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Abstract

The software structure of MarDyn, a molecular dynamics simulation pro-
gram for nanofluidics in chemical engineering, is presented. Multi-component
mixtures in heterogeneous states with huge numbers of particles put great
challenges on the simulation of scenarios in this field, which cannot be tackled
with the established molecular simulation programs. The need to develop a
new software for such simulations with an interdisciplinary team opened the
chance of using state-of-the-art methods on the modelling as well as on the
simulation side. This entails the need to test and compare different meth-
ods in all parts of the program to be able to find the best method for each
task. It is shown how the software design of MarDyn supports testing and
comparing of various methods in all parts of the program. The focus lies
on those parts concerning parallelisation, which is on the one hand a pure
MPI parallelisation and on the other hand a hybrid approach using MPI in
combination with a memory-coupled parallelisation. For the latter, MarDyn
not only allows the use of different algorithms, but also supports the use of
different libraries such as OpenMP and TBB.
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1. Introduction

Molecular dynamics simulations are widely used especially in biochem-
istry and solid-state physics. Their use in chemical engineering applications
is less prevalent. Most simulations in this field are mainly restricted to con-
tinuum methods such as computational fluid dynamics or, on even more
aggregated scales, by means of mass and energy balances. There are sev-
eral reasons which recently advanced the use of molecular methods in this
field. On the modelling side, scientific progress has brought up more realis-
tic models based on force fields representing intermolecular interactions for
many industrially relevant fluids. This allows the study of effects, such as
nucleation processes for complex mixtures, e.g., on a molecular scale, which
were before not accessible by such simulations. Those scenarios, covering
nanoscale processes, use huge numbers of particles and require modern HPC
systems with a large number of processing units. The heterogeneous and
dynamically changing distribution of particles necessitates complex load bal-
ancing algorithms. The hierarchical layout of new HPC systems is another
challenge that favours the use of hybrid parallelisation concepts. At the same
time, the complexity of the underlying models for the simulation is also very
high and further increasing, as a large variety of materials at different states
has to be considered, e.g. when the flow of a fluid with heterogeneous density
in a solid channel is simulated. To develop software for industrially relevant
applications in the field of chemical engineering, experts from different dis-
ciplines have to work together. This entails high demands on the structure
of the simulation software.

In this paper, the software structure of MarDyn is presented, a simu-
lation program for nanofluidics written in C++, which was developed to
tackle, amongst others, these challenges. We start with a glimpse on the
peculiarities of the target applications in chemical engineering, followed by a
presentation of the software structure. Then, the focus is put on those parts
relevant for memory- and message-coupled parallelisation and load balanc-
ing, and it is shown how the software design eases the implementation and
comparison of different parallelisation concepts. Finally, runtime results for
the different parallelisation strategies are presented. Part of this work was
done within the project IMEMO with the collaboration of the Laboratory of
Engineering Thermodynamics at the University of Kaiserslautern, the chair
for Thermodynamics and Energy Technology at the University of Paderborn,
the High Performance Computing Center Stuttgart, the Fraunhofer Institute
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for Industrial Mathematics , and the Chair for Scientific Computing at the
Technische Universität München.

2. Molecular dynamics in chemical engineering

Molecular simulations are usually carried out in the following fashion:
First, a molecular model has to be chosen, then it is assigned to a molecular
configuration, and finally, the phase space is explored for a given number of
iteration steps under specified boundary conditions, which allows gathering
a broad variety of information. The physically most important input are
molecular models (also known as force fields) which describe the interactions
between atoms or molecules in terms of parameterised potential functions.
The intermolecular forces govern the simulation result due to the fact that
the “external” forces due to the boundary conditions, such as thermostats or
velocity gradients, are usually much weaker.

Phase space can be sampled either stochastically by Monte Carlo meth-
ods or deterministically by molecular dynamics, where the latter allows a
straightforward access to time-dependent properties. Molecular dynamics is
based on the assumption that molecules are bodies from classical mechan-
ics, i.e. that they propagate through space following Newton’s equations of
motion. These are a set of second order differential equations that can be
solved numerically via time-integration.

