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a  b  s  t  r  a  c  t

Molecular  modeling  and  simulation  has  emerged  in  recent  years  as  a powerful  engineering  tool  for  the
prediction  of thermodynamic  properties  of fluids.  In  this  work,  transport  properties  of  monomethylamine,
dimethylamine,  dimethylether  and  hydrogen  chloride  are  predicted  by molecular  simulation,  employ-
ing  rigid,  non-polarizable  molecular  models  that  were  developed  without  using  any  transport  property
information.  Equilibrium  molecular  dynamics  as  well  as non-equilibrium  molecular  dynamics  are  used
to predict  self-diffusion  coefficient,  shear  viscosity  and  thermal  conductivity  of  the  studied  liquids  for a
wide range  of thermodynamic  conditions.  In most  cases,  the  reported  predictions  deviate  on average  by
less  than  10%  from  the available  experimental  data.

©  2011  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In recent years, the need for transport data has increased in the
chemical industry. Among others, this is due to the growing use
of rate-based methods for process modeling. Traditionally, ther-
modynamic properties are obtained from experiments, however,
despite the extensive effort devoted to their measurement, the data
availability is still surprisingly low and the data sets are in many
cases contradictory. This is associated with the significant effort
to measure thermophysical properties, particularly at very high
temperatures and pressures [1],  or to deal experimentally with sub-
stances that are toxic or explosive. Compared to static properties
like vapor–liquid equilibria, transport data are very scarce. Because
traditional phenomenological models for transport properties are
little reliable in the liquid state, molecular simulation has emerged
as an alternative engineering tool for predictive applications.

The aim of this work is to demonstrate the capability of molec-
ular modeling and simulation to predict the technically most
relevant transport properties, i.e. self-diffusion coefficient, shear
viscosity and thermal conductivity, of monomethylamine (MMA,
CH3 NH2), dimethylamine (DMA, (CH3)2 NH), dimethylether
(DME, (CH3)2 O) and hydrogen chloride (HCl). As in previous work
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of our group, rigid, non-polarizable molecular models were used.
This model class is suitable to predict structural and thermody-
namic properties of hydrogen bonding fluids with a good accuracy,
e.g. water, methanol, ethanol, ammonia and some binary mixtures
thereof [2–4]. Equilibrium molecular dynamics (EMD) simulation
together with the Green–Kubo formalism was  used to determine
the self-diffusion coefficient and the shear viscosity. The shear
viscosity and the thermal conductivity were calculated via the
reverse non-equilibrium molecular dynamics (NEMD) algorithm
by Müller-Plathe [5].  These transport properties were predicted
in the liquid state for a wide range of thermodynamic conditions
and a comparison between EMD  and NEMD results is given for the
shear viscosity.

The studied fluids have important industrial applications. The
weakly hydrogen bonding amines MMA  and DMA  are widely used
as intermediates in chemical synthesis, e.g. in the production of sol-
vents, pesticides, pharmaceuticals, dyes or surfactants [6,7]. DME
is largely used as a substitute for chlorofluorocarbons, i.e. as an
aerosol propellant, refrigerant or petroleum gas [8–10]. It is also
used as feedstock for the production of higher value chemicals,
e.g. acetic acid or formaldehyde [11]. HCl is a very hazardous fluid
that is widely used in the chemical, pharmaceutical, oil and food
industry [12], e.g. as an intermediate or catalyst in the production
of higher value chemicals [13]. The success of molecular simula-
tion to predict thermodynamic properties is primarily determined
by the force field that describes the molecular interactions. Many
of the molecular models from the literature for MMA  and DMA
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are based on transferable force fields developed for biological sys-
tems, e.g. OPLS-AA [14], CFF [15] or CHARMM [7],  which usually
include Lennard–Jones (LJ) sites, point charges as well as inter-
nal degrees of freedom, i.e. bond stretching, angle and dihedral
bending. Other molecular models are based on transferable force
fields that were developed for chemical engineering applications,
e.g. the anisotropic united atom force field (AUA) [16], the TraPPE-
EH force field [17] or the discontinuous force field SPEAD [18]. They
were primarily employed for studying the fluid structure [19] and
thermodynamic properties like free energy of hydration [14] or
vapor–liquid equilibria [17,18]. However, only a few models were
assessed with respect to their capability to predict transport prop-
erties. Kosztolányi at al. [20] and Kusalik et al. [21] predicted the
self-diffusion coefficient of MMA  at 250 K using the rigid model
by Impey et al. [22]. Bauer and Patel [7] also predicted the self-
diffusion coefficient of MMA  at 266.8 K based on their polarizable
model. Recently, Feng et al. [23] predicted the self-diffusion coef-
ficient of MMA  for different thermodynamic conditions based on
a modification of the OPLS-AA model [14]. To our knowledge, the
self-diffusion coefficient of DMA  as well as the shear viscosity and
thermal conductivity of both amines were not studied by molecular
simulation prior to this work.

