allowed as a solution, as this would lead to the border of the admissible domain.
Please note that tA > 1 is also possible, if dk is a descent direction. In this case, tA = sβ`

for some s > 1, which is a generalization of the Armijo step length. In particular, this is
important at points which are very close to the minimum, when ∇F does not lead out of the
admissible domain anymore. Then, in the sense of Equation (3), tA has to be increased to
avoid too small step lengths. This is especially true, if tA = 1 does not lead to a point beyond
the minimum. However, the Armijo step length control will not converge within a reasonable

number of iterations at some point before tA > 1 is required. Furthermore, as β`A
`→∞→ 0 and

β1
A will already be very small in relation to the range of the force field parameters due to the

boundary conditions, the resulting step length will be too small so that no profit is drawn.
Hence, it will not lead the whole optimization procedure to the stopping criterion ∇F (xopt) = 0
within a reasonable number of iterations. Furthermore, the rain drain phenomenon mentioned in
section 3 cannot be handled by gradient-based algorithms, even if the step lenghts are efficient.
Hence, at some point, it will not be possible anymore to find a step length which leads to a
significantly smaller function value, as the descent direction is not parallel to the rain drain
direction. Therefore, the optimization was terminated in this work, if the step length control
algorithm took more than a certain number of iterations, even if the stopping criterion was not
fulfilled, and it was concluded that the optimization algorithm is not suitable for the regarded
optimization task.
The second type of gradient-based optimization methods are the Trust Region methods. The
step length control is contained in the algorithm itself. At each iteration k, a step length ∆k

is defined so that B∆k
(xk) is contained in the admissible domain. The compact ball B∆k

(xk)
is called the Trust Region for xk. For each ∆k, it is searched for a suitable direction dk and
xk+1 = xk + dk is computed. This is done by an internal iteration procedure: While dk is not
suitable, ∆k is decreased by a factor 0 < γ1 < 1. Otherwise, ∆k is increased for reasons of
precaution by a factor γ2 > 1 under certain assumptions. But what does ”suitable” mean in this
case? The loss function is interpolated by a quadratic form stemming from a Taylor expansion
around xk:

qxk(dk) := F (xk + dk)=̈F (xk) + 〈∇F (xk),dk〉+
1

2
(dk)TD2F (xk)dk. (5)

Then qxk is minimized with respect to ||dk|| ≤ ∆k and compared to the original loss function.
This is done by evaluating the ratio

rk :=
F (xk+1)− F (xk)

qxk(dk)− qxk(0)

(5)
=
F (xk+1)− F (xk)

qxk(dk)− F (xk)
.

If rk ≈ 0, the quadratic model does not coincide well with the original loss function and overes-
timates the decrease of F . On the other hand, if rk ≈ 1, the decrease of F is much higher than
the decrease of the quadratic model and ∆k can be increased. In practice, the user can define
two parameters 0 < η1 < η2, in order to decide, whether dk is accepted and ∆k is increased or
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not. The direction is accepted, if rk ≥ η1, and if even rk > η2, then ∆k is increased.
The Trust Region methods require the computation of the Hessian but the quality of the con-
vergency is much better than in the case of the descent methods: If D2F is Lipschitz continuous
in xopt, then

∀t∈(0,1) ∀k≥0 ||xk − xopt|| ≤ cktk

with limk→∞ ck = 0.
The only difficulty lies in the minimization of qxk , because it is a nonlinear constrained opti-
mization problem. This so-called Trust Region subproblem can be solved in two ways: The first
one is an approximate solution, which can be achieved by the Double Dog Leg algorithm (DD),
a geometrically based method considering two descent directions. The main drawback of the
DD method is the assumption that the Hessian is positive definite, which is often not fulfilled.
The second way is to solve the Trust Region subproblem exactly. This is done by an eigenvalue
decomposition of the Hessian. A solution is always obtained, even if the Hessian is not positive
definite.
For details concerning the step length control and numerical optimization algorithms, cf. [37, 38].

5. Practical Aspects: Some Tricks of the Trade

Before the detailed description of the GROW optimization tool is given, some specific practical
adaptations are elucidated:

1. The stopping criterion was chosen with the Steepest Descent method: Whenever the
Armijo step length control did not converge within a reasonable number of iterations
(usually 100), the actual iteration xk was considered as optimal and the stopping criterion
F (x) ≤ τ was used for all other algorithms, where τ is a small upper bound for F (xk). The
Steepest Descent method was used as a reference method because of a heuristic claim: If
a method is not capable to find a parameter vector with a lower function value, following
the steepest descent direction, another method using a different direction is not either.
This claim turned out to be true in the case of the Newton and Quasi Newton methods,
but not for the CG and Trust Region methods. They were terminated as well, whenever
F (x) ≤ τ so that a meaningful comparison between the algorithms could be achieved.
However, some more iterations leading closer to the minimum were performed in addition.

