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Abstract

Molecular models for applications in engineering are parameterized using
a strategy based on quantum mechanical (QM) ab initio calculations and
thermodynamic data. A new procedure for adjusting such molecular models
to thermodynamic data via reduced units is introduced. As a case study, it is
applied for developing a new molecular model of cyclohexanol. Compared
to experimental data, the resulting molecular model for cyclohexanol shows
mean unsigned errors of 0.2 % in saturated liquid density and 3 % in vapor
pressure over the whole temperature range from triple point to critical point.
The model is used to predict the second virial coefficient and the transport
properties, the average deviations from experimental data are 0.1 l/mol and
25 %, respectively.

Keywords: molecular modeling, parameterization strategy, cyclohexanol, vapor-
liquid equilibrium, transport properties

Introduction
Molecular modeling and simulation is a promising approach for describing and
predicting thermophysical properties of both pure substances and mixtures for en-
gineering applications (1, 2). Unfortunately, the more widespread use of molecu-
lar methods in engineering applications is still restricted by the poor availability of
suitable molecular models, which yield the desired properties with the necessary
accuracies at moderate simulation effort.
For developing such models, efficient parameterization strategies are necessary.
Within DFG’s (3) Priority Program 1155 “Molecular Modeling and Simulation
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for Process Engineering”, an efficient parameterization strategy, using quantum
mechanical (QM) ab initio calculations and thermodynamic data was developed
(4). That strategy was applied for developing rigid, non-polarizable molecular
models of comparatively small molecules. The models have state-independent
parameters. For computational efficiency, the united-atom approach was used,
i.e. hydrogen atoms bound to carbon were not modeled explicitly. The strategy
uses information determined by QM ab initio calculations to include physically
sound molecular properties and to reduce the number of adjustable parameters. A
remaining subset of model parameters – typically two to four – is subsequently
optimized to experimental data on vapor-liquid equilibria (VLE) of the pure sub-
stances. The target is to achieve accuracies in describing experimental data for
the vapor pressure, saturated liquid density, and enthalpy of vaporization in the
range from triple point to critical point of the order of 5, 1, and 5%, respectively,
or below.
In the present paper a new efficient parameter refinement method, using reduced
molecular simulation results, is proposed. With this method, the usually difficult
last step of the parameterization process can be accelerated. It is exemplified
for the case of cyclohexanol. Cyclohexanol is an important intermediate in the
industrial production of nylon. A new pair potential for cyclohexanol is introduced
here, which is based on seven LJ sites and three point charges.

Overview of Molecular Models for applications in
Process Engineering
During the last decade, molecular models for about 95 real fluids were published
by our group. Many of them were developed within DFG’s Priority Program
1155. First, simple molecular models consisting of one Lennard Jones site (1CLJ)
and the two-center Lennard Jones plus point dipole (2CLJD) or point quadrupole
(2CLJQ) pair potential (5, 6) for describing small molecules like Argon or halo-
genated hydrocarbons were developed. The modeling approach used for these
fluids was based on a systematic study of the VLE of model fluids (7, 8) for de-
veloping global correlations in terms of the molecular parameters of the used pair
potentials.
Later on, molecular models for hydrogen bonding fluids were developed(9–13).
For these substances the models consist of multi-center Lennard Jones (MCLJ)
pair potentials plus point charges. The point charges account for both polarity and
hydrogen bonding. For this model type, results from QM ab initio calculations
were used for the geometry parameters as discussed in the Section "Molecular
properties from QM".
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Recently, using the same approach, a set of MCLJ pair potentials plus point dipole
and/or point quadrupole were developed for describing small molecules, like hy-
drogen cyanide, but also larger cycloalkanes, like cyclohexane(4, 14, 15).
Table 1 gives a summary of these models.