The mathematical properties of the molecular models strongly influence
data structures and algorithms and thus determine the design of simulation
software. Here, the focus lies on short-ranged potential functions, which are
well suited to describe non-polar fluids such as hydrocarbons that have a
central role in chemical engineering. The most widespread example for such
a potential function is the Lennard-Jones12−6 (LJ) potential [1, 2]

ULJ (rij) = 4ε

((
σ

rij

)12

−
(
σ

rij

)6
)
, (1)

where rij is the distance between two LJ sites, i.e. atoms or molecular groups.
The LJ potential covers the two basic intermolecular interactions: repulsion
at short distances due to overlap of electronic orbitals and dispersive attrac-
tion at intermediate distances due to mutual polarisation. The size param-
eter σ is a characteristic interaction distance, corresponding to a collision
diameter, and the energy parameter ε is the magnitude of the dispersive in-
teraction. Apart from the LJ-Potential, MarDyn currently supports dipoles,
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quadrupoles and the Tersoff-Potential, which is used to model hybridization
states of carbon, e.g.

The intramolecular potential and hence also the force, which is the neg-
ative gradient of the potential, decrease rapidly with increasing distance, cf.
(1). Therefore, for a given molecule, it is sufficient for the force calculation to
only examine its local neighbourhood within a cutoff radius rc for interacting
molecules. This is of central importance for algorithms and parallelisations,
as it allows the use of the Linked-Cells algorithm [3] to find neighbouring
molecules that permits highly sophisticated parallelisation methods based
on a spatial decomposition [4] of the simulation domain. To compensate for
the cutoff part of the potential, cutoff corrections are calculated assuming a
homogeneous particle distribution outside of the cutoff radius.

MarDyn can be used for different scenarios in the field of chemical engi-
neering. It is designed for spatially large systems, where the cutoff radius is
small compared to the system size. The application that was used for the
runtime results discussed below is homogeneous nucleation. Nucleation is a
process where liquid droplets emerge from a supersaturated vapour (see Fig-
ure 1), e.g. when fog arises. Real experiments on nucleation are difficult and
often yield inconclusive data so that supporting simulation data is of high
interest [5]. The large number of molecules and simulation time steps needed
for meaningful results is only feasible by the use of current HPC systems.
Due to the strong heterogeneity of the molecule distribution in nucleation
processes, great challenges are posed on the parallelisation and especially the
load balancing of the simulation.

Figure 1: Detail of a visualisation of a nucleation simulation.
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3. Software structure

In the introduction, the need for a well structured and modular software
was emphasized. Only with a consistent partition of the simulation program
into clearly specified tasks, it can be ensured that not every developer has
to understand all parts of the software, which eventually gets impossible in
an evolving software. There are many other reasons for a strictly modular
software design, out of which one is especially important for scientific soft-
ware. Quite often, the goal is not only to implement a certain functionality
into a simulation code, but to compare different methods to achieve this
functionality. This could be the comparison of different molecular models
with respect to their accuracy or of algorithms or parallelisations concerning
their efficiency. To obtain credible results from such a comparison, it has to
be ensured that switching between different methods can be done easily and
without any side-effects on the rest of the program. Another important argu-
ment for well structured software is performance. To be able to optimise the
runtime of a program, data structures, algorithms and pieces of code in all
parts of the software have to be tuned. This is only possible in a reasonable
amount of time if all functionalities are clearly separated using a modular
software design.

Figure 2 shows a very simplified class diagram of MarDyn. The boxes
with grey italic labels represent interfaces, all others are classes. The central
class of the simulation, which contains the main loop iteration over the time
steps, is always associated with the interfaces and not with some concrete
implementation. This allows a simple exchange of algorithms, e.g. for finding
particle pairs [6] or integrating the equations of motion, without any effects
on the other parts of the program.

The details and the advantages of this approach are described for two
selected parts of the program which are particularly important for HPC.
The first part contains the interface and different implementations for the
message-coupled parallelisation. The software structure of that part is ex-
emplary for most other parts of the program. The structure of the second
part, the memory-coupled parallelisation, differs from the other parts and
is therefore discussed separately. A prototypical GPU based parallelisation,
which currently supports only the Lennard-Jones model, was also integrated
in MarDyn and works together with the MPI parallelisation without any
changes to the latter one. There won’t be any details on the GPU paral-
lelisation here, as work on this part is not finished yet, but first results for
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Figure 2: Class diagram of MarDyn.

Lennard-Jones-fluids are promising.

