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Abstract 

An empirical equation of state correlation is proposed for the Lennard-Jones model fluid. The 

equation in terms of the Helmholtz energy is based on a large molecular simulation data set and 

thermal virial coefficients. The underlying data set consists of directly simulated residual 

Helmholtz energy derivatives with respect to temperature and density in the canonical 

ensemble. Using these data introduces a new methodology for developing equations of state 

from molecular simulation data. The correlation is valid for temperatures 0.5 < T/Tc < 7 and 

pressures up to p/pc = 500. Extensive comparisons to simulation data from the literature are 

made. The accuracy and extrapolation behavior is better than for existing equations of state. 
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1 Introduction 

The Lennard-Jones 12-6 (LJ) model is the most widely used intermolecular interaction 

potential in simulation history that is sufficiently realistic to represent small spherical and 

nonpolar molecules.1,2 It was studied extensively in the last decades, concluding that it may 

serve as an important model for studying phase equilibria, phase change processes, clustering 

behavior, or transport and interface properties of simple fluids. It is commonly expressed as  

 
12 6

LJ 4u
r r

 
         
     

, (1) 

where σ and ε are size and energy parameters, and r is the distance between two particles. 

Although molecular simulation has evolved to a significant contribution in science and 

engineering, the generation of fluid property data sets is still a challenge. For practical purposes, 

thermodynamic data must be rationalized in form of robust correlations. In particular, 

fundamental equation of state (EOS) correlations allow for the computation of any 

thermodynamic property given as combinations of derivatives with respect to its natural 

variables. Here, we use the Massieu-Planck potential F(N,V,1/T)/(kBT) with Helmholtz energy 

F, temperature T, volume V, number of particles N, and Boltzmann constant kB. 

A number of EOS for the LJ fluid exist in the literature. The latest and most accurate ones 

are Johnson et al.,3 Kolafa and Nezbeda,4 and Mecke et al.,5 which were set up on the basis of 

pressure and internal energy data from molecular simulation. As opposed to those previous 

attempts, the underlying data set for the present EOS consists of direct derivatives of the 

residual Helmholtz energy only. Preliminary results for such a new approach were presented 

by Rutkai et al.6 Using residual Helmholtz energy derivatives instead of common 

thermodynamic properties in thermodynamic correlations was first introduced 20 years ago. 

Lustig presented a series of statistical thermodynamical developments,7–13 which were 

successfully employed by other researchers.14–16 Recently, the methodology was extended to 

the canonical ensemble.17,18 The outline in Ref.18 is the basis of this work. 
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2 Equation of State 

In this section, a new equation of state for the Lennard-Jones model fluid in terms of the 

reduced Helmholtz energy is presented. All relevant variables together with the mathematical 

expressions how to calculate thermodynamic properties are given.  

The size and energy parameters σ and ε of the potential were used to reduce all properties 

to dimensionless numbers of order unity, e.g. temperature T∗ = kBT/ε, density ρ* = ρσ3  

(with ρ = v-1 = N/V), or pressure p∗ = pσ3/ε. For brevity, asterisks are omitted in the following 

although reduced quantities are used throughout. 

The equation of state is written in terms of the reduced Helmholtz energy α as a function of 

inverse temperature and density. Separate terms denote ideal gas behavior (superscript o) and 

residual contribution (superscript r) 

 .. (2) 

with a = F/N the Helmholtz energy per particle, τ = Tc/T, and δ = ρ/ρc. For the critical properties 

Tc = 1.32 and ρc = 0.31 are applied. Detailed information on the determination of these 

parameters is given in section 5.5. 

αo relates to a hypothetical ideal gas. αr represents the residual Helmholtz energy under 

full intermolecular interactions in the fluid. All thermodynamic properties can be calculated 

from Eq. (2) and its derivatives with respect to τ and δ. For these derivatives the following 

notations is used 

 
 o r

o r

m n

m n
mn mn mn m n

A A A
 

 
 

 
  

 
. (3) 

Thermodynamic properties used in this work are related in Table 1. 

Table 1. Definitions of common thermodynamic properties and their relation to the Helmholtz energy.  

Property Reduced quantity 

Relation to the reduced Helmholtz energy 

Pressure 

 
T

p a v     (4) 

 

    r
011p RT A    (5) 

Derivatives of pressure with respect to: 

Density  
T

p    (6) 

 

    r r
01 021 2

T
p T A A      (7) 

Temperature  p T


   (8)     r r
01 111p T A A


      (9) 

Entropy 

  s a T v     (10) 

 

 o r o r
10 10 00 00s A A A A     (11) 
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Property Reduced quantity 

Relation to the reduced Helmholtz energy 

Internal energy 

 u a Ts   (12) 

 

 o r
10 10u T A A   (13) 

Enthalpy 

 h u pv   (14) 

 

 o r r
10 10 011h T A A A     (15) 

Isochoric heat capacity 

  v v
c u T    (16) 

 

  o r
20 20vc A A    (17) 

Isobaric heat capacity 
 

  p p
c h T    (18) 

 

    2r r
01 11o r

20 20 r r
01 02

1

1 2p

A A
c A A

A A

 
   

 
 (19) 

Gibbs energy 

 g h Ts   (20) 

 

 o r r
00 00 011g T A A A     (21) 

Speed of sound 
 

  
s

w p     (22) 

 

 
 2r r

01 112 r r
01 02 o r

20 20

1
1 2

A A
w T A A

A A

 
   


 (23) 

Grüneisen coefficient 

 
 

Γ
v

p T

c




 
  (24) 

 

  
r r
01 11

o r
20 20

1
Γ

A A

A A

 

 

 (25) 

Phase identification parameter 

 
 

 
 

2 22

2 T

T

pp T

p T p


 


        
    
 

 (26) 

 

 
r r r r r r r
01 02 11 12 01 02 03

r r r r
01 11 01 02

1 2 2 4
2

1 1 2

A A A A A A A

A A A A

     
   

   
 (27) 

2nd thermal virial coefficient 

    
0

lim
T

B p RT


 


    (28) 

 

  r
r 010

limB A


 


  (29) 

 

3rd thermal virial coefficient 

    2 2

0

1
lim

2 T
C p RT


 


    (30) 

 

  22 r
r 020

limC A


 


  (31) 

4th thermal virial coefficient 

    3 3

0

1
lim

6 T
D p RT


 


    (32) 

 

  33 r
r 030

2 limD A


 


  (33) 

Isothermal compressibility 

   1T T
p      (34) 

 

  1 r r
01 021 2T T A A     (35) 
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Property Reduced quantity 

Relation to the reduced Helmholtz energy 

Thermal pressure coefficient 

  p T


     (36) 

 

 r r
01 111 A A     (37) 

Thermal expansion coefficient 

 
 
 T

T

p T

p
  

 
 

 
 

 (38) 

 
     r r r r

01 11 01 021 1 2A A T A A       (39) 

As a classical monatomic model, the isobaric heat capacity of the ideal gas is cp
o/kB = 2.5. 

Integration yields 

 o
1 2ln 1.5 ln c c       . (40) 

The values c1 = −1.515151515 and c2 = 6.262265814 yield o
0 0h   and o

0 0s  at T0 = 0.8, 

p0 = 0.001, and the corresponding density of the ideal gas ρ0 = p0/T0. 

The correlation of this work consists of 6 polynomial, 6 exponential, and 11 Gaussian bell-

shaped terms 

 
   

    

6 12
r

1 7

23
2 2

13

, exp

exp  .

i i i i i

i i

d t d t l
i i

i i

d t
i i i i i

i

n n

n

       

       

 



  

    

 


 (41) 

It is valid for temperatures 0.661 < T < 9 and for pressures up to p = 65, corresponding to 

0.5 < T/Tc < 7 and p/pc = 500. The adjustable parameters (coefficients, temperature, and 

Gaussian bell-shaped parameters) as well as the density exponents, are listed in Table 2. 

Table 2. Parameters of the residual part of the present equation of state according to Eq. (41). 

i ni ti di li ηi βi γi εi 

1 0.52080730×10−2 1.000 4 -     

2 0.21862520×10+1 0.320 1 -     

3 −0.21610160×10+1 0.505 1 -     

4 0.14527000×10+1 0.672 2 -     

5 −0.20417920×10+1 0.843 2 -     

6 0.18695286×10+0 0.898 3 -     

7 −0.90988445×10−1 1.294 5 1     

8 −0.49745610×10+0 2.590 2 2     

9 0.10901431×10+0 1.786 2 1     

10 −0.80055922×10+0 2.770 3 2     

11 −0.56883900×10+0 1.786 1 2     

12 −0.62086250×10+0 1.205 1 1     

13 −0.14667177×10+1 2.830 1 - 2.067 0.625 0.710 0.2053 

14 0.18914690×10+1 2.548 1 - 1.522 0.638 0.860 0.4090 

15 −0.13837010×10+0 4.650 2 - 8.820 3.910 1.940 0.6000 

16 −0.38696450×10+0 1.385 3 - 1.722 0.156 1.480 1.2030 
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i ni ti di li ηi βi γi εi 

17 0.12657020×10+0 1.460 3 - 0.679 0.157 1.490 1.8290 

18 0.60578100×10+0 1.351 2 - 1.883 0.153 1.945 1.3970 

19 0.11791890×10+1 0.660 1 - 3.925 1.160 3.020 1.3900 

20 −0.47732679×10+0 1.496 2 - 2.461 1.730 1.110 0.5390 

21 −0.99218575×10+1 1.830 3 - 28.20 383.0 1.170 0.9340 

22 −0.57479320×10+0 1.616 1 - 0.753 0.112 1.330 2.3690 

23 0.37729230×10−2 4.970 1 - 0.820 0.119 0.240 2.4300 
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3 Molecular Simulation 

In this section, the main information for the molecular simulation of thermodynamic 

properties is provided. The new approach of direct simulations of reduced Helmholtz 

derivatives is discussed. 

When setting up fundamental equations of state on the basis of experimental data not every 

individual derivative with respect to its independent variables can be employed. The 

development of an EOS explicit in F/(kBT) would ideally require the reduced Helmholtz energy 

itself and its derivatives with respect to the inverse temperature and the density. With 

experimentally accessible thermodynamic properties, only derivatives r
01A and r

20A  can be 

computed individually. r
11A  and r

02A  are nonlinearly related to speed of sound and heat 

capacities.6 Fitting Helmholtz energy derivatives directly does not require linearization of any 

thermodynamic property. Consequently, the fitting procedure allows for an explicit study of all 

derivatives of the fundamental equation of state. 