Molecular properties from QM
A detailed description of the QM based parameterization strategy was reported
recently by Eckl et al. (4) so that it is only summarized here briefly.
The geometry of the molecular models, i.e. bond lengths, angles, and dihedrals,
are directly taken from QM calculations. The geometry optimization, by energy
minimization, is carried out using GAMESS(US) (16). The Hartree-Fock level of
theory is applied with a relatively small (6-31G) basis set. Alternatively, density
functional theory (DFT) methods, e.g. BLY3P, can be used, as they are known to
give reasonable results for the molecular structure (17).
For determining the charge distribution of the molecule the Møller-Plesset 2 level
is used that takes into account electron correlation in combination with the po-
larizable 6-311G(d,p) basis set. For the calculation of the electrostatic moments
for the development of engineering molecular models, a liquid-like state should
rather be considered than the isolated molecule in the ideal gas state. This is done
by placing the molecule within a dielectric continuum and assigning the experi-
mental dielectric constant of the liquid to the continuum by the COSMO method
(18). From the resulting electron density distribution, point dipoles and point
quadrupoles are estimated by simple integration over the orbitals. Magnitudes
and orientations of these electrostatic interaction sites are used in the molecular
models without any modification. All point dipoles and point quadrupoles are
placed at the center of mass (COM).
A similar procedure is used for molecular models with point charges for hydro-
gen bonding fluids (9). Here, three point charges account for both polarity and
hydrogen bonding. E.g., for methanol, one point charge is located at the hydroxyl
hydrogen atom position and one at the LJ site of the hydroxyl group. The third
point charge is superimposed to the LJ site of the CH3 group, where its magni-
tude is determined by the overall electroneutrality of the molecule. The geometry
parameters are also taken directly from QM calculations but the two free point
charge magnitudes are optimized using the same procedure as for the LJ parame-
ters as described below.
Subsequently, the parameters for the dispersive and repulsive interactions are fit-
ted in the optimization process to yield the correct VLE behavior of the modeled
pure substance. The optimization is performed using a Newton scheme as pro-
posed by Stoll (19). It relies on a least-square minimization of a weighted fitness
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function that quantifies the deviations of simulation results from a given molecular
model compared to experimental data.
For the case study cyclohexanol, correlations for vapor pressure, saturated liquid
density, and enthalpy of vaporization, taken from the DIPPR database (20), were
used as "experimental data" for model adjustment and evaluation. This was done
even in cases where the correlation is based on no or only few true experimen-
tal data points, as the correlations are regarded best practice. The comparison
between simulation results and experiment was done by applying fits to the sim-
ulation data according to Lotfi et al. (21). The relative deviation between fit and
correlation is calculated in steps of 1 K from 55 to 97% of the critical temperature
and is denoted by "mean unsigned error" in the following.
Vapor-liquid equilibrium simulations were performed using the Grand Equilib-
rium method by Vrabec et al. (22), technical simulation details are given in the
Appendix.

Reduced Unit Method for Optimizing
Molecular Models
In most molecular simulation programs reduced units are used internally to de-
scribe physical properties. The reduced properties, i.e. dimensionless, are labeled
with an asterisk here. Typically, energy εR, length σR and mass mR are cho-
sen as reference values for the reduction. This applies to all properties that are
evaluated during simulation such as temperature T ∗ = T kB/εR potential energy
E∗ = E/εR, intermolecular forces f ∗ = f σR/εR or torques τ∗ = τ/εR, where kB is
the Boltzman constant, but also to aggregated thermodynamic data such as pres-
sure p∗ = pσ3

R/εR or chemical potential µ̃∗i = µ̃i/εR, which are usually the goal of
a molecular simulation run.
Note that all parameters of the molecular model are also applied in their reduced
form, i.e. the positions of the interaction sites are scaled by

x∗i = xi/σR, (1)

y∗i = yi/σR, (2)

z∗i = zi/σR, (3)

the LJ site parameters by
σ
∗
i = σi/σR, (4)

ε
∗
i = εi/εR, (5)
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as well as the magnitudes of the electrostatic sites, i.e. for the point charge mag-
nitude

q∗i = qi/
√

4πε0σRεR, (6)

the dipole moment

µ∗i = µi/
√

4πε0σ3
RεR, (7)

and the quadrupole moment

Q∗i = Qi/
√

4πε0σ5
RεR, (8)

where ε0 is the permittivity of vacuum. On the basis of a reduced molecular
model, the vapor-liquid equilibrium simulations are performed yielding e.g., re-
duced values for vapor pressure p∗, saturated densities ρ

′∗, ρ
′′∗ and enthalpy of

vaporization ∆h∗v. For comparison with experimental data, these reduced quanti-
ties are converted back to SI units via

T = T ∗εR/kB, (9)

p = p∗εR/σ
3
R, (10)

ρ = ρ
∗/σ

3
R, (11)

∆hv = ∆h∗vεR, (12)

D = D∗
σR√

mR/εR
, (13)

η = η
∗
√

mRεR

σ2
R

, (14)

λ = λ
∗ kB

σ2
R

√
mR/εR

(15)