2. The convergency of the Armijo step length control can be manipulated by the control
parameter ζA. The smaller ζA, the weaker is the acceptance constraint of the step length.
This leads to lower function values in the next iteration but also to a faster convergency
of the Armijo step length control. By default, ζA = 0.5, but in some cases, the Armijo
constraint has to be weakened so that ζA = 0.1, and sometimes even drastically so that
ζA = 0.001.
The same holds for the Trust Region control parameter η1, which controls the quality of
the quadratic model. By default, η1 = 0.7, but in order to avoid a slow convergency of
the Trust Region subproblem, its stopping criterion has to be weakened. Then, η1 = 0.5
or even η1 = 0.2 was specified.

3. In the case of noise, the discretization for the gradient and Hessian must be coarser: If the
gradient is calculated too accurately, i.e. by h = 10−5, the algorithm will get stuck in a
local minimum formed by the oscillations due to noise. As this is not desirable, h = 10−2

was used, in order to compute only the drift of the loss function so that the overall decrease
was considered. Of course, this is not reasonable in a neighborhood of the minimum and
setting h back to 10−5 would also be meaningless, because then the algorithm would get
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stuck in an artificial minimum again. But on the other hand, in the case of noise, it
suffices to reach a neighborhood of the minimum, as the target parameters are predictable
only within some error bars around the minimum. Therefore, the stopping criterion was
weakened as well, i.e. F (x) ≤ τ̃ with τ̃ > τ .

4. The size of the admissible domain is also an important criterion for the convergency. If
it is too small, the global minimum can be situated at its boundary. In this case, a few
iterations with a heuristic step length were performed, in order to reach a new initial point
at the boundary, and a new admissible domain had to be defined.

5. The idea of normalizing d is heuristic and does not always lead to a better performance. In
cases where d is not a descent direction, which is possible for the Quasi Newton methods,
and where d does not lead out of the admissible domain, normalizing it can mean limiting
the search for a lower loss function value, as tA ∈ (0, 1) in this case, which leads to a
much slower convergency. But on the other hand, not normalizing can also mean that the
Armijo step lengths tA become rapidly too small. When d is not a descent direction, the
only possibility to get a lower function value is the Armijo algorithm, which depends on
d and its norm. Therefore, in the case of PSB, the descent direction was not normalized.
Otherwise, the convergency was much slower and the value of the loss function did not
change significantly.

6. GROW: Implementation Issues

The input of the program GROW only consists of a configuration file, where all further input files
and program issues are defined by the user. All input/output files, except for trajectory files2

associated the simulation tool used, are in ASCII format and intended to be human-readable.
The optimization is started by the command

python grow.py <config-file>

where config-file is the name of the configuration file, e.g. grow.cfg.

6.1. Configuration File

The configuration files comprises all input files required for the optimization workflow. Moreover,
all workflow options have to be defined, e.g. the numerical optimization algorithm used, the step
length control, and some corresponding input parameters. The file consists of two sections, ’SIM’
and ’OPT’: The first section contains all input files and parameters for the molecular simulation
and the output directories. The second section contains specific adjustments concerning the
optimization algorithms. A typical configuration file has the following form:

[SIM]

program: gromacs # simulation tool

bin_path: /home/user/local/gromacs-4.0.2/bin/ # binary path for simulation tool

topology: ../input/topology.top # topology file of simulation tool

coordinates: /home/user/input/start.pdb # coordinate file of simulation tool

sim_in: /home/user/input/sim.mdp # input file of simulation tool

target: ../input/exp_properties.target # file containing the target properties

2The trajectory of a molecular simulation describes the temporal progression of motion states within the total
system. The files containing such trajectories are usually huge and not human-readable.
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Input Files for Simulation Tool

Simulation

Tool

Properties
File

Class
Optimization

start_simulation

get_properties

get_loss_function_value

change_parameter

save− and del−functions

computation utilities

opt_class.py

Class Step_Length_Control

step_length_class.py

get_adm_step_length

step_length_control

Input handling: reading of configuration file
Check function: Existence/consistency of paths, files, tools and scripts
Setting of environment variables

<algorithm>.py

Simulation of actual param.

Reading of properties

Evaluation of loss function

Change parameters by h>0

Simulation of changed param.

Reading of properties

Calculation of gradient

Norm of Gradient
< 1 ?

yes  no

no norm.    norm.