As molecular simulation allows for the calculation of the residual Helmholtz energy 

itself, an EOS could be developed considering r
00A  simulation data only, at least in principle. 

However, an extremely dense and equally distributed grid of state points would have to be 

sampled across the entire fluid region to capture subtle features of the Helmholtz energy 

surface. Data sets for fitting EOS should contain as much independent thermodynamic 

information as possible. At present, an efficient generation of extensive data sets is cumbersome 

because most molecular simulation software tools are restricted to very few thermodynamic 

properties, such as internal energy, pressure, isochoric, or isobaric heat capacities. Here, we 

apply the methodology of Lustig.17,18 Any r
mnA is simultaneously available from one single NVT 

ensemble simulation for a given state point. The approach was implemented in the molecular 

simulation tool ms219 up to order m = 3 and n = 2:
r
01A , r

10A , r
02A ,

r
20A , r

11A , r
12A , r

21A , and r
30A . 

Additionally, r
00A can be determined using a rigorous test particle insertion method.20 

The underlying simulation data set was generated by sampling about 200 state points with 

the simulation tool ms219, covering the homogenous fluid region 0.7 < T < 9, ρ < 1.08 and 

pressures of up to p = 65. At each state point 1372 LJ particles were equilibrated and then 

sampled for 106 cycles with Monte Carlo NVT ensemble simulations,21 measuring the 

derivatives mentioned above. 
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4 Equations of State from the Literature 

In this section the prominent and recent equations for the Lennard-Jones fluid are 

discussed. The quality of those equations is analyzed by comparing to the underlying simulation 

data sets and the extrapolation behavior. 

For the Lennard-Jones fluid, many equations of state are available in the literature. Until 

the early 1990s, there were only semi-theoretical, e.g., of Levesque and Verlet,22 McDonald 

and Singer,23 or Song and Mason,24 and empirical equations using the modified Benedict-

Webb-Rubin (MBWR) form, e.g., Nicolas et al.,25 Adachi and Fijihara,26 or Miyano.27 The 

semi-theoretical equations are mostly restricted to a small range of validity. They have few 

adjustable parameters so that they are not flexible enough to represent all thermodynamic data 

within their estimated statistical uncertainty over the entire fluid range. The equations expressed 

in the MBWR form are more flexible due to the large number of adjustable parameters. Thus, 

the entire fluid range can be modeled more accurately than with semi-theoretical equations. 

However, lacking physical background, their extrapolation behavior has to be investigated 

carefully. For the calculation of any thermodynamic property the pressure explicit MBWR form 

must be integrated to yield the Helmholtz energy.28 First fundamental equations of state for the 

Lennard-Jones fluid in terms of the Helmholtz energy were published by Kolafa and Nezbeda4 

and Mecke et al.5 

Table 3 lists prominent and recent equations for the Lennard-Jones fluid. The most cited 

equation is Johnson et al.3 so that it will be discussed in more detail here. Based on the MBWR 

equation of Nicolas et al.,25 it consists of 32 linear parameters and one nonlinear parameter. 

The first five parameters were fitted to second virial coefficient data of Barker et al.,29 which 

are exact. All other parameters were established by fitting to pressure and internal energy data 

sampled with molecular dynamics simulation. No VLE data were used, but a critical point at 

Tc = 1.313 and ρc = 0.31 was applied. Unlike Nicolas et al.25, the equation of Johnson et al.3 

also follows the trend of the third virial coefficient of Barker et al.29 (see Fig. 1). Although they 

assumed a better representation of the vapor-liquid equilibrium as a consequence, the third virial 

coefficient was overestimated systematically. 

Table 3. Equations of state for the Lennard-Jones fluid from the literature. 

Author Year EOS type 
Critical parameters Range of validity 

Tc ρc T ρ 

Nicholas et al.25 1979 MBWR 1.35 0.35 0.55 - 6 ≤ 1.2 

Johnson et al.3 1993 MBWR 1.313 0.31 0.7 - 6 ≤ 1.25 

Kolafa & Nezbeda4 1994 MBWR 1.3396 0.3108 0.7 - 20 ≤ 1.2 

Mecke et al.5 1996 a + HS term 1.328 0.3107 0.7 - 10a ≤ 1.2 

May & Mausbach30 2012 MBWR 1.3145 0.316 0.5 - 6 ≤ 1.2 

aReasonable extrapolation behavior up to T = 100 for ρ ≤ 1 
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To date, the most accurate equation of state for the Lennard-Jones fluid is the one 

published by Mecke et al.5 The correlation is given in the reduced Helmholtz energy α 

augmented by a hard-body term. A linear structural optimization algorithm introduced by 

Setzmann and Wagner31 was used. The data set consisted of pressure, residual internal energy, 

virial coefficients, and VLE data and the equation is valid for 0.7 ≤ T ≤ 10 and ρ ≤ 1.2. The 

critical temperature Tc = 1.328 was taken from Valleau32 as a constraint and the critical density 

ρc = 0.3107 was obtained from a linear extrapolation of the rectilinear diameter. Correct 

extrapolation behavior up to T = 100 is stated by the authors. Third virial coefficient data at low 

temperatures are also best reproduced as illustrated in Fig. 1. The equations of Kolafa and 

Nezbeda,4 Johnson et al.,3 and May and Mausbach30 follow the course of the third virial 

coefficient, but deviate systematically. 

 
Fig. 1 Third virial coefficient versus temperature from the literature. 33 

 
Fig. 2 Extrapolation behavior of five selected equations of state from the literature along the isotherm T = 10. 
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Table 4. Average absolute relative deviations (AAD) of the data basis of five selected equations of state from 
literature. Here, only the data points that are located in the homogenous fluid region are considered. For the 
determination of the vapor-liquid equilibrium all equations were applied. Data, which are located in the solid-
liquid two-phase region according to Ahmed et al.34 were not considered. The best AAD for each data set is marked 
in blue. 

 
No. 
of 

pts. 

Nicolas 
et al.25 

Johnson 
et al.3 

Kolafa & 
Nezbeda4 

Mecke 
et al.5 

May & 
Mausbach30 

This 
work 

pρT data        

Adams35 a 12 2.360 1.970 2.076 2.004 2.024 1.990 

Adams36 a 15 0.423 0.721 0.731 0.760 0.538 0.740 

Hansen37 a 6 0.320 0.232 0.208 0.164 0.205 0.167 

Hansen & Verlet38 a 7 1.252 0.862 0.783 0.766 0.872 0.798 

Johnson et al.3 b,c,d 149 0.690 0.247 0.151 0.109 0.196 0.129 

Kolafa et al.39 d 37 0.760 0.458 0.222 0.187 0.375 0.244 

Kolafa & Nezbada4 b,d 9 1.560 1.162 0.374 0.236 0.906 0.317 

Levesque & Verlet22 a 17 52.55 48.20 49.14 49.40 48.41 48.88 

McDonald & Singer23 a 43 0.362 0.433 0.376 0.406 0.377 0.401 

Mecke et al.5 b 5 8.205 2.374 0.352 0.522 2.274 1.435 

Meier14 e 287 0.952 0.353 0.128 0.087 0.206 0.120 

Miyano27 b 63 1.722 4.236 3.104 1.660 3.687 1.532 

Nicolas et al.25 a,b 55 0.551 0.709 0.533 0.518 0.661 0.542 

Saager & Fischer40 b 25 0.568 0.143 0.131 0.120 0.231 0.122 

Verlet41 a 32 3.896 3.158 2.926 2.908 3.096 2.981 

ur data        

Adams35 a 12 1.965 2.026 1.932 1.731 1.880 1.710 

Adams36 a 15 0.398 0.733 0.670 0.648 1.118 0.652 

Hansen37 a 6 0.637 0.801 0.857 0.620 0.589 0.567 

Johnson et al.3 b,c,d 149 1.497 1.129 1.333 0.305 0.933 0.392 

Kolafa et al.39 d 37 1.082 0.459 0.360 0.203 0.696 0.166 

Kolafa & Nezbada4 d 9 4.416 10.15 11.05 0.325 8.617 0.549 

Levesque & Verlet22 a 32 0.862 1.113 1.105 1.031 1.110 0.785 

McDonald & Singer23 a 43 0.302 0.426 0.417 0.380 0.592 0.377 

Mecke et al.5 b 5 3.346 0.478 0.521 0.856 1.458 0.752 

Meier14 e 287 1.860 0.864 0.988 0.198 0.646 0.205 

Miyano27 b 63 27.07 42.76 43.09 4.469 39.84 3.811 

Nicolas et al.25 b, a 55 0.857 1.569 1.700 0.684 1.783 0.826 

Saager & Fischer40 b 25 0.278 0.581 0.619 0.160 0.710 0.221 

Verlet41 a 32 0.772 0.980 0.933 0.799 1.051 0.730 
a Used by Nicolas et al.;25 additionally, data of Barker et al.29 (B) were applied to the fit. 
b Used by Mecke et al.;5 additionally, data of Barker et al.29 (B, C), Kriebel (numerical values not available in the 
literature), and Lotfi et al.42 (pρT) were applied to the fit. 
c Used by Johnson et al.;3 additionally, data of Barker et al.29 (B, C) were used for comparison. 
d Used by Kolafa and Nezbeda4; additionally, data of Barker et al.29 (B) and Lotfi et al.42 (pρT) were applied to the 
fit. 
e Used by May and Mausbach.30 
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For an assessment of the equation of state correlations listed in Table 3, the data sets, 

which were the basis for the development of these equations, are compared to each of them. 

Based on those results, only the most reliable equation of state will be considered for 

comparison in the following. 

Some statistical definitions are used for the evaluation of the equations. The relative deviation 

of a given property X is defined as  

 DATA EOS

DATA

100
X X

X
X

 
  (42) 

and the average absolute relative deviation AAD reads 

 
1

1 N

i
i

AAD X
N




  . (43) 

In this work, the average absolute relative deviation is separated into different temperature and 

pressure ranges to avoid misleading results caused by certain regions, e.g., the critical region. 