Where D denotes the self-diffusion coefficient, η the shear viscosity and λ the
thermal conductivity.
Central to this approach is that the simulation results are strictly valid for any
choice of the triple εR, σR and mR. Furthermore, it should be noted that the static
thermodynamic properties, i.e. non-transport data, do not depend on the mass mR.
Therefore, for a given simulation result in reduced units, one may choose εR,
σR and mR to achieve an optimal agreement with the experimental target data
without carrying out new simulations. Thereby, of course a new molecular model
is generated. This new model is identical with the one for which the simulation
was performed only in reduced units but not in the real properties and parameters
in SI units. An optimization based on that idea is especially attractive for an
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efficient fine tuning of molecular models which already represent the target data
fairly well.
Note that that the pressure and the density in real units depend on the reference
size σR to the power of three. Thus small variations in σR lead to significant
changes in these properties that are used for optimization here.
To illustrate this procedure, the dependence of VLE and transport properties of
cyclohexanol on the scaling parameters εR, σR and mR is studied. The baseline
for the variation of εR, σR and mR is the optimal cyclohexanol model which is
described below.
Both εR and σR were changed by±5 %, while mR was changed by±20 % around
the baseline values to study the effect on the different thermophysical properties.
The results are shown in Figures 1 to 6. The blue lines correspond to the variation
of εR, the red lines to variations of σR and the green lines to variations of mR.
Note that, given the baseline simulation results, no new simulations are needed to
study the variations presented here.
The influence of the variations of εR and σR on the saturated densities is shown in
Figure 1. An increase of εR leads to an increase in the saturated densities, whereas
an increase of σR leads to an decrease of the saturated densities.
Figure 2 shows the influence of εR and σR on the vapor pressure. An increase
of εR leads to a decrease of the vapor pressure, the same holds for an increase
of σR. The sensitivity of the vapor pressure is stronger for εR than for σR, as εR
influences both T and p, cf. Equations (9) and (10).
In Figure 3 the influence of variations of εR on the enthalpy of vaporization is
shown. Variations of σR show no influence on the enthalpy of vaporization. An
increase of εR leads to an increase of the enthalpy of vaporization.
The dependence of the self-diffusion coefficient on variations of εR, σR and mR
is shown in Figure 4. An increase in εR or σR leads to an increase in the self-
diffusion coefficient, whereas mR has the opposite effect. εR has the strongest
influence on the self-diffusion coefficient as it influences both T and D, cf. Equa-
tions (9) and (13).
Figure 5 shows the results for the shear viscosity. An increase in εR or mR leads to
an increase in the shear viscosity, whereas σR has the opposite effect. Again the
sensitivity is highest for εR due to its influence on both T and η, cf. Equations (9)
and (14).
Finally, the dependence of the thermal conductivity on variations of εR, σR and
mR is shown in Figure 6. An increase in σR and mR leads to an decrease in the
thermal conductivity whereas an increase in εR leads to an increase in the ther-
mal conductivity. As for the other transport properties, εR influences the thermal
conductivity the most as it changes both T and λ, cf. Equations (9) and (15).
For the optimization itself any method can be used. Eg. when taking the squared
sum of relative deviations to experimental data as objective function
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δ =
n

∑
i=1

(
zsim

i (εR,σR)− zexp
i

zexp
i

)2

(16)

new values for the simulated property zsim
i (εR,σR) can be generated using Equa-

tions (9) to (15) from the reduced properties determined in a baseline simulation
without any new simulation. Any mathematical scheme can be applied.