Stopping criterion
fulfilled?

yes

no

Simulation of changed param.

Reading of properties

Calculation of Hessian

Norm of gradient
< 0.001 ?

yes

no

Calculation of descent dir.

Calc. of adm. step length

Armijo step length control

(last Armijo step)
New parameter 

Hessian.py

Subscript(s) of alg.

armijo_evaluate.py

armijo.py

100 steps ?
converged within no

yes

grow.py

gradient.py

Initial parameters

Final parameters

Final parameters

 Final parameters

Figure 2: Program Structure of GROW: The main control script grow.py calls—after some input handling and check-
ing routines—the algorithm control script, named <algorithm>.py. This script executes the main algorithm specific
workflow, calling different general subscripts like gradient.py or Hessian.py. Furthermore, it calls functions imple-
mented in the python classes Optimization and Step Length Control. The class Optimization contains a function named
start simulation, which starts a simulation tool and handles all computation utilities for the optimization itself. The
class Step Length Control executes the Armijo step length control algorithm, calling two subscripts named armijo.py and
armijo evaluate.py. For each optimization algorithm, one or more help subscripts have been implemented, which calculate
the specific descent direction.
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parameters: ../input/initial.para # file containing the initial force field parameters

par_file_name: ../input/parameters.para # file used by the optimization tool for all intermediate parameters

substance: IL # text field: name of chemical system to be simulated

optoutpath: steepest_descent/armijo/final_out # outpath containing the results of the optimization workflow

tmppath: steepest_descent/armijo/tmp # temporary path containing intermediate help files

outpath: steepest_descent/armijo/out # outpath of the simulation tool

delete: n # delete tmppath and outpath?

[OPT]

method: conjugate_gradient # numerical optimization method

cg: fletcher_reeves # CG algorithm

gradient: numerical # how to calculate the gradient (GROW version 1.0: only numerically)

sl_method: armijo # step length control (heuristic/armijo)

zeta: 0.5 # regularization parameter of Armijo step length control

h: 0.00001 # discretization parameter for gradient and Hessian

sigma_bound: 10 # LJ size parameter is not changed by more than 10% (adm. domain)

epsilon_bound: 40 # LJ energy parameter is not changed by more than 40% (adm. domain)

limit: 0.0001 # stopping criterion

In this example, GROMACS3 (version 4.0.2) was chosen as molecular simulation tool and the
optimization was performed by the Fletcher Reeves method.

6.2. Program Structure

Figure 2 shows the structure of GROW. The main control script grow.py executes the input
handling and reads the configuration file. Then, it checks the existence and consistency of the
paths, files and scripts. Furthermore, it defines environment variables.
The main control script of the numerical optimization algorithm, e.g. conjugate gradient.py,
regulates the optimization itself. It creates an object of the python class Optimization, con-
tained in a file named opt class.py. This class contains all functions handling the optimization.
E.g., it changes the force field parameters for the gradient and Hessian calculation, starts the
simulation tool, reads the resulting physical properties and computes the loss function. More-
over, all necessary computation utilities, e.g. geometrical and statistical calculations as well
as reading and writing routines, are implemented in this class. Please note that in Computer
Science, the functions of a class are called methods. But for obvious reasons, this term is not
used in this work.
The gradient calculation is performed by a script called gradient.py and the Hessian calcu-
lation by a script named Hessian.py. As long as ||∇F (xk)|| ≥ 1, the descent direction is
normalized, except in the case of PSB. The evaluation of the actual iteration is performed by
the control script of the optimization algorithm, i.e. it is checked whether the norm of the gra-
dient is smaller than a meaningful threshold (usually 0.001) or whether the stopping criterion
for the loss function is fulfilled. If this is not the case, the descent direction is calculated by
subscripts of the corresponding algorithm and the step length control is executed by a script
named step length class.py containing the python class Step Length Control. This class
contains all necessary functions for this task, e.g. the computation of the admissible step length
and a function executing the step length control algorithm itself. In the case of the Armijo step
length control, two subscripts are called: Firstly, the script armijo.py calculates an Armijo step
length β`A and secondly, the script armijo evaluate.py checks if this step length is accepted in
the sense of constraint (4), or not. The last iteration of the Armijo step length control is the new
iteration of the whole optimization algorithm. Then, a new simulation is performed with the
new force field parameters, and the algorithm continues. If the Armijo step length control does
not converge within a reasonable number of iterations (usually 100), the optimization algorithm

3http://www.gromacs.org/
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is interrupted and the actual parameters are taken as final parameters.
The algorithm terminates, if the stopping criterion is fulfilled.