The homogeneous fluid range is separated into the gas and liquid phases, and into the critical 

and supercritical regions. The critical region is defined by 0.98 ≤ T/Tc ≤ 1.1 and 

0.7 ≤ ρ/ρc ≤ 1.4. The supercritical region is furthermore divided into three areas: the region of 

low densities (LD: ρ/ρc ≤ 0.6), of medium densities (MD: 0.6 ≤ ρ/ρc ≤ 1.5), and of high densities 

(HD: ρ/ρc > 1.5). The vapor-liquid equilibrium data are split into three different temperature 

ranges: the region of low temperatures (LT: T/Tc ≤ 0.6), of medium temperatures (MT: 

0.6 ≤ T/Tc ≤ 0.98), and of high temperatures (HT: T/Tc > 0.98). 

In Table 4, the average absolute relative deviation of each publication calculated with 

the five selected equations of state is listed. In this table, only homogeneous fluid states are 

considered. It is obvious that the equation of state of Mecke et al.5 is the most accurate one with 

respect to the pρT data as well as the residual internal energy. Especially for the most 

comprehensive data sets, e.g., Meier,14 Johnson et al.,3 Miyano,27 Nicolas et al.,25 and Saager 

and Fischer,40 the best representation is given by Mecke et al.5 The reason for the large 

difference between the AAD of the internal energy data of Miyano27 calculated from the 

equation of Mecke et al.5 and all other equations is a different extrapolation behavior, which is 

illustrated in Fig. 2. There, the course of the isotherm T = 10 is presented for very high densities. 

Although the investigated region is located deeply in the solid phase, a wrong extrapolation 

behavior also causes a wrong shape of the isotherm in the fluid region.43 The equation of state 

of Mecke et al.5 is suitable under extreme conditions of temperature, pressure, and density, 

whereas the other equations exhibit deficiencies.5 The qualitative behavior of the equations of 

Johnson et al.3 and May and Mausbach30 is reasonable because no negative pressures occur. 

The negative pressures calculated by Nicolas et al.25 and Kolafa and Nezbeda4 are probably 
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caused by a negative coefficient of a polynomial term or a low order exponential term that is of 

leading importance in this region.  

In Fig. 3, an overview of the deviations of the data sets investigated in Table 4 is given. 

On the left hand side, deviations in density and on the right hand side, deviations in internal 

energy are given. Density deviations in the range of 0.2 < ρ < 0.7 exemplify problems for all 

but the equation of Mecke et al.5 The low density region is described well by Mecke et al.5 and 

Kolafa and Nicolas.4 The simulation data of Miyano27 at ρ = 1 detect deficiencies of all 

equations (AAD = 1.72 % - 4.24 %) whereas Mecke et al.5 yields AAD = 1.66 %. For the 

residual internal energy, it is striking that the data set of Meier14 is by far better reproduced by 

Mecke et al.5 (AAD = 0.20 %) than all other correlations (AAD = 0.6 % - 1.8 %). The same 

follows from the simulation data set of Johnson et al.,3 although their correlation was 

exclusively fitted to those data. The data set of Nicolas et al.25 is reproduced best with the 

equation of Mecke et al.5 (AAD = 0.64 %). However, the corresponding equation is accurate in 

this case (AAD = 0.86 %), but reveals significant problems in the low density region. The 

equation of May and Mausbach30 is the most consistent for residual internal energy. Most of 

the data scatter within 2 % to 3 %, which is still less accurate than the equation of Mecke et al.5 

We showed that in the fluid region the equation of state of Mecke et al.5 is significantly superior 

to any other equation of state in the literature. In the following, we compare our results to that 

EOS. 
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Fig. 3 Comparison of five equations of state from the literature with the corresponding data sets used for their 
development. 
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5 New Equation of State 

In contrast to the equations examined in section 4, the new equation is based on derivatives 

of the residual Helmholtz energy with respect to temperature and density. In the following, the 

new correlation is compared to previous correlations and previous data sets. 

5.1 Helmholtz energy derivatives 

The development of the present equation of state for the Lennard-Jones fluid is 

exclusively based on the simulated reduced residual Helmholtz energy and its derivatives r
mnA

up to third order, and virial coefficients up to the fourth. No vapor-liquid equilibrium data were 

considered. The application of this new data type to a fitting procedure is investigated carefully 

below. Simulation data exhibit statistical uncertainties, different from experimental 

uncertainties in case of real fluids. The use of Helmholtz energy derivatives to fit a fundamental 

equation of state for the Lennard-Jones fluid is the first attempt to apply this strategy in 

developing an equation of state. Among many equations of state for this model available in the 

literature, the equation of state published by Mecke et al.5 was developed by modern fitting 

techniques and very accurately represents thermal properties as well as the residual internal 

energy. The goal of the present fundamental equation of state is to represent thermal properties 

with at least such accuracy while improving the representation of caloric properties, other 

selected thermodynamic properties, and extrapolation behavior. The new equation is analyzed 

in analogy to modern fundamental equations of state for real fluids and is provided in a form 

that allows for straightforward implementation in common software tools like TREND,44 

REFPROP,45 or CoolProp.46 

Figure 4 shows simulated state points in the T-ρ plane. The vapor-liquid equilibrium 

according to the present equation of state and the solid-liquid equilibrium based on the 

correlations of Ahmed and Sadus34 and van der Hoef47 are indicated. At each state point, the 

residual Helmholtz energy as well as its derivatives with respect to T and ρ up to third order 

(without the third density derivative) were sampled. During the fit, statistical uncertainties 

served as measure for the reliability of the data. Possible unknown systematic errors were 

ignored. For temperatures higher than T = 2.8, the freezing line of Ahmed and Sadus34 is steeper 

than that of van der Hoef.47 The data of Agrawal and Kofke48 and Hansen37 fall in between both 

correlations. Therefore, test simulations at T = 3 and 7 were carried out here for assessment (cf. 

Fig. 4, bottom). Isothermal jumps in r
01A and r

10A  indicate the onset of freezing. The estimated 

freezing density of Ahmed and Sadus34 is closer to the jump than that of van der Hoef.47 

Therefore, the correlation of Ahmed and Sadus34 is considered here as a boundary of the liquid 

phase. The solidus line of Ahmed and Sadus34 is obviously wrong for approximately T > 2.5. 

However, in their publication they state T = 2.8 to be the upper boundary of the range of 

validity, which is indicated by dashed-dotted lines in Fig. 4, and the unreasonable trend at higher 

temperatures is an extrapolation effect. Since the present equation of state is explicitly valid in 
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the fluid region only, all available data from the literature beyond that boundary are excluded 

from the discussion below.  

 
Fig. 4 Top: Data set used to develop the present equation of state. The reduced residual Helmholtz energy and its 
derivatives up to third order were measured at each state point. The saturated liquid and vapor lines were calculated 
with the present equation of state. The solid-liquid equilibrium curves were calculated with the correlations of 
Ahmed and Sadus34 and van der Hoef.47 Selected literature data are included for comparison. Bottom: Test 
simulations of r

01A and r
10A  along the isotherms T = 3 and T = 7 are shown to verify the correlation of Ahmed and 

Sadus.34 The liquid density of the solid-liquid equilibrium of Ahmed and Sadus34 and van der Hoef47 is plotted for 
comparison.   
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The triple point temperature Ttr = 0.661 published by Ahmed and Sadus34 is used as the lower 

temperature limit of the present equation of state. Other reported triple point temperatures 

include Agrawal and Kofke48 (Ttr = 0.687±0.004), Hansen and Verlet38 (Ttr = 0.68±0.02), 

Johnson et al.3 (Ttr = 0.69), and Ladd and Woodcock51 (Ttr = 0.67±0.01).  

During the fitting procedure, some general aspects of the simulation data must be considered. 

Temperature derivatives of the Helmholtz energy are usually less uncertain than density 

derivatives. The equation of state then represents temperature derivatives such as heat capacities 

better than density derivatives such as compressibilities. The accuracy of all derivatives 

decreases with increasing order of the derivate. The residual Helmholtz energy itself has to be 

treated differently because of a possible break down of the test particle method at high density. 

Furthermore, molecular simulation yields higher relative uncertainties in the gaseous phase than 

in the liquid phase. Finally, zero crossings occur for some derivatives (e.g., r
01A ), which may 

obscure deviation plots. Here, only selected isotherms are presented for each derivative. A 

comprehensive overview is given in the supplementary material.52 For each isotherm, the 

equation of state of Mecke et al.5 is used for comparison. Additionally, average absolute relative 

deviations (AAD) are presented in Table 5. 

Deviations to residual Helmholtz energy r
00A  data are illustrated in Fig. 5. r

00A  is 

generally reproduced within 0.5 % (AAD = 0.46 %). However, there are differences depending 

on temperature and density range. E.g., 
r
00A  in the gaseous phase (T = 0.8 to 1.2) is represented 

within less than 0.2 %, whereas the deviations of the low density data in the supercritical state 

increase up to 0.5 % (e.g., T = 7). Some isotherms show scatter of the data (e.g., T = 1.5 to 3), 

whereas higher temperatures are entirely consistent (T = 7 to 9).  

In comparison, modeling the first density derivative r
01A  is more challenging than r

00A , 

as shown in Fig. 6. Although the deviation plots show oscillations (e.g., T = 4 to 9), the accuracy 

of the equation of state is still within 0.5 %. Both the equations of Mecke et al.5 and of this 

work show similar behavior. The AAD of the present equation of state improves over the entire 

surface: 0.49 % vs. Mecke et al.5 1.01 %. The isotherm T = 4 illustrates the difference between 

low and high density simulations. The uncertainty of the data decreases with increasing density. 

The isotherm T = 3 shows scatter in the data for ρ < 0.45. Such regions have to be treated 

carefully to avoid overfitting so that the equation is not forced to follow the scatter of the data. 
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Fig. 5 Relative deviation of simulated residual reduced Helmholtz energy r

00A data (circles) from the present 
equation of state. The equation of Mecke et al.5 (solid curve) is plotted for comparison. 

 

 
Fig. 6 Relative deviation of simulated first derivative of the residual Helmholtz energy with respect to density r

01A
data (circles) from the present equation of state. The equation of Mecke et al.5 (solid curve) is plotted for 
comparison. 
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Fig. 7 Relative deviation of simulated first derivative of the residual Helmholtz energy with respect to inverse 
temperature r

10A data (circles) from the present equation of state. The equation of Mecke et al.5 (solid curve) is 
plotted for comparison. 