Cyclohexanol

Molecular Model
A new cyclohexanol model was developed based on QM calculations and subse-
quently optimized using experimental vapor pressure, bubble density and enthalpy
of vaporization as described above using the reduced unit method. As the com-
plexity of a molecular model determines the computing time during molecular
simulation, it was attempted here to find an efficient solution balancing accuracy
and simplicity. A rigid model with seven LJ sites and three point charges was
chosen. The internal degrees of freedom were neglected, as the cyclohexane ring
predominantly assumes in the energetically favorable chair-conformation.
The geometric parameters of the molecular model were taken directly from QM
calculations, as described in the Section "Molecular properties from QM". One LJ
site was located exactly at all resulting nuclei positions, except for the hydrogen
atom. The methylene CH2 and methine CH group were modeled by a single LJ
site, i.e. the united-atom approach was used. The coordinates of the seven LJ sites
are given in Table 2 and a graphic schematic is presented in Figure 7.
A subset of the parameters for the LJ sites and the point charges was optimized
to the DIPPR correlations for saturated liquid density and vapor pressure of pure
cyclohexanol (20) in the range from 390 to 620 K. As a starting point for optimiza-
tion, the LJ parameters for the methylene CH2 site were taken from a cyclohexane
model by Eckl et al. (4). The remaining LJ parameters for the methine CH and
hydroxyl OH group and the point charges were taken from Schnabel et al. (11).
During the optimization, only the LJ parameters of the methylene CH2 sites and
the point charges were adjusted. The method of Stoll (19) was used for the first
step of this optimization. The result of this step is shown in Figures 8 to 10. In a
second step, the reduced unit method was used for a subsequent optimization. The
final model was generated by changing εR by +1.6 %. The result is also shown
in Figures 8 to 10. To verify the results of the reduced unit method, which were
obtained without further simulations after step one, cf. Table 3, an additional set
of VLE simulations, cf. Table 4, was carried out for the final model as shown in
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Figures 8 to 11, which is in very good agreement with the result from the reduced
unit method as expected.

Vapor-liquid equilibria
VLE of the new cyclohexanol model are presented together with a DIPPR cor-
relation (20) in Figures 8 to 11 and in Tables 4 and 3. The agreement between
the molecular model and the experimental data is very good. The mean unsigned
errors in vapor pressure, saturated liquid density and enthalpy of vaporization are
3, 0.2, and 12 %, respectively, in the temperature range from 390 to 620 K, which
is about 50 to 97 % of the critical temperature. The correspond numbers for the
deviations found for the initial model after step one were 19, 1.7 and 9 %, respec-
tively. The seemingly high mean unsigned error for the enthalpy of vaporization
is mainly due to the lack of experimental data for cyclohexanol. In fact, experi-
mental data (23) are only available for the enthalpy of vaporization at about 420 K
where the present molecular model shows a good agreement, cf. Figure 10. The
DIPPR correlation for the enthalpy of vaporization as shown in Figure 10 is un-
usually "flat" near the critical point. Using that correlation for predicting the gas
phase density near the critical point via the Clausius-Clapeyron relation, results
in an unusual asymmetric shape of the saturated density plot as shown in Fig-
ure 8. We conclude that the DIPPR correlation for the enthalpy of vaporization of
cyclohexanol is wrong.

Second Virial Coefficient
The predicted second virial coefficient is compared to a DIPPR correlation (20)
in Figure 12. It was calculated by evaluating Mayer’s f -function as reported by
Eckl et al. (15) The present model overestimates the second virial coefficient only
by about 0.1 l/mol throughout the entire regarded temperature range from 325 to
1500 K which is within the uncertainty of the correlation.

Transport properties
Transport properties of cyclohexanol were obtained by equilibrium molecular dy-
namics (EMD) simulations following the Green-Kubo formalism. This approach
is based on the relationship between the transport coefficients and the time inte-
grals of corresponding autocorrelation functions of microscopic fluxes in a system
in equilibrium. The calculation details are similar to those recently reported by
Guevera at al. (24) and are not repeated here. Technical simulation details are
given in the Appendix. Numerical results are presented in Table 13
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In Figure 13, the predicted self-diffusion coefficient is compared to a correlation
of experimental data by O’ Reilly et al. (25) The present predictions are above the
data by O’ Reilly et al. (25) for temperatures below 400 K. For higher temper-
atures, the predictions are below the experimental data with a mean deviation of
20 %.
The predictions for the shear viscosity are compared to experimental data by
Friend and Hargreaves (26) and to a DIPPR correlation (20) in Figure 14. Here,
the predictions underestimate the experiment (20, 26) over the whole temperature
range with a mean deviation of 25 %.
The thermal conductivity was also predicted by EMD simulation. In Figure 15,
these data are compared to the experimental data (27) and a DIPPR correlation
(20). The high statistical simulation uncertainties are due to the strongly interact-
ing molecules, causing long time behaviors of the thermal conductivity autocor-
relation function. As EMD is not well suited for determining the thermal con-
ductivity, non-equilibrium molecular dynamics simulations (28) (NEMD) at these
state points should yield statistically more sound data. Nevertheless, a sufficient
accuracy for a first assessment was achieved. The predictions for the thermal con-
ductivity are above the experimental data (27)for temperatures higher than 380 K.
The mean deviation is around 30 % but the simulation data agree with the experi-
mental data almost throughout within their large statistical uncertainties.