6.3. Subscripts needed by the optimization algorithms

In the following, all scripts and subscripts supporting the optimization workflow are indicated
and explained in alphabetical order. All python scripts end with ’.py’, all scripts written in S+,
related to the statistics package R, end with ’.R’ and all shell (tcsh) scripts end with ’.sh’.
Please note that GROW version 1.0 is a generic implementation but only contains concrete
interfaces to the molecular dynamics simulation tools GROMACS (version 4.0.2) and YASP4.
Moreover, the calculations of specific vapor-liquid equilibrium (VLE) properties from force field
parameters can be realized by the fit functions developed by [34]. However, this is only possible
for two-center LJ particles with a dipolar or a quadrupolar moment.

armijo.py
Calculates the Armijo step lengths tA = β`A, ` = 2, 3, 4, .... Note that β1

A is computed in
the class Step Length Class by the function get admissible step length. It is the admissible step
length within the admissible compact domain.

armijo evaluate.py
Evaluates the Armijo step length calculated by armijo.py. If the Armijo constraint (4) is met,
the actual step length is taken and the step length control ends.

bfgs.R
Performs the update Hk → Hk+1 of the Hessian approximation in the case of the BFGS method.

bfgs evaluate.py
Calculates the descent direction in the case of the BFGS method. Within all other Quasi New-
ton methods, the script newton evalutate.py is taken for this task. In the case of BFGS, no LES
has to be solved but only a matrix-vector multiplication has to be performed.

calculate Hessian inverse.R
Calculates the inverse of the Hessian, which can be performed by the R-built-in function solve.

calculate newton descent.R
Calculates the descent direction in the case of the Newton Raphson and Quasi Newton methods
(except BFGS). This is done by the solution of a LES, which can be performed by the R-built-in
function solve.

cholesky.R
Performs a Cholesky decomposition of an spd matrix, which can be performed by the R-built-
in function chol. This is required, when the Trust Region subproblem is solved exactly by an
eigenvalue decomposition of the Hessian.

conjugate gradient.py

4http://www.theo.chemie.tu-darmstadt.de/group/services/yaspdoc/yaspdoc.html
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Control script of the CG algorithms.

determinant.R
Calculates the determinant of a matrix, which can be performed by the R-built-in function de-
terminant. By this script, it can be decided if a matrix is singular or not.

dfp.R
Performs the update Hk → Hk+1 of the Hessian approximation in the case of the DFP method.

double dog.py
Solves the Trust Region subproblem by the Double Dog Leg algorithm and returns the minimum
of the quadratic form (5).

exact TR solution.py
Solves the Trust Region subproblem exactly by an eigenvalue decomposition of the Hessian and
returns the minimum of the quadratic form (5).

fletcher reeves evaluate.py
Calculates the descent direction in the case of the Fletcher Reeves method.

grow.py
Main control script. Reads the configuration file and checks, whether all input files exist and
are consistent with each other. Then, it starts the control script of the corresponding numerical
optimization algorithm.

gradient.py
Computes a numerical approximation of the gradient. The gradient of the quadratic loss func-
tion itself is determined analytically and the partial derivatives of the physical properties are
approximated numerically by finite differences.

Hessian.py
Computes the Hessian by finite differences of the loss function related to its second partial
derivatives.

korrmD.R
Calculates specific VLE properties by fit functions [34] from force field parameters. The consid-
ered molecules must be two-center LJ particles with a dipolar moment.

korrmQ.R
Calculates specific VLE properties by fit functions [34] from force field parameters. The consid-
ered molecules must be two-center LJ particles with a quadrupolar moment.

mkjobequigromacs.sh
Control shell script for GROMACS, which writes the actual force field parameters into the
GROMACS topology file and performs equilibration runs. When the system is equilibrated,
a production run is executed in order to calculate the physical properties as thermodynamic
averages.

mkjobequiyasp.sh
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Control shell script for YASP having the same features as mkjobequigromacs.sh.

newton.py
Control script of the Newton Raphson algorithm.

newton evaluate.py
Calculates the descent direction in the case of the Newton Raphson and Quasi Newton methods
(except BFGS).

opt class.py
Contains the main python class of the optimization workflow. In this class, named Optimiza-
tion, all functions for the optimization itself are implemented. The most important function
is start simulation, which starts a molecular simulation tool via shell script. Furthermore, the
class contains computation utilities required for the optimization.

polak ribiere evaluate.py
Calculates the descent direction in the case of the Polak Ribière method.

positive definiteness test.R
Checks whether a matrix is positive definite or not. This can be realized by the R-built-in
function eddcomp, which calculates the eigenvalues of a matrix.

psb.R
Performs the update Hk → Hk+1 of the Hessian approximation in the case of the PSB method.

quasi newton.py
Control script of the Quasi Newton methods.

solve LES.R
Solves a LES, which can be performed by the R-built-in function solve.

steepest descent.py
Control script of the Steepest Descent method.

steepest descent evaluate.py
Calculates the descent direction in the case of the Steepest Descent method.

step length class.py
Contains the python class Step Length Class, where all functions for the step length control are
implemented. The admissible step length is computed and the Armijo step length control is
performed by calling the subscripts armijo.py and armijo evaluate.py.

trust region.py
Control script of the Trust Region method.