4. Parallelisation

When designing an interface for some functionality of a software, it is im-
portant to find the appropriate level of flexibility. It should allow for every
imaginable implementation of the specified functionality. But this flexibility
should neither have big drawbacks on the efficiency, nor reduce comprehensi-
bility of the interface. Therefore, it is not feasible to design an interface which
allows the implementation of arbitrary parallelisation algorithms. Therefore,
the code is restricted to message coupling as parallelisation paradigm, as this
is best suited for the given circumstances. Memory coupling can be used ad-
ditionally, as shown later in this paper, but the basic parallelisation is based
on message coupling. About twenty years ago, parallelisation started to
become a relevant topic for molecular dynamics simulations. Different paral-
lelisation approaches, which can be grouped into three classes, have emerged
since then. Atom decompositions are based on a replication of the data on all
processors, force decompositions distribute the work based on a partitioning
of the force matrix. None of these methods is effective for very large num-
bers of particles, as memory consumption is too big, or for a large number
of processors, as the number of communication partners is too large. So at
least for the given applications, spatial decomposition approaches, which are
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based on a decomposition of the physical domain, are superior [7, 8]. This
reduces the necessary flexibility of the interface to allow arbitrary message
coupled spatial decomposition algorithms for the parallelisation. Based on
the current paradigm of the application area for the software, the definition
of such an interface – not all details will be discussed here – is sufficient to
allow for the implementation of almost any useful parallelisation algorithm.

There is some functionality which logically belongs to the parallelisa-
tion, such as the exchange of molecules between the processes and collective
communication commands. Having in mind that several researchers from
different disciplines work on the same code, the different parts should be
designed in a way that researchers working on one part do not interfere with
and possibly do not even have to understand the other parts. But sending a
molecule means that one has to know something about the molecule struc-
ture and the values needed to describe a molecule, as MPI does not allow the
communication of arbitrary classes. When the molecular model changes, this
might change the data to be sent; equally so for collective communications.
Here, such operations are used for calculating thermodynamic properties,
about which the parallelisation developer should not have to care.

After considering all arguments mentioned before, two new classes dealing
with molecule data and data for collective communication were introduced.
The class for the molecule data is relatively simple, all values needed to de-
scribe a molecule are packed together in a single MPI data type. The imple-
mentation of the collective communication in a separate class has to include
yet another feature. At different stages during a simulation steps, different
kinds of collective operations on a varying amount of values of any type can
be performed. If several values have to be communicated, this should be
done, as for the molecule data, with a single command. An exemplary work-
flow of how this is done with the class for collective communication is shown
in the following algorithm:

CollectiveCommunication cc; // declare variable

cc.init(2); // two values to be sent

cc.appendInt(5); // first value (int)

cc.appendDouble(3.72); // second value (double)

cc.allReduceSum(); // Perform a global reduce command

int res1 = cc.getInt(); // retrieve first value (int)

int res2 = cc.getDouble(); // retrieve second value (double)

cc.finalize(); // free memory

7



Within the collective communication class, all appended values are packed
together to one MPI data type, and an MPI operation is defined which can
add variables of that type. Data type and operation can than be used to
perform one of MPI’s efficient built-in collective operations. Using the classes
for collective communication and particle data, a concrete implementation of
the parallelisation interface is strongly decoupled from all other parts of the
simulation.

5. Results for load balanced parallelisation

One of the main goals of the modular approach using interfaces for all ma-
jor parts was the possibility to exchange and compare different algorithms.
As described in Section 2, particle distributions in nucleation processes are
very heterogeneous. The density of liquid and gas differs by a factor of up
to 1000 (in the extreme case of water at ambient conditions), which results
in very different calculation costs. For the parallelisation five different algo-
rithms have been developed [8], four of them implementing load balancing
facilities:

• uniform decomposition: The physical domain is decomposed into a grid
of cuboid regions. As no load balancing is done, this parallelisation is
not suited for heterogeneous scenarios. But it is superior for homoge-
neous scenarios, because the number of communication neighbours is
minimized (six per process).

• k-d-tree-based decomposition: The domain is recursively decomposed
into cuboid sub-regions. In each step, the costs caused by each poten-
tial separation plane – communication costs and doubled computation
on the created boundary – are also considered to choose the optimal
decomposition.

• graph partitioning: For this parallelisation algorithm, the domain,
which is divided into small cells, is mapped onto a graph. Calculation
costs are mapped onto nodes and costs for potential boundaries are
mapped onto edges. After partitioning the graph by using the library
ParMetis [9], each partition is assigned to one process.