Conclusion
An overview is given on the 95 molecular models for application in process engi-
neering and their development published by our group. Starting from simple 1CLJ
pair potentials also more complex polar MCLJ models were parameterized. With
rising complexity of the molecular models, new modeling approaches were de-
veloped as well. Recently, Eckl et al. proposed a new strategy using results from
QM ab initio calculations to include physically sound molecular properties and
to reduce the number of adjustable parameters. The remaining parameters were
adjusted to experimental VLE data, i.e. saturated liquid density, vapor pressure
and enthalpy of vaporization.
In this work, a new optimization strategy is proposed for the refined adjustment of
the remaining parameters. Reduced molecular simulation results can be adjusted
to experimental data by variation of the reference values εR, σR and mR used in
simulation codes to define dimensionless variables. This optimization can be car-
ried out without any new molecular simulations runs and is attractive for the time
consuming fine tuning of molecular models. The sensitivity of various thermo-
physical properties regarding variations of εR, σR and mR is studied for the case
of cyclohexanol.
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A pair potential for cyclohexanol was developed with the new method. The model
consists of seven LJ sites and three point charges. The parameters of the model
were adjusted with the modeling approach by Eckl et al., the optimization follow-
ing Stoll and with the reduced unit strategy proposed here. The final model shows
mean unsigned errors of 0.2 % in saturated liquid density and 3 % in vapor pres-
sure over the whole temperature range from triple point to 97 % of the critical
point.
The second virial coefficient was predicted with an insignificant offset to a DIPPR
correlation. EMD simulations were preformed to predict transport properties. The
predictions for the self-diffusion coefficient, the shear viscosity and the thermal
conductivity shows relative deviations of around 25 % compared to experimental
data, which is satisfying as they were not considered in the parameterization.
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Simulation Details
In this work, the Grand Equilibrium method (22) was used for VLE calculations.
To determine the chemical potential in the liquid, gradual insertion (29) was used.
For gradual insertion, Monte Carlo simulations in the N pT ensemble were per-
formed using 500 molecules. Starting from a face centered cubic lattice, 15 000
Monte Carlo cycles were sampled for equilibration with the first 5 000 time steps
in the canonical (NV T ) ensemble and 100 000 for production, each cycle con-
taining 500 displacement moves, 500 rotation moves, and 1 volume move. Every
50 cycles, 5 000 fluctuating state change moves, 5 000 fluctuating particle trans-
lation/rotation moves and 25 000 biased particle translation/rotation moves were
performed, to determine the chemical potential.
For the corresponding vapor, Monte Carlo simulations in the pseudo-µV T ensem-
ble were carried out. The simulation volume was adjusted to lead to an average
number of 500 molecules in the vapor phase. After 10 000 initial NV T Monte
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Carlo cycles, starting from a face centered cubic lattice, 25 000 equilibration cy-
cles in the pseudo-µV T ensemble were performed. The length of the production
run was 100 000 cycles. One cycle is defined here to be a number of attempts to
displace and rotate molecules equal to the actual number of molecules plus two
insertion and two deletion attempts.
The cut-off radius was set to at least 18 Å and a center of mass cut-off scheme was
employed. Lennard-Jones long-range interactions beyond the cut-off radius were
corrected as proposed by Lustig (30). Statistical uncertainties in the simulated
values were estimated by a block averaging method (31).
The second virial coefficient was calculated by evaluating Mayer’s f -function at
563 radii from 2 to 24 Å, averaging over 10002 random orientations at each radius.
The random orientations were generated using a modified Monte Carlo scheme
(4, 32). A cut-off correction was applied for distances larger than 24 Å for the
LJ potential (30). The electrostatic interactions need no long-range correction as
they vanish by angle averaging.
EMD simulations for transport properties were made in two steps. In the first step,
a short simulation in the isobaric-isothermal (N pT ) ensemble was performed at
the specified temperature and pressure to calculate the respective density. In the
second step, a canonic (NV T ) ensemble simulation was made at this temperature
and density, to determine the transport properties. The simulations were carried
out in a cubic box with periodic boundary conditions containing at least 2048
molecules. In all EMD simulations, the integration time step was 1 fs. The cut-off
radius was set to 18 Å. The simulations were equilibrated in the NV T ensemble
over 10 000 time steps, followed by production runs of 1 000 000 time steps. The
sampling length of the autocorrelation functions was between 11 and 26 ps.
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Table 1: Overview of molecular models for applications in process engineering
published by the author’s group. The model parameters can be found in Refer-
ences (4–6, 9–15).