6.4. Summary result file generated during the iterations

During the iterations, a summary result file is automatically created for human use. It is written
into the directory optoutpath, specified in the configuration file. It contains the actual param-
eter vector, the gradient and its norm, the calculated physical properties at each temperature,
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the mean average percental error (MAPE) for each property over the temperature range, and
the value of the loss function.
Finally, the optimal parameter vector, the optimal loss function value, the number of iterations
and function evaluations, i.e. how often the simulation tool had to be started, and the gradient
at the optimal parameter vector together with its norm are written.
An example of a summary file is given below, generated by a steepest descent optimization work-
flow using the fit functions [34] in order to calculate the physical properties of the quadrupolar
two-center LJ model for nitrogen. The considered properties were the enthalpy for vaporization
(vapor) and the saturated liquid density (density) at the temperatures 65, 75, 85, 95, 105, and
115 K. The stopping criterion was F (x) ≤ 0.01.

Optimization Workflow 2009/3/23 10:52:38

Program: fits, Method: steepest_descent

Configuration file: /home/user/nitrogen/steepest_descent/armijo/T_range/vap/grow.cfg

Values for x0:

x0 = 0.3101 0.331 0.02073 0.10464

gradient = 28.17 4.56 15.38 -47.90

norm of gradient = 57.84

T = 65.0: calc vapor = 6.3367, exp vapor = 5.9800, abs error = 0.3567, rel error = 0.0596

T = 65.0: calc density = 886.2005, exp density = 859.6000, abs error = 26.6005, rel error = 0.0309

T = 75.0: calc vapor = 6.2757, exp vapor = 5.6600, abs error = 0.6157, rel error = 0.1088

T = 75.0: calc density = 845.1734, exp density = 816.6700, abs error = 28.5034, rel error = 0.0349

T = 85.0: calc vapor = 6.2172, exp vapor = 5.2800, abs error = 0.9372, rel error = 0.1775

T = 85.0: calc density = 801.4362, exp density = 770.1300, abs error = 31.3062, rel error = 0.0407

T = 95.0: calc vapor = 6.2888, exp vapor = 4.8000, abs error = 1.4888, rel error = 0.3102

T = 95.0: calc density = 754.0496, exp density = 718.2600, abs error = 35.7896, rel error = 0.0498

T = 105.0: calc vapor = 5.3340, exp vapor = 4.1700, abs error = 1.1640, rel error = 0.2791

T = 105.0: calc density = 701.3797, exp density = 657.5200, abs error = 43.8597, rel error = 0.0667

T = 115.0: calc vapor = 4.4874, exp vapor = 3.2600, abs error = 1.2274, rel error = 0.3765

T = 115.0: calc density = 640.0994, exp density = 578.7000, abs error = 61.3994, rel error = 0.1061

MAPE on Density = 5.49

MAPE on Vapor = 21.86

loss = 0.384781

Values for x1:

x1 = 0.308706 0.330774 0.019966 0.107011

gradient = 21.70 4.15 11.56 -35.97

norm of gradient = 43.76

T = 65.0: calc vapor = 6.2347, exp vapor = 5.9800, abs error = 0.2547, rel error = 0.0426

T = 65.0: calc density = 876.4636, exp density = 859.6000, abs error = 16.8636, rel error = 0.0196

T = 75.0: calc vapor = 6.1731, exp vapor = 5.6600, abs error = 0.5131, rel error = 0.0907

T = 75.0: calc density = 834.7286, exp density = 816.6700, abs error = 18.0586, rel error = 0.0221

T = 85.0: calc vapor = 6.1118, exp vapor = 5.2800, abs error = 0.8318, rel error = 0.1575

T = 85.0: calc density = 790.1106, exp density = 770.1300, abs error = 19.9806, rel error = 0.0259

T = 95.0: calc vapor = 5.9631, exp vapor = 4.8000, abs error = 1.1631, rel error = 0.2423

T = 95.0: calc density = 741.5581, exp density = 718.2600, abs error = 23.2981, rel error = 0.0324

T = 105.0: calc vapor = 5.0845, exp vapor = 4.1700, abs error = 0.9145, rel error = 0.2193

T = 105.0: calc density = 687.1901, exp density = 657.5200, abs error = 29.6701, rel error = 0.0451

T = 115.0: calc vapor = 4.2219, exp vapor = 3.2600, abs error = 0.9619, rel error = 0.2951

T = 115.0: calc density = 622.9822, exp density = 578.7000, abs error = 44.2822, rel error = 0.0765

MAPE on Density = 3.70

MAPE on Vapor = 17.46

loss = 0.239212

...