 

 
Fig. 8 Relative deviation of simulated second derivative of the residual Helmholtz energy with respect to density 

r
02A data (circles) from the present equation of state. The equation of Mecke et al.5 (solid curve) is plotted for 

comparison. 
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The first temperature derivative r
10A  shown in Fig. 7 is the most accurate property to 

determine from molecular simulation. The liquid phase is represented within 0.03 % 

(AAD = 0.02 ). The low density data are more challenging. In the gas phase, they are 

reproduced within 0.5 % (AAD = 0.28 %). Since the vapor-liquid equilibrium is located 

between the gaseous and liquid data, it is difficult to assess a correct transition between low and 

high density data. The supercritical state allows for a continuous evaluation of the data over the 

entire density range. At T = 3 and 5, a consistent trend persists over the entire density range. In 

contrast, T = 1.5 and 2 show an offset of the relative deviations between low density and 

medium density data. Isotherms T = 7 and 9 were fitted less accurately. During the fit, it was 

not possible to improve accuracy without compromising lower isotherms. Therefore, 

uncertainties in the supercritical state are 0.2 % for T < 7 and up to 0.6 % for T ≥ 7. The overall 

AAD of this work and Mecke et al.5 are quite similar: 0.14 % vs. 0.16 %, respectively.  

The second density derivative r
02A  in Fig. 8 is similarly represented with AAD = 28.0 % 

versus Mecke et al.:5 AAD = 27.8 %. High AAD in the low density region are caused by small 

numerical values resulting in a high relative deviation. In the liquid region, the data are 

represented within 1.5 %. Both equations show about the same deviations. Similar to
r
01A , 

deviations in the supercritical region oscillate. Scatter occurs at medium temperatures 

(T = 1.5 to 5) and ρ < 0.45. The error of calculated r
02A  data in the supercritical region was 

estimated to be 2.5 % for ρ < 0.45 (AADMD = 2.66 %) and 1.5 % for ρ ≥ 0.45 

(AADHD = 0.85 %). 

Figure 9 shows that r
20A behaves as smooth as r

10A . A significant oscillation can be 

observed for medium temperatures. The gaseous and liquid regions are described with an 

accuracy of better than 1 % (AADgas = 0.47 % and AADliq = 0.40 %), which is a large 

improvement in comparison with the equation of state of Mecke et al.5 (AADgas = 1.07 % and 

AADliq = 0.88 %). For T ≥ 3, medium and high density data are reproduced within 0.5 %. The 

transition of the low density into the medium density range shows an offset. Therefore, the 

uncertainty is 1 %, although the data have lower statistical uncertainties. The supercritical 

region represents a significant improvement over Mecke et al.5 The overall AAD is decreased 

from previous 0.93 % to 0.48 % in this work. 

Figure 10 shows the mixed derivative r
11A . The gaseous region is represented within less 

than 0.5 % (AAD = 0.33 %), whereas the deviation in the liquid region increases from 0.5 % to 

1 % towards high densities (AAD = 0.49 %). In the supercritical region at densities ρ ≤ 0.5, the 

accuracy is within 1 % (AADLD = 0.28 % and AADMD = 0.34 %). For ρ > 0.5, significant scatter 

occurs with an estimated uncertainty of more than 3 %. The overall AAD of both equations is 

quite similar and no noticeable improvement is achieved.  
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Fig. 9 Relative deviation of simulated second derivative of the residual Helmholtz energy with respect to 
temperature r

20A data (circles) from the present equation of state. The equation of Mecke et al.5 (solid curve) is 
plotted for comparison. 

 
Fig. 10 Relative deviation of simulated mixed derivative of the residual Helmholtz energy with respect to density 
and temperature r

11A data (circles) from the present equation of state. The equation of Mecke et al.5 (solid curve) 
is plotted for comparison. 

Third order derivatives are currently associated with too large statistical uncertainties to 

be used to parameterize the equation of state and were used for comparison only. At least the 

third temperature derivative r
30A shows acceptable deviations with an overall AAD = 4.44 % (cf. 

Fig. 11). Especially in the supercritical region for T ≥ 4, the equation shows agreement with the 

simulation data within about 3 %. Other regions are reproduced within 5 % to 10 %. The 

deviations of calculated r
12A data are at least 20 % (overall AAD = 88.2 % caused by low density 

data). r
21A data are reproduced within 20 % for T ≤ 2 and 10 % for T > 2 (overall AAD = 12.8 %). 
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The deviations with respect to the equation of state of Mecke et al.5 are slightly higher for these 

properties. 

 
Fig. 11 Relative deviation of the simulated third derivatives of the residual Helmholtz energy with respect to 
density and temperature (circles) from the present equation of state: first line r

12A , second line r
21A , third line  

r
30A . The equation of Mecke et al.5 (solid curve) is plotted for comparison. 

 

 

Table 5. Average absolute relative deviations (AAD) of the present equation of state and the most prominent and 
cited equations from the literature based on the simulation data of this work (temperature range T = 0.7 - 9, 
maximum pressure pmax = 65). Data that are clear outliers for all equations were rejected. The best AAD for each 
phase and data set is marked in blue. 

Property No. of Average absolute relative deviations (AAD) / %  

 data Gas Liquid Crit. Reg.a LDb MDb HDb overall 

This work       
r
00A  190 0.10 0.37 - 0.35 1.40 0.48 0.52 
r
01A  190 0.28 0.93 - 0.52 0.52 0.13 0.53 
r

10A  190 0.31 0.02 - 0.19 0.15 0.12 0.12 
r
02A  189 101 5.47 - 118 3.60 0.70 27.9 
r
20A  188 0.43 0.59 - 0.69 0.84 0.37 0.56 
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Property No. of Average absolute relative deviations (AAD) / %  

 data Gas Liquid Crit. Reg.a LDb MDb HDb overall 
r

11A  187 0.30 0.48 - 0.29 0.48 1.21 0.63 
r

12A  189 105 77.5 - 126 145 20.4 80.6 
r
21A  189 1.78 19.3 - 3.70 13.9 9.72 12.0 
r
30A  183 6.03 3.89 - 3.63 4.40 2.10 3.70 

 
Mecke et al.5      

 

r
00A  190 0.07 0.37 - 0.44 2.85 0.56 0.76 
r
01A  190 0.41 1.94 - 0.73 1.00 0.20 1.01 
r

10A  190 0.47 0.01 - 0.25 0.26 0.13 0.16 
r
02A  189 101 5.55 - 118 3.18 0.69 28.0 
r
20A  188 1.07 0.88 - 1.19 1.63 0.44 0.93 
r

11A  187 0.53 0.49 - 0.25 0.73 1.48 0.77 
r

12A  189 115 396 - 610 1956 467 636 
r
21A  189 4.00 21.3 - 3.72 37.3 15.4 18.0 
r
30A  183 14.6 6.07 - 3.87 7.17 2.17 5.97 

Kolafa & Nezbeda4       
r
00A  191 0.36 0.39 - 1.07 0.81 0.77 0.57 
r
01A  191 0.22 3.90 - 0.87 1.23 1.13 1.82 
r

10A  191 19.4 0.09 - 0.52 1.39 0.36 5.81 
r
02A  190 61.4 5.82 - 113 1.97 1.53 28.0 
r
20A  189 11.3 6.73 - 4.07 13.2 5.79 8.58 
r

11A  188 6.55 0.97 - 0.66 13.7 4.94 5.32 
r

12A  189 NAN NAN - NAN NAN NAN NAN 
r
21A  183 14.6 26.4 - 5.87 29.2 12.5 20.6 
r
30A  191 32.6 45.4 - 14.4 34.0 19.9 33.6 

Johnson et al.3       
r
00A  191 0.69 0.68 - 2.26 11.9 2.73 2.66 
r
01A  191 0.38 3.85 - 3.83 2.58 0.83 2.43 
r

10A  191 18.4 0.13 - 0.45 1.32 0.32 5.54 
r
02A  190 61.7 5.83 - 115 2.94 1.22 28.5 
r
20A  189 12.4 7.90 - 4.12 13.2 5.68 9.16 
r

11A  188 7.50 1.32 - 0.62 14.2 5.02 5.73 
r

12A  189 NAN NAN - NAN NAN NAN NAN 
r
21A  189 15.6 33.6 - 6.15 38.5 13.7 25.5 
r
30A  183 34.4 53.1 - 15.7 34.1 18.8 36.5 

a Critical region: 0.98 ≤ T/Tc ≤ 1.1 and 0.7 ≤ ρ/ρc ≤ 1.4 
b Supercritical fluid: LD: ρ/ρc ≤ 0.6; MD: 0.6 ≤ ρ/ρc ≤ 1.5; HD: ρ/ρc > 1.5 

5.2 Thermal virial coefficients 

In addition to the residual Helmholtz derivatives, which are exclusively located in the 

homogeneous region, the gas phase was modeled with virial coefficients up to the fourth. 

Second B and third C virial coefficients were used to set up previous equations of state (cf. 
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Table 4). Available data from the literature25,29,53–56 are augmented by “exact” calculations of 

the fourth virial coefficient D provided by Wheatley.33 Figure 12 displays details.  

The second virial coefficient from the present correlation represents all available 

data.25,29,33,53,54,56. The equation of Mecke et al.5 follows the exact second virial coefficient up 

to T = 100, which was reported to be the upper range for a reasonable extrapolation behavior.5 

For higher temperatures, the two equations differ from each other. The present equation of state 

follows the calculated second virial coefficient of Wheatley33 approaching zero, whereas the 

equation of Mecke et al.5 does not. The Boyle temperature, Joule-Thomson inversion 

temperature, and Joule inversion temperature in the zero-density limit are also indicated in Fig. 

12. They are in good agreement with values of Hirschfelder et al.53 (TBL = 3.42), Friedrich and 

Lustig57 (TBL = 3.41, TJT = 6.47), Breitenstein and Lustig58 (TBL = 3.42, TJT = 6.43), and 

Breitenstein59 (TBL = 3.4179, TJT = 6.4308). The exact Joule inversion temperature has not been 

established in the literature, yet. Additional characteristic properties can be found in Table 6. 

In addition to the second virial coefficient, its first temperature derivative (∂B/∂T) was 

reported by Hirschfelder et al.53 As expected, both equations agree with these data for T ≤ 100. 

For higher temperatures, an unphysical slope for B of the equation of Mecke et al.5 (cf. Fig. 12) 

is also visible in Fig. 13 because the temperature derivative is positive. In comparison, the 

present equation exhibits a correct negative temperature derivative in that range. However, it is 

important to keep in mind that the temperature T/Tc ≈ 75 is well beyond the range of validity of 

both equations. 