Fluid CAS RN Fluid CAS RN
Non-polar, 1CLJ Dipolar, 2CLJD
Ne 7440-01-9 R1141 (CHF=CH2) 75-02-5
Ar 7440-37-1 CHBr2=CH3 557-91-5
Kr 7439-90-9 CFBr=CF2 598-73-2
Xe 7440-63-3 Quadrupolar, 2CLJQ
CH4 74-82-8 N2 7727-37-9
Dipolar, 1CLJD O2 7782-44-7
R30 (CH2Cl2) 75-09-2 Cl2 7782-50-5
R30B2 (CH2Br2) 74-95-3 Br2 7726-95-6
R32 (CH2F2) 75-10-5 F2 7782-41-4
CH2I2 75-11-6 I2 7553-56-2
Dipolar, 2CLJD CO2 124-38-9
CO 630-08-0 CS2 75-15-0
CH3I 74-88-4 C2H2 74-86-2
R10B1 (CBrCl3) 75-62-7 C2H4 74-85-1
R11 (CFCl3) 75-69-4 C2H6 74-84-0
R12 (CF2Cl2) 75-71-8 Propadiene (CH2=C=CH2) 463-49-0
R12B1 (CBrClF2) 353-59-3 Propyne (CH3−C≡CH) 74-99-7
R12B2 (CBr2F2) 75-61-6 Propylene (CH3−CH=CH2) 115-07-1
R13 (CF3Cl) 75-72-9 SF6 2551-62-4
R13B1 (CBrF3) 75-63-8 R10 (CCl4) 56-23-5
R20 (CHCl3) 67-66-3 R14 (CF4) 75-73-0
R20B3 (CHBr3) 75-25-2 R113 (CFCl2−CF2Cl) 76-13-1
R21 (CHFCl2) 75-43-4 R114 (CF2Cl−CF2Cl) 76-14-2
R22 (CHF2Cl) 75-45-6 R114B2 (CBrF2−CBrF2) 124-73-2
R23 (CHF3) 75-46-7 R115 (CF3−CF2Cl) 76-15-3
R30B1 (CH2BrCl) 74-97-5 R134 (CHF2−CHF2) 359-35-3
R40 (CH3Cl) 74-87-3 R150B2 (CH2Br−CH2Br) 106-93-4
R40B1 (CH3Br) 74-87-3 R1110 (C2Cl4) 127-18-4
R41 (CH3F) 593-53-3 R1114 (C2F4) 116-14-3
R112a (CCl3−CF2Cl) 76-11-9 R1120 (CHCl=CCl2) 79-01-6
R123 (CHCl2−CF3) 306-83-2 Polar, Multi-CLJ
R123B1 (CHClBr−CF3) 151-67-7 Iso-butane (C4H10) 75-28-5
R124 (CHFCl−CF3) 2837-89-0 Cyclohexane (C6H12) 110-82-7
R125 (CHF2−CF3) 354-33-6 Methanol (CH3OH) 67-56-1
R130a (CH2Cl−CCl3) 630-20-6 Ethanol (C2H5OH) 64-17-5
R131b (CH2F−CCl3) 2366-36-1 Formaldehyde (CH2 = O) 50-00-0
R134a (CH2F−CF3) 811-97-2 Dimethylether (CH3−O−CH3) 115-10-6
R140 (CHCl2−CH2Cl) 79-00-5 Ammonia (NH3) 7664-41-7
R140a (CCl3−CH3) 71-55-6 Monomethylamine (NH2−CH3) 74-89-5
R141b (CH3−CFCl2) 1717-00-6 Dimethylamine (CH3−NH−CH3) 124-40-3
R142b (CH3−CF2Cl) 75-68-3 R227ea (CF3−CHF−CF3) 431-89-0
R143a (CH3−CF3) 420-46-2 Sulfur Oxide (SO2 ) 7446-09-5
R150a (CHCl2−CH3) 75-34-3 Ethylene Oxide (C2H4O) 75-21-8
R152a (CH3−CHF2) 75-37-6 Dimethylsulfide (CH3−S−CH3) 75-18-3
R160B1 (CH2Br−CH3) 74-96-4 Hydrogen Cyanide (NCH) 74-90-8
R161 (CH2F−CH3) 353-36-6 Acetonitrile (NC2H3) 75-05-8
R1113 (CFCl=CF2) 2366-36-1 Thiophene (SC4H4) 110-02-1
R1132 (CHCl=CF2) 359-10-4 Formic Acid (CH2O2) 64-18-6
R1132a (CF2=CH2) 75-38-7 Nitromethane (NO2CH3) 75-52-5
R1140 (CHCl=CH2) 75-01-4
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Table 2: Coordinates and parameters of the LJ sites and the point charges in the
principal axes system of the new molecular model for cyclohexanol. Bold charac-
ters indicate the represented atoms.