Values for x50:

x50 = 0.304200 0.326315 0.011931 0.114235

gradient = -0.29 0.12 0.06 0.42

norm of gradient = 0.53

T = 65.0: calc vapor = 5.8284, exp vapor = 5.9800, abs error = -0.1516, rel error = -0.0254

T = 65.0: calc density = 866.5656, exp density = 859.6000, abs error = 6.9656, rel error = 0.0081

T = 75.0: calc vapor = 5.7651, exp vapor = 5.6600, abs error = 0.1051, rel error = 0.0186

T = 75.0: calc density = 820.6438, exp density = 816.6700, abs error = 3.9738, rel error = 0.0049

T = 85.0: calc vapor = 5.6910, exp vapor = 5.2800, abs error = 0.4110, rel error = 0.0778
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T = 85.0: calc density = 770.9424, exp density = 770.1300, abs error = 0.8124, rel error = 0.0011

T = 95.0: calc vapor = 4.9639, exp vapor = 4.8000, abs error = 0.1639, rel error = 0.0342

T = 95.0: calc density = 715.7594, exp density = 718.2600, abs error = -2.5006, rel error = -0.0035

T = 105.0: calc vapor = 4.1979, exp vapor = 4.1700, abs error = 0.0279, rel error = 0.0067

T = 105.0: calc density = 651.6152, exp density = 657.5200, abs error = -5.9048, rel error = -0.0090

T = 115.0: calc vapor = 3.1471, exp vapor = 3.2600, abs error = -0.1129, rel error = -0.0346

T = 115.0: calc density = 568.8182, exp density = 578.7000, abs error = -9.8818, rel error = -0.0171

MAPE on Density = 0.73

MAPE on Vapor = 3.29

loss = 0.009933

Optimal set of parameters: 0.304200 0.326315 0.011931 0.114235

Value of loss function: 0.009933

Number of iterations: 50

Number of function evaluations: 346

Gradient: -0.29 0.12 0.06 0.42

Norm of gradient: 0.53

6.5. Extension Possibilities for Developers

GROW is a generic implementation and can be easily extended by developers: An interface
to a new simulation tool can be realized within the function start simulation from the class
Optimization. This function must call a new script handling the equilibration and production
runs of the new simulation tool, comparable to mkjobequigromacs.sh and mkjobequiyasp.sh.
The physical properties must be written into ASCII files, containing tables. The first column
must contain the time steps and the second column must consist of the properties at each
time step. These tables have to be read with the function get properties from the class
Optimization.
For the application of a new numerical optimization algorithm, a new control script for this
algorithm has to be written with specific subscripts. If it is gradient-based, it can use the
subscript gradient.py and if it requires the calculation of a Hessian, it can use Hessian.py. It
can also perform a step length control by calling the class Step Length Class. Of course, it can
use all computation utilities implemented in the class Optimization. All necessary parameters
for the new optimization method must be indicated in the configuration file and read by the
main control script grow.py.

7. Proof of Concept: Case Study for Nitrogen

As a proof of concept, we consider the optimization of the four state-independent parameters of
the quadrupolar two-center LJ (2CLJQ) model [34] for nitrogen. The 2CLJQ model consists of
two identical LJ sites, separated by a constant elongation L and a point quadrupole site at the
center of mass with a moment Q, which is oriented along the molecular axis. The pair potential
u2CLJQ is given by

u2CLJQ(rij ,ωi,ωj , L,Q
2) =

2∑
a=1

2∑
b=1

4ε

[(
σ

rab

)12

−
(
σ

rab

)6
]

+
3

4

Q2

||rij ||5
[1− 5(cos2 θi + cos2 θj)− 15 cos2 θi cos2 θj

+ 2(sin θi sin θj cosφij − 4 cos θi cos θj)
2].