The third virial coefficient29,33,53–55 is reproduced by the present equation as accurately as 

the second virial coefficient, except for the critical temperature region. As the Lennard-Jones 

fluid is a simple monatomic model, a similar behavior as the equation for argon by Tegeler et 

al.60 is expected. Their equation as well as third virial coefficient data determined from highly 

accurate pρT measurements by Gilgen et al.61 show a maximum slightly below the critical 

temperature. Figure 12 shows that this is also true for the Lennard-Jones fluid. This behavior is 

in agreement with the available data. Barker et al.,29 Shaul et al.,54 Hirschfelder et al.,53 and 

Bird et al.55 calculate the maximum of C to be between T = 1.2 and 1.3. Barker et al.29 report a 

maximum below T = 1.25. An inflection point in C is obvious from Fig. 12. Additionally, exact 

calculations for the first temperature derivative of the third virial coefficient were provided by 

both Hirschfelder et al.53 and Bird et al.55 In Fig. 13, the inflection point is clearly illustrated 

by a maximum in the temperature derivative around T = 6. 
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Fig. 12 Second B, third C and fourth D thermal virial coefficients. The critical temperature Tc, Boyle temperature 
TBL, Joule-Thomson inversion temperature TJT, and Joule inversion temperature TJI are indicated. 

 

Table 6. Selected points on the characteristic ideal curves calculated with the present equation of state.  

Property T ρ p 

Boyle temperature in the zero-density limit 3.417   

Joule-Thomson inversion temperature in the zero-density limit 6.425   

Joule inversion temperature in the zero-density limit 25.17   

Maximum of Joule-Thomson inversion temperature 2.917 0.387 1.386 

Intersection of Joule-Thomson inversion curve and saturated liquid line 1.051 0.673 0.035 
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Fig. 13 First derivative of the second and third thermal virial coefficients with respect to the temperature. 

 

Figure 12 shows the fourth virial coefficient. The available data from exact 

calculations29,33,54 as well as the present equation of state show a first maximum around the 

critical temperature and a second less pronounced maximum at T = 4.8. As discussed by Thol 

et al.,62 the fourth virial coefficient has rarely been investigated in the context of equations of 

state correlation and only few experimental measurements are available for real fluids. 

However, no measurements of D exist in the temperature region where the second maximum 

occurs (T/Tc = 3.6). 
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5.3 Vapor-liquid equilibrium 

The present equation of state is exclusively based on Helmholtz energy derivatives at 

homogeneous states and on thermal virial coefficients. Therefore, vapor-liquid equilibrium is 

output of and not input to the fitting procedure. Figure 14 shows relative deviations of available 

data for vapor pressure pv, saturated liquid density ρ’, and saturated vapor density ρ’’. Ancillary 

correlations  
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are included in the plots. Parameters are listed in Table 7. Ten different data sets are available 

for vapor pressure. The AAD are separated into three temperature ranges in Table 8. Molecular 

simulations were performed with different techniques and mostly low numbers of particles: The 

data of Adams36,63 (N ≈ 200), Hansen and Verlet38 (N ≈ 864), Kofke64 (N ≈ 108 to 256), Smit 

and Frenkel65 (N ≈ 64 to 512), Panagiotopoulos66 (N ≈ 300 to 500), and Panagiotopoulos et 

al.67 (N ≈ 300 to 500) are represented with high deviations.  

Table 7. Parameters of the ancillary equations for vapor pressure, saturated liquid density, and saturated vapor 
density. 

  
Vapor pressure,  

Eq. (44) 
 

Saturated liquid density, 
Eq. (45) 

 
Saturated vapor density, 

Eq. 24 
i  ni ti  ni ti  ni ti 

1  −0.54000×10+1 1.00  0.1362×10+1 0.313  −0.69655×10+1 1.320 

2  0.44704×10+0 1.50  0.2093×10+1 0.940  −0.10331×10+3 19.24 

3  −0.18530×10+1 4.70  −0.2110×10+1 1.630  −0.20325×10+1 0.360 

4  0.19890×10+0 2.50  0.3290×10+0 17.00  −0.44481×10+2 8.780 

5  −0.11250×10+1 21.4  0.1410×10+1 2.400  −0.18463×10+2 4.040 

6        −0.26070×10+3 41.60 

In particular, the vapor pressure data simulated by Panagiotopoulos66 and 

Panagiotopoulos et al.67 show a scatter of more than 20 % and are not considered in the 

subsequent discussion. The data set best represented by the present equation of state was 

published by Lotfi et al.42,68 The NpT plus test particle method was used with 1372 particles in 

MD mode. The results range from T = 0.7 to 1.3 with a scatter of 1.8 % (AAD = 1.11 %) relative 

to the present equation of state. Agrawal and Kofke48 mainly investigated the solid-liquid and 

solid-vapor equilibrium. For the determination of the triple point, they simulated the crossing 

of the vapor-liquid equilibrium curve and the solid-liquid equilibrium curve. Vapor pressure 
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data (N ≈ 108) at low temperatures show a systematic deviation of −3.5 %. This trend is in 

agreement with other data sets for T < 0.75, e.g., Lotfi et al.42 However, modeling the vapor 

pressure curve such that it reproduces these data would require an unreasonable course of the 

saturation line so that they are assumed to be inaccurate. The present equation of state is in good 

agreement with the equation of Mecke et al.5 at low temperatures. Since the data set of Lotfi et 

al.42 is the most consistent and accurate one, the corresponding scatter of 1.8 % was assumed 

to be the uncertainty in vapor pressure. 

The saturated liquid density was investigated by 14 different authors. The relative 

deviation with respect to the present equation of state is illustrated in Fig. 14. Most of the data 

were taken from the same publications as the vapor pressures. Therefore, the underlying 

molecular simulation conditions are the same. Data scatter less and the representation of the 

data is much better. For T < 1.1, the data of Adams36 (AAD = 0.52 % to 0.92 %), Hansen and 

Verlet38 (AAD = 0.15 % to 0.48 %), Panagiotopoulos66 (AAD = 0.13 % to 1.08 %), 

Panagiotopoulos et al.67 (AAD = 0.25 % to 1.00 %), Martin and Siepmann69 

(AAD = 0.30 % to 0.40 %), Smit and Frenkel65 (AAD = 0.81 %), Potoff and Panagiotopoulos70 

(AAD = 0.93 %), and Kofke64 (AAD = 0.74 %) are represented within 1 %. The data of Agrawal 

and Kofke48 deviate systematically by 1.4 % and were not considered further. Again, the most 

consistent and accurate data set is by Lotfi et al.42 (AAD = 0.031 % to 0.14 %). For T ≥ 1.1, two 

different observations are made. The data of Kofke,64 Shi and Johnson,71 and Hunter and 

Reinhardt72 yield higher densities than the present equation of state. The data of Kofke64 are 

inaccurate in the lower temperature range. Shi and Johnson71 published consistent data within 

a small temperature range (T = 1.15 - 1.27). The present equation of state predicts these data 

within 0.7 %, except for the data point at highest temperature, which is off by 1.5 %. The data 

of Hunter and Reinhardt72 exhibit significant scatter, which is probably due to varying numbers 

of particles (N = 32 to 500) used in their simulations. Relative to the present equation of state 

the data by Potoff and Panagiotopoulos70 deviate by up to −2.7 %. These data support the data 

of Lotfi et al.42 at temperatures close to Tc. Since no vapor-liquid equilibrium data were used in 

the fit, the present equation of state independently supports that the data of Lotfi et al.42 are 

accurate over the entire temperature range. The uncertainty of saturated liquid density 

calculated with the present equation of state is assumed to be 0.15 % for T < 1.1 and 0.5 % for 

T ≥ 1.1 based on the data of Lotfi et al.42  

Finally, the relative deviation of directly simulated saturated vapor density data from 

the present equation of state is plotted in Fig. 14. The available data are from the same sources. 

The representation of the data is similar to the vapor pressure and is not discussed further. 

Again, the data set of Lotfi et al.42 as a reference yields a correlation uncertainty of 1.8 % over 

the entire temperature range. 
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Fig. 14 Relative deviation of literature data for vapor pressure, saturated liquid density, and saturated vapor density 
from the present equation of state. 
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Table 8. Average absolute relative deviations of vapor pressure, saturated liquid density, and saturated vapor 
density from literature data relative to the present equation of state. 

 No. of Temperature Average absolute relative deviations / % 

Authors data range LTa MTa HTa overall 

Vapor pressure pv       

Adams36 11 0.60 - 1.10 10.2 9.49 - 9.76 

Adams63 3 1.15 - 1.30 - 8.81 5.72 7.78 

Agrawal & Kofke48 13 0.68 - 0.74 3.35 - - 3.35 

Baidakov et al.73, b 7 0.72 - 1.23 25.0 22.0 - 22.4 

Hansen & Verlet38 2 0.75 - 1.15 5.17 0.54 - 2.86 

Kofke64 22 0.74 - 1.32 4.39 2.99 1.86 3.01 

Lotfi et al.42 13 0.70 - 1.30 2.37 0.91 0.55 1.11 

Martin & Siepmann69 6 0.75 - 1.18 17.0 3.85 - 6.03 

Panagiotopoulos66 22 0.75 - 1.30 45.5 97.2 2.73 70.6 

Panagiotopoulos et al.67 18 0.75 -1.30 50.2 6.84 3.01 11.2 

Smit & Frenkel65 12 1.15 -1.30 - 9.05 1.26 7.75 

Saturated liquid density ρ’       

Adams36 11 0.60 - 1.10 0.92 0.52 - 0.67 

Adams63 3 1.15 - 1.30 - 2.90 1.33 2.38 

Agrawal & Kofke48 13 0.68 - 0.74 1.31 - - 1.31 

Baidakov et al.73, b 7 0.72 - 1.23 0.50 1.02 - 0.95 

Hansen & Verlet38 2 0.75 - 1.15 0.48 0.15 - 0.31 

Kofke64 22 0.74 - 1.32 0.74 1.69 4.92 1.90 

Lotfi et al.42 13 0.70 - 1.30 0.03 0.14 1.81 0.25 

Martin & Siepmann69 6 0.75 - 1.18 0.40 0.30 - 0.32 

Mecke et al.74 6 0.70 - 1.10 1.98 6.17 - 4.77 

Panagiotopoulos66 11 0.75 - 1.30 0.13 1.08 5.23 1.66 

Panagiotopoulos et al.67 9 0.75 - 1.30 0.25 1.00 5.28 1.39 

Potoff & Panagiotopoulos70 19 0.95 -1.31 - 0.93 7.24 2.59 

Shi & Johnson71 13 1.15 -1.27 - 0.48 - 0.48 

Smit & Frenkel65 6 1.15 - 1.30 - 0.81 3.74 1.30 

Saturated vapor density ρ”       