Interaction x y z σ ε/kB q
Site Å Å Å Å K e
CH2(1) -2.21180 -0.54464 0 3.412 104.03 —
CH2(2) -1.35799 0.46139 -1.57594 3.412 104.03 —
CH2(3) 0.52527 -0.37854 -1.56168 3.412 104.03 —
CH2(4) 0.52527 -0.37854 1.56168 3.412 104.03 —
CH2(5) -1.01956 0.36185 1.57594 3.412 104.03 —
CH 1.06798 0.36185 0 3.234 61.01 0.278022
OH 2.41338 0.03535 0 3.150 86.50 -0.644173
H-O 2.46899 -0.93682 0 — — 0.366151
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Table 3: Vapor-liquid equilibria of cyclohexanol: results of the reduced unit
method (sim) are compared to DIPPR correlation (20) for vapor pressure and sat-
urated liquid densities. The number in parentheses indicates the statistical uncer-
tainty in the last digit.

T psim pDIPPR ρ′sim ρ′DIPPR ρ′′sim ∆hv
sim

K MPa MPa mol/l mol/l mol/l kJ/mol
396.6 0.033(2) 0.028 8.566(3) 8.557 0.0103(5) 47.06(1)
427.1 0.087(3) 0.082 8.263(3) 8.257 0.0253(8) 43.99(1)
457.7 0.189(4) 0.196 7.914(4) 7.925 0.052 (1) 40.84(1)
488.2 0.393(6) 0.394 7.578(4) 7.583 0.106 (2) 37.76(1)
508.5 0.580(7) 0.588 7.321(5) 7.338 0.155 (2) 35.59(2)
528.8 0.855(9) 0.857 7.071(6) 7.062 0.228 (2) 32.33(2)
559.4 1.36 (1) 1.376 6.622(9) 6.624 0.369 (3) 29.61(2)
589.9 2.12 (2) 2.108 6.11 (2) 6.0864 0.602 (4) 25.28(4)
610.2 2.81 (2) 2.706 5.68 (6) 5.656 0.854 (6) 21.49(5)
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Table 4: Vapor-liquid equilibria of cyclohexanol: simulation results (sim) are
compared to DIPPR correlation (20) for vapor pressure and saturated liquid den-
sities. The number in parentheses indicates the statistical uncertainty in the last
digit.

T psim pDIPPR ρ′sim ρ′DIPPR ρ′′sim ∆hv
sim

K MPa MPa mol/l mol/l mol/l kJ/mol
390 0.024(2) 0.022 8.632(3) 8.625 0.0075(5) 47.73(2)
420 0.067(2) 0.065 8.335(4) 8.328 0.0197(7) 44.75(2)
450 0.159(4) 0.159 8.007(5) 8.014 0.045 (1) 41.64(2)
480 0.317(6) 0.331 7.660(5) 7.677 0.086 (2) 38.57(2)
500 0.489(7) 0.504 7.431(5) 7.439 0.131 (2) 36.52(2)
520 0.703(9) 0.733 7.180(5) 7.183 0.187 (2) 34.38(2)
550 1.19 (1) 1.202 6.783(6) 6.762 0.321 (3) 30.86(2)
580 1.83 (2) 1.848 6.28 (1) 6.273 0.507 (5) 26.81(3)
600 2.39 (2) 2.394 5.89 (2) 5.883 0.693 (5) 23.62(4)
620 3.14 (2) 3.046 5.45 (6) 5.396 0.986 (7) 19.66(7)
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Table 5: Second virial coefficient of cyclohexanol: simulation results (sim) are
compared to a DIPPR correlation (20). The numbers in parentheses indicates the
statistical uncertainty in the last digits.