• space-filling curves: A space-filling curve is laid through the cells of
the domain. Then the decomposition algorithm follows the curve and
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cuts it into chunks such that each chunk represents an equal amount
of the total load. The load is perfectly balanced, but it is not possible
to optimise the course of the domain boundary.

• diffusion: Balanced load is achieved by a local exchange of cells between
neighbouring processes.

As described in Section 3, those five methods are realised as an implemen-
tation of the same interface and are therefore easily exchangeable. In Fig.
3, the speedup using strong scaling is shown for all five parallelisations. The
underlying scenario is a heterogeneous fluid with 15 liquid nuclei within a
vapour phase and a total number of two million particles. The machine used
for these and the following results is the NEC Nehalem cluster at the High
Performance Computing Center Stuttgart. This machine has 700 nodes, each
with two 2.8 GHz quad-core Intel Xeon Nehalem processors, connected over
an Infiniband network. For single jobs, 2048 cores can used at the same time.

1 2

speedup (strong scaling)
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16

4 8 16 32 64 120

32

64

128

perfect speedup 
space-filling curve
k-d-tree
graphpartitioning
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uniform decomp.

Figure 3: Strong speedup for a heterogeneous particle distribution with two million par-
ticles and a maximum of 120 processors.

The three methods which performed worst – besides the not load bal-
anced parallelisation those based on graphs and diffusion – had problems,
e.g., because they ran out of memory for large simulations. Therefore, the
following results are only complete for the two best methods, using k-d-trees
or space-filling curves, respectively. Figure 4 shows the speedup using weak
scaling for a maximum of twenty million heterogeneously distributed parti-
cles on 2048 processors. All results were averaged over 100 time steps, load
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balancing was done once at the beginning of those 100 steps (twice for the
methods using space-filling curves and diffusion, as they involve a correction
step) and took less than one percent of the computation time.
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Figure 4: Weak speedup for a heterogeneous particle distribution with a maximum of
twenty million particles on up to 2048 processors.

6. Memory-coupled/hybrid parallelisation

As for the MPI-based parallelisation, the memory-coupled parallelisation
should also be separated from the rest of the program for the same reasons as
discussed before. For the domain decomposition used in the MPI parallelisa-
tion, each process can basically work locally most of the time, only once per
time step processes have to exchange data with their neighbours. The situ-
ation for the memory-coupled parallelisation is different, because the paral-
lelisation is usually done for much smaller units or code pieces such as loops.
OpenMP is the de-facto standard for memory-coupled parallelisation, but
since multi-core processors have emerged, alternatives such as Intel’s Thread
Building Blocks (TBB) have become available. OpenMP uses preprocessor
statements to do this parallelisation. One big disadvantage is therefore a
source code full of preprocessor statements for many loops or other small
pieces of code to be parallelised. TBB is an object-oriented library for C++,
so its programming paradigm is completely different to that of OpenMP with
its preprocessor statements. As none of the libraries is clearly superior to
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the other, MarDyn allows the interchangeable use of both libraries. Memory-
coupled and message-coupled parallelisations can be used at the same time,
which is called a hybrid parallelisation. In this case, shared-memory is used
within each node of a HPC cluster (using all processors and cores available)
and message coupling is used between the nodes.

As mentioned before, most parallelisation is done on a loop level. The
single loop which dominates in terms of computation time is the one used
to find all pairs of neighbouring molecules for the force calculation. Less
expensive loops are those which do something for each molecule, such as
the spatial molecule propagation or the thermostat loop. These can be par-
allelised straightforwardly, because there are no dependencies to be solved.
The parallelisation of the force calculation is not that straightforward. Many
different pairs share and therefore access the same molecule, which causes a
race condition when two threads try to accumulate the calculated force for
the same molecule. For an explanation why this happens, the Linked-Cells
algorithm is shortly described. For this algorithm, the simulation domain is
discretized into cells whose length equals the cutoff radius rc of the short-
ranged interaction potential. The core of the algorithm is a loop over all cells
and for each of the cells a loop over all forward cells. For each cell pair, the
interactions of all related molecules are calculated. Backward neighbours do
not have to be considered as the force between two molecules is symmetric
according to Newton’s third law.