Adams36 11 0.60 - 1.10 10.4 12.0 - 11.4 

Adams63 3 1.15 - 1.30 - 17.9 12.4 16.1 

Agrawal & Kofke48 13 0.68 - 0.74 3.49 - - 3.49 

Baidakov et al.73, b 7 0.72 - 1.23 13.9 6.95 - 7.95 

Hansen & Verlet38 2 0.75 - 1.15 3.46 0.44 - 1.95 

Kofke64 22 0.74 - 1.32 3.62 5.87 17.5 6.72 

Lotfi et al.42 13 0.70 - 1.30 1.73 1.25 1.22 1.32 

Martin & Siepmann69 6 0.75 - 1.18 16.8 5.80 - 7.64 

Mecke et al.74 6 0.70 - 1.10 29.9 22.7 - 25.1 
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 No. of Temperature Average absolute relative deviations / % 

Authors data range LTa MTa HTa overall 

Panagiotopoulos66 11 0.75 - 1.30 31.7 11.6 16.5 16.2 

Panagiotopoulos et al.67 9 0.75 - 1.30 16.8 6.65 8.28 7.96 

Potoff & Panagiotopoulos70 19 0.95 - 1.31 - 4.17 13.2 6.54 

Shi & Johnson71 13 1.15 - 1.27 - 1.02 - 1.02 

Smit & Frenkel65 6 1.15 - 1.30 - 7.76 3.69 7.08 
a LT: T/Tc ≤ 0.6; MT: 0.6 ≤ T/Tc ≤ 0.98; HT: T/Tc > 0.98 
b truncated at rc = 6.78σ 

5.4 Density at homogeneous states 

It is common for equation of state correlation for real fluids to quote deviations for density 

at given temperature and pressure. We adopt the tradition although it was outlined recently that 

for molecular simulation data the procedure is not necessary.75 The homogeneous density and 

the residual internal energy are described equally well by the present equation of state and that 

of Mecke et al.5 The average absolute relative deviations for literature data are listed in Table 

9. The gas phase was studied by seven independent authors. Figure 15 shows comparisons of 

density data in the gaseous region with the present equation of state. Apparently, the most 

accurate data were published by Johnson et al.3 (AAD = 0.17 %), Kolafa et al.39 

(AAD = 0.19 %), and Meier14 (AAD = 0.33 %). All are represented by the present equation of 

state within 1 %, which validates the description of the vapor phase up to the saturated vapor 

line. The homogeneous liquid phase was investigated more comprehensively than the gas phase. 

In total, 26 different data sets are available, which are presented in Fig. 16. In contrast to the 

gas phase data, the liquid phase data are predominantly far away from the two-phase region. 

When fitting an equation of state based on such data, as Mecke et al.5 did, saturated liquid 

density data would be helpful. Thus, Mecke et al.5 applied VLE data to their fit, which was not 

done here. Keeping in mind that the representation of VLE data is similar for both equations, 

the strategy of fitting only data at homogeneous states together with virial coefficients for the 

gas phase compensates a lack of VLE data as long as the homogeneous data are close enough 

to the two-phase region. This is particularly true if derivatives of the Helmholtz energy are 

considered directly. 
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Table 9. Average absolute relative deviations of simulation data in homogeneous states from the literature relative 
to the present equation of state. For the pρT data in the critical region, pressure deviations are considered instead 
of density deviations. Critical region: 0.98 ≤ T/Tc ≤ 1.1 and 0.7 ≤ ρ/ρc ≤ 1.4; Supercritical region: LD: ρ/ρc ≤ 0.6; 
MD: 0.6 ≤ ρ/ρc ≤ 1.5; HD: ρ/ρc > 1.5. 
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Table 9. continued 
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Table 9. continued 
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Table 9. continued 
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Table 9. continued 
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Fig. 15 Representation of vapor phase density data. Top: Simulated state points relative to the vapor pressure 
curve. Bottom: Relative deviation of the simulated gas density data from the present equation of state. 

Some of the literature data appear to be of poor quality so that only the most accurate 

and comprehensive data sets3,14,16,40,73,85 (colored symbols) are considered for the assessment of 

uncertainty. The most accurate data are Johnson et al.3 (AAD = 0.05 %), Meier14 

(AAD = 0.07 %), and Baidakov et al.73 (AAD = 0.06 %). The high AAD of 0.35 % of May and 

Mausbach16 is caused by a few data points near the critical temperature. If those points are 

excluded, the data set of May and Mausbach16 is represented as well as the data sets above. For 

all data, deviations increase with increasing temperature. The lower temperature region 

(T < 1.1) is modeled with an uncertainty of 0.06 %. The upper temperature region is reproduced 

within 0.1 %, with slightly higher deviations near the critical temperature. The uncertainty of 

the present equation of state is estimated to be 0.1 % in the entire liquid region. 
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Table 5, the average absolute relative deviation for density at supercritical states, as 

listed in Table 9, is separated into three density ranges and investigated up to T = 7 (T/Tc = 5.3). 

For the HD region higher temperatures are available (Tmax = 136 or Tmax/Tc ≈ 100). In total, 25 

data sets with a maximum pressure of approximately pmax = 190 (pmax/pc ≈ 1460) are published. 

For orientation, the range of validity of typical fluid equations of state for real substances is 

significantly smaller, e.g., Tmax/Tc ≈ 13 and pmax/pc ≈ 210 for argon,60 Tmax/Tc ≈ 6.5 and 

pmax/pc ≈ 110 for carbon dioxide,97 and Tmax/Tc ≈ 15 and pmax/pc ≈ 650 for nitrogen.98 The most 

accurate and comprehensive data sets3,14,16,40,73,82,85 are plotted as colored symbols and 

presented at the bottom of Fig. 17. The data of May and Mausbach16 show relatively large 

scatter so they were excluded from the uncertainty analysis. Data in the low density region 

(ρ < 0.217) by Johnson et al.3 (AAD = 0.14 %), Meier14 (AAD = 0.11 %), and Baidakov et al.73 

(AAD = 0.08 %) are reproduced best. Based on these data sets, the estimated uncertainty in 

density at given temperature and pressure of the present equation of state is 0.15 %. Data in the 

medium density range (0.217 ≤ ρ ≤ 0.434) by Lustig17 (AAD = 0.03 %), Meier14 

(AAD = 0.21 %), Kolafa et al.39 (AAD = 0.09 %), and Morsali et al.82 (AAD = 0.04 %) agree 

best with the present equation. The data of Johnson et al.3 are also represented well with an 

AAD of 0.28 % attributed to two outliers with deviations of 1 % and 2 %. Based on these five 

data sets, the estimated uncertainty of the present equation of state is assumed to be 0.3 % in 

terms of density in the medium density range. The high density range was accurately simulated 

by Johnson et al.3 (AAD = 0.08 %), Lustig17 (AAD = 0.03 %), Meier14 (AAD = 0.05 %), Saager 

and Fischer40 (AAD = 0.08 %), Baidakov et al.73 (AAD = 0.04 %), and Morsali et al.82 

(AAD = 0.08 %). Based on comparisons with these data the uncertainty of the present equation 

of state in the high density region is estimated as 0.2 % in density. 

Throughout, the uncertainty estimates are higher in the vicinity of the critical region. 

The critical region was not intended to be modeled as accurately as the remaining fluid region, 

for several reasons. Natural large scale fluctuations of a fluid in the critical region make 

sampling of some thermodynamic properties particularly difficult and uncertain. Molecular 

simulation results may cause a curvature in the rectilinear diameter99 close to the critical point 

when fitting an equation of state to them. That was observed for several different fluids, e.g., 

benzene, cyclohexane, or hydrogen sulfide, and is presented by Thol et al.62 for the Lennard-

Jones fluid truncated and shifted at rc = 2.5σ. During fitting iterations of the present equation of 

state for the Lennard-Jones fluid, the nonlinearity of the rectilinear diameter was minimized. 

Available data are presented in Fig. 18. Some of the simulation data have higher deviations in 

the critical region than elsewhere. Again, the data of Mecke et al.,5 Lustig,17 Meier,14 and 

Baidakov et al.73 appear to be the most accurate in the critical region. The uncertainty in this 

region is 2 % in pressure. 
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Fig. 16 Representation of liquid phase density data. Top: Simulated state points relative to the vapor pressure 
curve. Center: Relative deviation of all available simulated data from the present equation of state. Bottom: 
Relative deviation of selected simulated data from the present equation of state. 
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Fig. 17 Representation of density in the supercritical region. Top: p-T diagram of state points. Center: Relative 
deviation of all available simulation data from the present equation of state. Bottom: Relative deviation of selected 
simulation data from the present equation of state. 
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Fig. 18 Representation of literature data for pressure in the critical region. Top: p-T diagram showing the 
distribution of the state points relative to the vapor pressure curve. Bottom: Relative deviation of the simulated 
pressure data from the present equation of state in the critical region. 

In Fig. 19, a comparison of the gaseous metastable pressure data published by Linhardt 

et al.100 with the present equation of state is shown. On the top, a p-ρ diagram including the 

saturated vapor line, the spinodal, and the simulated data along the corresponding isotherms is 

presented. A reasonable trend of the data is observed for densities ρ ≤ ρspinodal. In this region, 

slopes and curvatures of isotherms of the present equation of state are in better agreement with 

the data than the equation of Mecke et al.,5 which is confirmed by the deviation plot on the 

bottom of Fig. 19. For ρ < 0.15 the deviations between the present equation of state and the 
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simulation data are much lower than those of Mecke et al.5 Therefore, the qualitative validity 

of the present equation of state extends into the metastable region up to the gaseous spinodal. 