Therein, rij is the center-center distance vector of two molecules i and j, rab is one of the four LJ
site-site distances, where a refers to the two sites of molecule i and b to the two sites of molecule
j. Furthermore, ωi and ωj represent the orientations of the two molecules, θi the azimuthal
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angle between the axis of the molecule i and the center-center connection line, and φij the angle
between the axes of molecules i and j. For more details, cf. [34].
Critical values of temperature and density, as well as the saturated liquid density, saturated
vapor density, and vapor pressure are available as fit functions of the four force field parameters
[34]. In the cited work, the VLE data was determined by molecular simulations for 30 individual
2CLJQ fluids. The calculated properties thereof were fitted by nonlinear regression functions,
whose coefficients were determined individually for each property, over a range of temperatures.
In order to obtain VLE data for the whole range of Q2/(εσ5), L/σ and TkB/ε, where kB is the
Boltzmann constant, the simulation data was globally fitted. In this regard, the critical data
Tc(ε, σ,Q

2, L) and ρc(ε, σ,Q
2, L), the saturated liquid density ρl(ε, σ,Q

2, L, T ), the saturated
vapor density ρv(ε, σ,Q

2, L, T ), as well as the vapor pressure pσ(ε, σ,Q2, L, T ) were considered
to be the key VLE data for an adjustment to real fluids.
The force field parameter vector of the 2CLJQ model is the four-dimensional vector (ε, σ,Q2, L)T .
The considered physical properties were the saturated liquid density ρl and the enthalpy of
vaporization ∆hv at T = 75 K. The latter was calculated from the vapor pressure and the
saturated densities via the Clausius-Clapeyron equation. The initial parameter vector was taken
from the literature [39] but modified a little so that the optimization workflow did not start with
an optimal parameter vector already. The admissible domain was defined as follows: The range
of validity for Q2 is given by Q2/(εσ5) ∈ [0, 4] and for L, it is given by L/σ ∈ [0, 0.8]. The LJ
parameters ε and σ are not changed by more than 40% and 10%, respectively. The stopping
criterion was F (x) ≤ 10−5.

Table 1 shows the results of all considered numerical optimization algorithms. It contains the
following details:

• Optimization method (Algorithm): One of the above mentioned numerical optimization
methods.

• Number of Iterations (# Iter.): Those are the iteration steps required, in order to fulfill
the stopping criterion. Hence, it is the P ∈ N, so that xP = xopt, starting from x0. The
number of iterations indicates the quality of the convergency.

• Number of Function Evaluations (# Eval.): This number indicates how often the loss
function or its partial derivatives had to be evaluated, i.e. how often the physical properties
had to be calculated or a molecular simulation would have had to be performed, until
the stopping criterion was fulfilled. This number increases with the computation of the
gradient and the Hessian as well as the number of iterations required for the Armijo step
length control. If the algorithm was interrupted for some reasons, before the stopping
criterion was fulfilled, the column contains ’xP̃ =’, where P̃ is the number of iterations so
far, followed by the parameter xP̃ itself in the next column.

• Final Parameter (xopt): The final parameter, either the optimal one, for which the stopping
criterion is fulfilled, or the last one before the optimization was interrupted.

• Error on Liquid Density (ρl): The percental error on saturated liquid density.

• Error on Enthalpy of Vaporization (∆hv): The percental error on enthalpy of vaporization.

• Value of Loss Function (F (xopt)): The value of the loss function for the final or last
parameter. Whenever the stopping criterion is fulfilled, this value is less than the upper
bound contained in the criterion. The loss function should be as close to zero as possible.
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Density and Enthalpy of Vaporization, T = 75 K, VLE Fit Functions

Algorithm # Iter. # Eval. xopt ρl ∆hv F (xopt) ||∇F (xopt)||

Steepest Descent 9 62 0.300120
0.325710
0.013278
0.115343

-0.03% 0.19% 4·10−6 0.02

Newton Raphson 9 152 0.300120
0.325710
0.013278
0.115343

-0.03% 0.19% 4·10−6 0.02

PSB (Quasi Newton) 2? x2 = 0.301444
0.327477
0.014151
0.114339

-0.58% 1.46% 2.5·10−5 0.17

DFP (Quasi Newton) 4? x4 = 0.301445
0.327476
0.014145
0.114337

-0.58% 1.46% 2.5·10−5 0.17

BFGS (Quasi Newton) 8? x8 = 0.301446
0.327473
0.014145
0.114338

-0.83% 0.35% 8.1·10−5 7.21

Fletcher Reeves (CG) 36 235 0.300137
0.325656
0.013175
0.115355

-0.01% 0.16% 3·10−3 0.02

Polak Ribière (CG) 6 41 0.300215
0.325784
0.013409
0.115276

-0.03% 0.29% 8·10−6 0.03

Trust Region (DD) No solution of Trust Region partial problem found: Hessian not spd