A simple loop parallelisation of the outer loop of the Linked-Cells algo-
rithm assigns each thread a part of the loop. Two different threads can then
be either directly neighbouring or have some common neighbouring cells,
which can then cause the race condition. There are several different ways to
get rid of this race condition, e.g. using atomic operations, thread-local in-
termediate storage for forces, blocking cell-access, or splitting the force loop
into several loops, each with independent cells and therefore parallelisable.
The details of these different methods will not be discussed, but each of the
methods has advantages and disadvantages. Following the underlying soft-
ware philosophy of MarDyn, it was important to allow for the implementation
and comparison of all methods. For three of them, this was possible without
big changes in the software framework. But the splitting of the force loop
strongly interferes with the Linked-Cells algorithm and therefore has to be
treated separately. As stated before, the conflict can arise in situations where
two threads process either neighbouring cells or cells which share the same
neighbouring cell. If the outer loop ran only over cells which are independent
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in such a way that they do not have common neighbouring cells, the race
condition could not arise. For a two-dimensional example, such independent
cells are marked in blue in Fig. 5 (left). So dividing the outer loop into
six loops, each with independent cells, bypasses the race condition problem
and, therefore, makes each of the loops parallelisable. In three dimensions,
18 loops are necessary for this decoupling.

LinkedCellsParticleCont 

...

Simulation   

+ mainLoop

MemParBase             
TBBArray      

OMPArray     

+ traversePairs()        
-  CursorBase: cursor

...

CursorBase  
CursorNormal

CursorIndep  

provides

requests

Figure 5: Independent cells for a two-dimensional example marked in blue (left); class
diagram for the memory-coupled parallelisation in MarDyn (right)

The disadvantage of the described approach is that many small loops cre-
ate more overhead, especially for the parallelisation, as one single big loop.
This implicates that the single loop in the program should not be fully re-
placed, as multiple loops should only be used with a shared-memory or a
hybrid parallelisation (shared-memory and distributed-memory parallelisa-
tions combined) – the program might run sequentially or with a pure MPI
parallelisation – and if this specific strategy for avoiding race conditions in
the force calculation is chosen. Therefore, a Cursor-interface has been added
to MarDyn, as shown in Fig. 5 (right). Each implementation of this interface
defines sets of cells which have to be traversed by the Linked-Cells algorithm.
In the normal case, there is just one set containing all cells. For the described
strategy, 18 independent sets are defined. A memory-coupled parallelisation
(implementing MemParBase) can now choose which cursor should be used.

Some results of a hybrid simulation run for the different conflict-solving
strategies are shown in Fig. 6. All of the strategies were implemented
with OpenMP, three of them additionally with TBB (TBB does not sup-
port atomic operations directly, e.g.). For this simulation, and also for other
typical nucleation scenarios, the hybrid solution cannot compare with the
pure MPI parallelisation. The main reason for that is – apart from the fact
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that the MPI parallelisation is very good (see Section 5) – that there are
some parts which are very hard to parallelise with the shared-memory ap-
proach. In the hybrid case, this is especially the MPI communication which
is currently done by a single thread per node.
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Figure 6: Hybrid runtime with eight cores per Nehalem node using different conflict solving
strategies, broken down into time for force-calculation, MPI communication, integrator
and miscellaneous. The runtime of a pure MPI parallelisation is also shown. To avoid
false measurements caused by idle processes in heterogeneous scenarios, the measurements
very taken on a single node.

7. Conclusion

Some features of the software design of MarDyn, a molecular dynamics
program for chemical engineering applications, have been described. The
main focus was on how to allow the use of different algorithms for solving
problems in all parts of the simulation program in such a way that the algo-
rithms can be compared and evaluated easily. Some more details and results
were shown for those parts of the program dealing with parallelisation. For
example, for the MPI parallelisation of the shown scenario, strategies based
on k-d-trees and space-filling curves are best and show a comparable perfor-
mance. Which one should be chosen depends on the specific scenario. For
the simulation of a single big drop, e.g., the k-d-tree based load balancing is
clearly superior to that based on space filling curves. And for homogeneous
particle distributions, as they occur, e.g., in the beginning of a nucleation
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simulation before nucleation has started, the regular domain decomposition
without load balancing is best. The possibility to choose between different
parallelisation strategies is also important for possible future applications,
which might involve point charges and therefore necessitate long-range inter-
actions. Especially parallelisation strategies based on space-filling curves or
trees are best suited to support such interactions, e.g. using fast multipole
methods. Here, the software design of MarDyn allows the selection of that
approach which is best for each specific scenario. The developed software
design helps researchers working with the program to focus on those parts
they are really interested in without having to care about other parts of the
code.
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