T Bsim BDIPPR
K mol/l mol/l
325 -3.1331 -3.6 (9)
350 -2.2748 -2.7 (7)
390 -1.5336 -1.8 (5)
420 -1.2118 -1.4 (4)
450 -0.9898 -1.2 (3)
480 -0.8277 -1.0 (2)
500 -0.7419 -0.9 (2)
520 -0.6691 -0.8 (2)
550 -0.5784 -0.7 (2)
580 -0.5046 -0.6 (1)
600 -0.4624 -0.5 (1)
650 -0.3757 -0.4 (1)
700 -0.3083 -0.37 (9)
800 -0.2103 -0.26 (6)
900 -0.1425 -0.18 (4)

1000 -0.0927 -0.13 (3)
1100 -0.0547 -0.09 (2)
1200 -0.0247 -0.05 (1)
1300 -0.0053 -0.028(7)
1400 0.0194 -0.007(2)
1500 0.0361 0.011(3)

18



Table 6: Transport properties of cyclohexanol: simulation results (sim) are com-
pared to a correlation of experimental data (25) and DIPPR correlations (20). The
numbers in parentheses indicates the statistical uncertainty in the last digits.

T Dsim Dexp νsim νDIPPR λsim λDIPPR
K 10−9m2/s 10−9m2/s 10−3Pas 10−3Pas 10−2W/mK 10−2W/mK

360 0.88(2) 0.6(3) 18(4) 30.50 58(77) 126
380 1.36(1) 1.1(4) 11(2) 17.33 106(32) 124
400 1.95(1) 1.9(5) 9(1) 10.87 147(28) 121
420 2.48(1) 3.0(6) 6(1) 7.31 182(31) 119
440 3.52(1) 4.7(6) 4(1) 5.16 132(27) 116
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Figure 1: Saturated densities of cyclohexanol: — baseline, — variation of εR,
— variation of σR, + indicates a increase of 5 %, - indicates a decrease of 5 %.
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Figure 2: Vapor pressure of cyclohexanol: — baseline, — variation of εR, —
variation of σR, + indicates a increase of 5 %, - indicates a decrease of 5 %.
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Figure 3: Enthalpy of vaporization of cyclohexanol: — baseline, — variation of
εR, — variation of σR, + indicates a increase of 5 %, - indicates a decrease of 5 %.
Note that the red lines coincide with the baseline.
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Figure 4: Self-diffusion coefficient of cyclohexanol: — baseline, — variation of
εR, — variation of σR, — variation of mR, + indicates a increase, - indicates a
decrease.
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Figure 5: Shear viscosity of cyclohexanol: — baseline, — variation of εR, —
variation of σR, — variation of mR, + indicates a increase, - indicates a decrease.

24



Figure 6: Thermal conductivity of cyclohexanol: — baseline, — variation of
εR, — variation of σR, — variation of mR, + indicates a increase, - indicates a
decrease.
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Figure 7: Coordinates of the LJ sites of the present cyclohexanol model.
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Figure 8: Saturated densities of cyclohexanol: ◦model after first step of optimiza-
tion, ◦model after reduced unit method, ◦ final model, — DIPPR correlation (20),
? experimental critical point (20). Inset: Magnified view on the critical point.
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Figure 9: Vapor pressure of cyclohexanol: ◦model after first step of optimization,
◦ model after reduced unit method, ◦ final model, — DIPPR correlation (20),
? experimental critical point (20).
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Figure 10: Enthalpy of vaporization of cyclohexanol: ◦ model after first step
of optimization, ◦ model after reduced unit method, ◦ final model, — DIPPR
correlation (20), + experimental data (23).
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Figure 11: Relative deviations of vapor-liquid equilibrium properties between
simulation data and a DIPPR correlation (20) (δz = (zsim− zDIPPR)/zDIPPR): ◦ fi-
nal model, ◦model after reduced unit method. From top to bottom: vapor pressure
and saturated liquid density
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Figure 12: Second virial coefficient of cyclohexanol: ◦ final model, — DIPPR
correlation (20). The dashed lines indicates the estimated uncertainty of the
DIPPR correlation (20).
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Figure 13: Self-diffusion coefficient of cyclohexanol: ◦ final model, — correla-
tion on experimental data (25).
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Figure 14: Shear viscosity of cyclohexanol: ◦ final model, — DIPPR correlation
(20), + experimental data (26).
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Figure 15: Thermal conductivity of cyclohexanol: ◦ final model, — DIPPR cor-
relation (20), + experimental data (27).
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