Trust Region (Exact) 6 105 0.299802
0.325402
0.013067
0.115660

-0.03% -0.14% 2·10−6 0.02

Table 1: Optimization results for the loss function containing the saturated liquid density and the enthalpy of vaporization
at T = 75 K, using VLE fit functions [34] instead of molecular simulations. The stopping criterion was F (x) ≤ 10−5. The
asterisk indicates that the stopping criterion was not fulfilled and that the Armijo step length search did not converge within
100 steps. In the case of PSB, the convergency was too slow. Therefore, the descent direction was not normalized which led
to better values in much less time. The Newton Raphson results are exactly concordant with the Steepest Descent results,
as the Newton direction was never accepted. The Trust Region constraint had to be weakened. Therefore, η1 = 0.2 was
chosen.
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• Norm of the Gradient (||∇F (xopt)||): The norm of the gradient for the final iteration.
This value should be close to zero as well, but it cannot be expected that it gets as small
as F (xopt) for the reasons mentioned in section 3.

In this example, the Trust Region method gives the lowest percental errors on ρl and ∆hv within
only six iterations. However, the number of molecular simulations which would have had to be
performed was quite high in general. The best method in this regard was the Polak Ribière
method, which would have required 41 simulations only. In comparison, the simplex algorithm
[30] needed approximately 70–100 molecular simulations for comparable optimization tasks.

Please note that the Quasi Newton methods are not suitable for this kind of optimization
tasks. In many cases, they did not reach an iteration where the stopping criterion was fulfilled.
In the original Quasi Newton algorithms, there is no step length control. Hence, ∀k tk = 1,
and if Hk is spd, then Hk+1 is spd as well. Otherwise, it is not guaranteed that Hk is spd,
and therefore dk is not always a descent direction. This can lead to iterations located far away
from the minimum, and the algorithm does not converge. Furthermore, the Armijo step length
control does not converge either, as it is not possible to find a lower loss function value anymore.
However, if the calculated physical properties are affected by noise, the Quasi Newton methods
converged in some cases. This is because in the case of noise, it is more likely for the Armijo
step length control to find a lower loss function value. Afterwards, at the subsequent iteration,
the Hessian approximation Hk may be spd again and a much lower loss function value can be
found. Therefore, the Quasi Newton methods performed better, when the properties were noisy
but they are not robust with respect to noise.

8. GROW—A New Basis for the Development of High–Quality Force Fields

The usage of the fit functions makes the loss function smooth. The question how noise influences
the behavior of the optimization algorithms is treated and discussed thoroughly in [35]. It has
been studied by introducing artificial statistical noise on the simulated physical properties and
retesting the convergency behavior. By way of doing so, the pursuit is followed to clearly separate
the various problem classes of the optimization process as far as possible: the influence of noise
can be studied in a controlled fashion without dealing with molecular simulation, the final and
most important step of our challenge.
As specifically tested for a simple nitrogen model, the Steepest Descent method, the Conjugate
Gradient methods, and the Trust Region method with an exact solution of the subproblem
turned out to be most suitable in the case of noise. Please note that the resulting quality of the
force field alone will justify the success of the methods. It has only been proven that the loss
function falls robustly below some specified upper bound using the methods mentioned above.
The Conjugate Gradient methods and the exact Trust Region method were then used to achieve
even better results. When applying the algorithms to molecular simulations, it must always be
considered how long the simulations have to be in order to reduce the statistical uncertainties
and how the noise can be handled. Moreover, the resulting force field must be assessed with
respect to the uncertainties on the simulated and the target data. For example, this can be
achieved by choosing wi = 1/s2

i in equation (1), where si are the relative standard deviations of
the target data or the square root of the sum of the relative variances of target and simulation
data, according to the maximum likelihood principle.
However, for the assessment of the numerical optimization algorithms performed in [35] using the
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fit functions instead of molecular simulation, it was sufficient to prove that good or satisfactory
force fields are achieved robustly and that even better force fields can also be obtained by some of
the numerical methods with more iterations. This proof has been performed in a practical way,
i.e. by some replications of each optimization workflow. Thereby, the assessment was executed
in a general way, assuming uniformly distributed instead of normally distributed errors on the
simulation data. Furthermore, it was set ∀i wi = 1, because within the assessment of the
algorithms, all properties should be treated equally.
The present work is only a presentation of a high–performance methodology and its technical
implementation. It does not consist of the realization of high–quality force fields but it is the
basis for a lot of subsequent work to achieve this goal by the usage of molecular simulations.
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