 
Fig. 19 Comparison of metastable gaseous pressure data of Linhardt et al.100 The equation of state of Mecke et al.5 
is shown for comparison. top: p-ρ diagram with selected isotherms and the spinodal corresponding to the equation 
of Mecke et al.5 Bottom: Relative deviation of the metastable pressure data of Linhardt et al.100 from the present 
equation of state (open circles) and that of Mecke et al.5 (open squares). 
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5.5 Critical point 

The critical point is central for the development of a fluid equation of state. In this work 

as in Thol et al. 62 and Lustig et al. 75 we did not impose a critical point. The critical temperature 

and density varied during the fitting procedure. In particular, the modeling an almost linear 

rectilinear diameter and the shaping of a distinctive saddle point of the critical isotherm was 

carefully monitored during the fit to ensure that the critical values did not exceed the 

uncertainties of the data given in the literature. Table 10 presents critical parameters from the 

literature and the most likely critical points are illustrated in Fig. 20. The critical density, which 

was observed during the fit of the present equation of state (ρc = 0.31) is in line with the average 

critical density data taken from the literature. It is in good agreement with the critical density 

of Dunikov et al.,101 Johnson et al.,3 Kolafa and Nezbeda,4 Martin and Siepmann,69 Mecke et 

al.,5 Miyano,27 and Verlet.41 For the critical temperature, the main values scatter around 

Tc = 1.35. The corresponding critical density data show significant scatter. Therefore, the 

critical temperature values around Tc = 1.32 seem to be a more adequate basis for comparison. 

The critical temperature obtained from the present equation of state is in good agreement with 

Caillo,102 Hess,103 Johnson et al.,3 Kofke,64 Lotfi et al.,42 Mecke et al.,5 Potoff and 

Panagiotopoulos,70,104 Shi and Johnson,71 Smit,105 and Sung and Chandler.106 Thus, the critical 

temperature Tc = 1.32 and the critical density ρc = 0.31 were applied to the present equation (cf. 

calculation of τ and δ in Eq. (2)) The critical pressure pc ≈ 0.13006 is calculated as function of 

the critical temperature and density in this work. 

Table 10. Critical parameters of the Lennard-Jones fluid from the literature. 

Author Year Tc ρc pc 

Adams63 1979 1.30(2) 0.33(3) 0.13(2) 
Adams et al.107 1979 1.30(2) 0.33(3) - 
Amadei et al.108 1999 1.350 0.337 0.149 
Barker et al.29 1966 1.291 

1.449 
1.300 

0.547 
0.771 
0.561 

0.249 
0.379 
0.249 

Caillo102 1998 1.326(2) 0.316(2) 0.111(2) 
Dunikov et al.101 2001 1.350(5) 0.310(5) 0.126(8) 
Hess103

 1999 1.28 
1.41 
1.33 

0.25 
0.29 
0.3 

0.1056 
0.1472 
0.1357 

Hunter & Reinhardt72 1995 1.32   
Johnson et al.3 1993 1.313 0.310 - 
Kim et al.109 1969 1.35 

1.28 
0.30 
0.29 

0.14 
0.13 

Kofke64,110 1993 1.324(12) 
1.321(4) 

0.305(2) 
0.306(1) 

- 
- 

Kolafa & Nezbeda4 1994 1.3396 0.3108 0.1405 
Koutras et al.111 1992 1.355 0.290 0.147 
Levesque & Verlet22 1969 1.37 

1.36 
1.36 

0.31 
0.36 
0.33 

0.140288 
0.151776 
0.161568 

Lotfi et al.42 1992 1.31 0.314  
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Author Year Tc ρc pc 

Martin & Siepmann69 1998 1.2921 0.3117 0.1144 
May & Mausbach30 2012 1.3145 0.3107 - 
Mecke et al.5 1996 1.328 0.3107 - 
Miyano27 1993 1.35 0.32 0.142 
Nicolas et al.25 1979 1.35 0.35 0.142 
Panagiotopoulos66 1987 <1.35 0.31(2)  
Potoff & Panagiotopoulos104 1998 1.312(7) 0.316(1) 0.1279(6) 
Potoff & Panagiotopoulos70 2000 1.312(7) 0.316(2) - 
Ree83 1980 1.41 0.33 0.177 
Shi & Johnson71 2001 1.3241(9) 

1.3145(2) 
0.3165(7) 
0.316(1) 

- 
- 

Smit105 1992 1.316(6) 0.304(6) - 
Song & Mason24 1989 1.306 0.2625 0.1225 
Sowers & Sandler86 1991 1.372 0.313 0.156 
Sung & Chandler106 1974 1.3103 

1.31(1) 
0.318 

0.33(3) 
0.121 

Sýs & Malijevský112 1980 1.35 0.33 0.147 
Valleau32 1994 1.328(3)   
Verlet & Levesque89 1967 1.26 0.297 0.316 
Verlet41 1967 1.36(4) 0.31(3) - 

 

 
Fig. 20 Selected critical parameters from the literature. The crossing of the two dashed lines denotes the critical 
point of this work (Tc = 1.32, ρc = 0.31, pc = 0.13). 
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5.6 Caloric properties 

The residual internal energy was investigated to the same extent as the pρT data. The 

average absolute relative deviations of the data of each author are listed in Table 9. The data 

sets assumed to be most accurate were pointed out in the density discussion. Since density and 

residual internal energy are from the same molecular simulation runs, the quality of the data 

should be similar. Only data colored as for density in Figures 16 and 17 are 

discussed.3,14,16,40,73,85 Figure 21 presents the relative deviation of simulated residual internal 

energy data from calculated values. In the gaseous region, Meier14 (AAD = 0.30 %) and 

Baidakov et al.73 (AAD = 0.70 %) are represented by the present equation best. Based on these 

data, the uncertainty of the present equation of state is estimated to be 1 % in the gaseous region. 

In the liquid phase, the new equation is in agreement with the data of Johnson et al.3 

(AAD = 0.03 %), Meier14 (AAD = 0.02 %), May and Mausbach16 (AAD = 0.02 %), and 

Baidakov et al.73 (AAD = 0.06 %). The uncertainty of the residual internal energy calculated 

with the present equation of state is determined to be 0.1 % in the liquid region. The uncertainty 

in the critical region is estimated to be 1 %, which is supported by Johnson et al.3 

(AAD = 0.32 %), May and Mausbach16 (AAD = 0.28 %), Meier14 (AAD = 0.53 %), and 

Baidakov et al.73 (AAD = 0.74 %). The supercritical region is well described up to T = 7 in 

agreement with the density results. Data of Johnson et al.3 (AAD = 0.21 % - 0.34 %), Meier14 

(AAD = 0.15 % - 0.27 %), May and Mausbach16 (AAD = 0.13 % - 0.26 %), and Baidakov et 

al.73 (AAD = 0.05 % - 0.27 %) scatter within 1 % of the present equation of state, which is 

assumed to be the uncertainty of the equation. 

Only the data set of Lotfi et al.42 is available for the residual enthalpy. The simulations 

were carried out along the saturation curves (see supplementary material, Ref.52). The saturated 

liquid line is described within 0.1 % for T ≤ 1 and 0.5 % for T > 1. The simulations of the 

saturated vapor phase scatter around the equation by 4 %. 
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Fig. 21 Relative deviation of literature data for residual internal energy from the present equation of state. Separate 
plots are provided for the gaseous, critical, liquid, and supercritical region. 
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Fig. 22 Relative deviation of literature data for isochoric heat capacity from the present equation of state. 

In the homogeneous region, isochoric heat capacity data of Meier14 and May and 

Mausbach16 are represented best by the present equation (cf. Fig. 22 and Table 9). Except for 

the critical region, these data agree within 0.5 %. Compared to the equation of Mecke et al.,5 

the representation of the data published by Meier14 in the vapor phase (AAD = 0.40 % vs. 

AADMecke = 1.21 %) and in the critical region (AAD = 3.09 % vs. AADMecke = 7.49 %) are 

improved significantly. The data of May and Mausbach16 are reproduced better than those of 

Meier.14 Deviations in the critical region increase to 5 %. Only one data set, published by Boda 

et al.,93 was simulated along the saturation lines. For T ≤ 1.2, the data scatter within 0.5 % 

around the present equation, which is within statistical uncertainties. For higher temperatures, 

the deviations increase significantly. In the low temperature region of the cv-T diagram in Fig. 

23, the present equation of state and that of Mecke et al.5 show agreement with the data of Boda 

et al.93 Only at T = 0.75, the equation of Mecke et al.5 overestimates the saturated liquid 

isochoric heat capacity, which yields a steeper increase of the saturation line when extrapolated 

to low temperatures. Therefore, additional simulations were carried out in this work to show 

that the trend of the present equation of state is correct. At T = 1.2, the saturated liquid and 

vapor isochoric heat capacities approach the same value and then cross each other. This is 

perfectly modeled by the present equation of state, while the crossing of the equation of Mecke 

et al.5 is shifted to about T = 1.275. At T > 1.2, high deviations of the present equation of state 

from the isochoric heat capacity data of Boda et al.93 are caused by a lower curvature of the 

simulation data. Large scale fluctuations in the critical region make sampling of heat capacities 

difficult. Nevertheless, the chosen functional form does not allow for the correct physical 

behavior for the isochoric heat capacity (divergence towards infinity), but at least a steep 

maximum at the critical point is modeled. 
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Fig. 23 Isochoric heat capacity versus temperature. The saturated liquid and vapor lines calculated with the 
equation of Mecke et al.5 are plotted for comparison. 

 
Fig. 24 Relative deviation of literature data for isobaric heat capacity from the present equation of state. 

 
Fig. 25 Isobaric heat capacity versus temperature. 
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The isobaric heat capacity was investigated by three authors. Figure 24 shows relative 

deviations of the simulation data and the present equation of state. The data of May and 

Mausbach16 are represented within 1 %, which is estimated to be the uncertainty of the equation 

outside of the critical region. In contrast to the isochoric heat capacity, the isobaric heat capacity 

data of Boda et al.93 show a significant scatter of approximately 5 % to 10 %. These data are 

investigated in more detail in Fig. 25. Similar to the isochoric heat capacity, the present equation 

of state exhibits a steeper increase of the saturated isobaric heat capacity approaching the critical 

temperature than that of Mecke et al.5 

Figure 26 presents data for the Grüneisen coefficient Γ. Historically, this property was not 

utilized in the context of fluid equations of state. Introduced for fluids by Arp et al.113 it was 

found to be valuable for the development of equations of state in the last years, e.g., for the 

truncated and shifted Lennard-Jones fluid,62 ethylene oxide,114 hexamethyldisiloxane,115 

R1234ze(E), 116 R245fa,117 cyclopentane,118 or cyclohexane. 119 It is defined as the thermal 

pressure coefficient divided by the density and the isochoric heat capacity (cf. Eq. (24)) and 

establishes a connection between thermal and caloric thermodynamic properties. The behavior 

of the speed of sound and the isochoric heat capacity can be monitored simultaneously by the 

Grüneisen coefficient. Thus, while it is not important for practical tasks, it is useful for verifying 

correct behavior of equations of state. In Fig. 26, a Γ-ρ diagram and relative deviations of 

simulated Grüneisen coefficient data from calculated values are depicted. The isotherms show 

an increasing Grüneisen coefficient with increasing density. Similar to values calculated from 

many equations of state for real fluids (e.g., nitrogen,98 benzene,120 argon,60 or carbon 

dioxide97), a crossing of isotherms occurs near the critical density. This behavior is assumed to 

be correct because it was found for several different fluids. No direct experimental 

measurements are available for the Grüneisen coefficient to verify these assumptions. 

Therefore, Emampour et al.95 and Mausbach and May96 are important publications providing 

Grüneisen coefficient data from molecular simulation. Mausbach and May96 in particular 

carried out a comprehensive investigation of the Grüneisen coefficient over a broad range of 

temperature and density. At least for the Lennard-Jones fluid, they could prove the presumed 

behavior to be correct. The present equation of state follows the trend of the molecular 

simulation data and the deviation between simulated and calculated data is mostly within 1.5 %. 

The uncertainty increases in the critical region. The molecular simulations of Mausbach and 

May96 were carried out in the NVE ensemble, where temperature is not an input but measured. 

Thus, the simulation data slightly scatter around isotherms. However, for the uncertainty 

calculation, the measured temperatures of the simulation data were used. The data of Emampour 

et al.95 were not considered in the uncertainty estimate because they show a systematic negative 

offset relative to both the data of Mausbach and May96 and the present equation of state. 
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Fig. 26 Comparison of literature data for the Grüneisen coefficient with the present equation of state. Top: Γ-ρ 
diagram along selected isotherms. Bottom: Relative deviation of simulated Grüneisen coefficient data from the 
present equation of state. 

The speed of sound has not been thoroughly investigated with molecular simulation. 

Two different data sets are available: May and Mausbach16 and Lustig.17 Figure 27 shows 

relative deviations between the present equation of state and the simulation data of about 1 %. 

The uncertainty increases in the vicinity of the critical point. 

The Joule-Thomson coefficient μJT was investigated by two authors, Lustig17 and May 

and Mausbach.16 The top of Fig. 28 presents a μJT-ρ diagram with selected isotherms. Over the 

entire temperature and density range, slopes and curvatures of the present equation of state 

agree well with the simulation results. The uncertainty for calculated Joule-Thomson coefficient 

data using the present equation of state is estimated to be 2.5 % over the entire temperature 

range and for densities ρ ≥ 0.6. Lower densities go along with larger deviations, which leads to 

an uncertainty of up to 10 %. 
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Fig. 27 Relative deviation of literature data for speed of sound from the present equation of state. 

 
Fig. 28 Comparison of literature data for the Joule-Thomson coefficient with the present equation of state. Top: 
Joule-Thomson coefficient versus density along selected isotherms. Bottom: Relative deviation of simulated Joule-
Thomson coefficient data from the present equation of state. 
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Fig. 29 Relative deviation of literature data for thermal expansion coefficient α, isothermal compressibility βT, and 
thermal pressure coefficient γ from the present equation of state. 
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and Boda et al.93 Depending on the location on the fluid surface, it is extremely sensitive with 
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Reliable data of Meier14 and May and Mausbach16 are available for these properties. Calculated 

isothermal compressibilities are uncertain by 3 % and pressure coefficients are uncertain by 

1 %. 

5.7 Physical behavior and extrapolation 

In addition to a comprehensive analysis of thermodynamic properties that are available 

in the literature, the extrapolation behavior and physical trends of several different properties 

must be monitored when setting up fundamental equations of state. Figure 30 shows the residual 

isochoric heat capacity (top) and the speed of sound (bottom), which were monitored during 

the development of the present equation of state. The isochoric heat capacity verifies expected 

behavior, e.g. the increasing heat capacity of the liquid phase extrapolated to low temperatures, 

the steep increase of the saturated liquid and vapor lines, which meet in a maximum at the 

critical temperature, and a continuous positive slope and curvature of the saturated vapor line 

with increasing temperature. The saturated liquid and vapor lines of the speed of sound reach a 

minimum at the critical temperature, which is related to the maximum of the isochoric heat 

capacity. Another noticeable trend is a weak positive curvature of the liquid-phase speed of 

sound extrapolated to low temperatures (∂w/∂T > 0), which indicates reasonable extrapolation 

behavior of the equation of state.43 In Fig. 31, temperature as function of density is shown. Here, 

it is important that no unreasonable bumps occur in the saturation curves or isobars, and isobars 

do not cross each other. Furthermore, the nonlinearity of the rectilinear diameter was minimized 

as discussed above.  

The characteristic ideal curves can be used to assess correct behavior of the equation of 

state for very high temperatures, pressures, and densities.122 In Fig. 32, The present equation of 

state and the equation of Mecke et al.5 are shown. Data for the equation of Mecke et al.5 were 

compiled with the ThermoC software.123,124 Additionally, molecular simulation data125–129 are 

plotted. The two equations agree at the Boyle, ideal, and Joule-Thomson inversion curves, 

whereas the Joule inversion curves significantly differ from each other. The molecular 

simulation data indicate that the course of this curve calculated from the equation of Mecke et 

al.5 is correct. For all curves, no untenable bumps or overhangs occur. 
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Fig. 30 Top: Residual isochoric heat capacity versus temperature along selected isobars. Bottom: Speed of sound 
versus temperature along selected isobars. 

 
Fig. 31 Temperature versus density along isobars. 
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Fig. 32 Characteristic ideal curves as defined by Span and Wagner.122 pv: vapor pressure curve, BL: Boyle curve, 
ID: ideal curve, JT: Joule-Thomson inversion curve, and JI: Joule inversion curve. 

 

 
Fig. 33 Grüneisen coefficient versus density along isotherms (top) and Grüneisen coefficient versus temperature 
(bottom) along selected isobars. 
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The Grüneisen coefficient as function of density is shown in Fig. 33. With increasing 

density, the isotherms should cross each other beyond the critical density. At high temperatures, 

the Grüneisen coefficient must have a positive slope and negative curvature to ensure correct 

extrapolation behavior. This is closely related to the second plot in Fig. 33, which shows the 

Grüneisen coefficient as a function of temperature. This plot looks similar to the speed of sound 

diagram in Fig. 30. The saturation curves show a steep minimum at the critical temperature. 

Additionally, isobars for the liquid phase extrapolated to low temperatures are nearly straight 

lines, with a negative slope. The appropriate course of the Grüneisen coefficient simultaneously 

ensures correct behavior of the speed of sound, isochoric, and isobaric heat capacity. During 

the development of the present equation of state, the strategy was found to be much more 

effective than altering the isochoric heat capacity or the speed of sound directly, which should 

be taken into consideration in subsequent work. 

Another thermodynamic property established by Venkatarathnam and Oellrich130 is the 

so-called phase identification parameter Π, originally developed to distinguish between the 

vapor and liquid phases without determining the saturation curves. As the Grüneisen 

coefficient, this property is not applied for practical purposes. However, in the context of 

developing equations of state, it may be used to constrain behaviors of equation of state 

correlations. The property is valuable since many different derivatives of the Helmholtz energy 

are involved (cf. Eq. (26)) and incorrect physical behavior may be detected easily. Figure 34 

shows Π along isotherms and isobars. On top, the saturated liquid line shows a negative slope 

and curvature until the critical density is reached. It exhibits negative slope and positive 

curvature for increasing density starting at the critical density. Supercritical isotherms form a 

minimum for ρ < ρc, cross each other at the critical density, and exhibit a maximum in their 

further course. Any unreasonable behavior of the equation of state can easily be detected. 

Typical problems, which can occur during the fitting procedure, are multiple oscillations of 

supercritical isotherms and bumps along the saturated liquid line. These problems would also 

arise at the bottom of Fig. 34, where the phase identification parameter is illustrated as a 

function of temperature along selected isobars. Both saturated liquid and vapor lines have a 

moderate slope until reaching the vicinity of the critical region. Here, the saturated liquid line 

increases with distinct positive curvature until it reaches the critical point. In contrast, the 

saturated vapor line decreases with pronounced negative curvature until reaching the critical 

point. Supercritical isobars have positive slope and curvature until they reach a maximum at the 

critical temperature, then they cross each other and converge at high temperatures. 
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Fig. 34 Phase identification parameter versus density along selected isotherms (top) and phase identification 
parameter versus temperature along selected isobars (bottom) of the Lennard-Jones fluid. 
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6 Conclusion 

The fundamental equation of state developed in this work is explicit in the reduced 

Helmholtz energy and has an exact ideal-gas contribution. The residual part stems from modern 

fitting techniques and consists of 23 terms. It is valid for reduced temperatures 0.661 < T < 9 

and for reduced pressures up to p = 65, corresponding to 0.5 < T/Tc < 7 and p/pc = 500. For its 

development, data for residual Helmholtz energy derivatives and virial coefficients were used 

only. Molecular simulation data from the literature and the equation of state of Mecke et al.,5 

which was the best model available in literature so far, were used to evaluate the present 

equation comprehensively. The uncertainty of the present equation is estimated to be 1.8 % in 

vapor pressure and saturated vapor density, and 0.15 % to 0.5 % in saturated liquid density. 

Uncertainty in density is 0.1 % in the liquid phase, 1 % in the gaseous phase, and 0.15 % to 

0.3 % in the supercritical region. The uncertainty in pressure amounts to 2 % in the critical 

region. The residual internal energy is reproduced within 1 % in the gaseous region, 0.1 % in 

the liquid region, and 1 % in the critical and supercritical region. Uncertainty in isochoric heat 

capacity is 0.5 %, whereas the uncertainty in isobaric heat capacity and speed of sound is 1 %. 

The uncertainty of the Grüneisen coefficient is 1.5 % and the Joule-Thomson coefficient 

deviates by 2.5 % (ρ ≤ 0.6) to 10 %. The thermal expansion coefficient is reproduced within 

15 %. The uncertainty of the isothermal compressibility and the pressure coefficient amounts 

to 3 % and 1 %, respectively. The overall representation of the simulation data as well as the 

extrapolation behavior is a significant improvement over existing correlations. 

In the supplementary material, molecular simulation data of this work,131 a fluid file132 for the 

application in the software package TREND44 and a C++ source code133 are provided. For the 

verification of computer implementation, reference values for some properties at different state 

points are also given.52 
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