A variety of molecular models for DME  can be found in the
literature, e.g. flexible models based on transferable [24–26],  dis-
continuous [27] or polarizable [28] force fields as well as rigid
models [29–31].  However, to our knowledge, none of them was
employed to predict the transport properties of DME  by molecular
simulation.

HCl is the smallest molecule considered in this work and has
therefore been subject to numerous molecular simulation and
quantum mechanical studies in the last 30 years. For HCl, there are
several molecular models of different complexity in the literature,
e.g. [32–41].  Some of them were used to predict the self-diffusion
coefficient [32,33,36,37,41] and the shear viscosity [42] by molec-
ular simulation. The thermal conductivity was not studied prior to
this work.

The molecular models employed here for MMA  [43], DMA  [43],
DME  [44] and HCl [13] were developed in preceding work of
our group. These rigid, united-atom models were optimized to
experimental data on vapor pressure and saturated liquid density
only. No data on transport properties were taken into account
during model parameterization so that all respective results are
strictly predictive.

The outline of the present work is as follows: first, the
employed molecular models and the simulation techniques
are briefly described. Second, the predictions for self-diffusion

coefficient, shear viscosity and thermal conductivity of the studied
liquids are presented and compared to experimental data and
correlations thereof as well as to other simulation results from the
literature. Finally, conclusions are drawn. The simulation details
are summarized in Appendix B.

2. Molecular models

Throughout this work, rigid, non-polarizable molecular models
of united-atom type from earlier work of our group were used. The
models account for the intermolecular interactions by one or more
LJ sites and superimposed point charges or point dipoles. Thus, the
total intermolecular interaction energy uij between two  molecules
i and j can be written as

uij(rijab) =
SLJ

i∑
a=1

SLJ
j∑

b=1

4�ijab

[(
�ijab

rijab

)12

−
(

�ijab

rijab

)6
]

+
Se

i∑
c=1

Se
j∑

d=1

qicqjd

4�ε0rijcd
+ �ic�jd

4�ε0r3
ijcd

· f
(

ωi, ωj

)
, (1)

where rijab, �ijab and �ijab are the distance, the LJ energy parameter
and the LJ size parameter, respectively, for the pair-wise interac-
tion between LJ site a on molecule i and LJ site b on molecule j.
The permittivity of the vacuum is ε0, whereas qic and �ic denote
the point charge magnitude and the dipole moment of the elec-
trostatic interaction site c on molecule i. The expression f(ωi, ωj)
stands for the dependency of the dipole interaction on the orien-
tations ωi and ωj of the molecules i and j [45]. The pure substance
model parameters were taken from [13,43,44] and are summarized
in Table 1. The interactions between unlike LJ sites of different type
were defined by the standard Lorentz–Berthelot combining rules

�ab = �aa + �bb

2
, (2)

and

�ab =
√

�aa�bb. (3)

3. Methodology

3.1. Equilibrium molecular dynamics

Transport properties can be determined from the time evolution
of the autocorrelation function of a particular microscopic flux in

Table 1
Lennard–Jones and electrostatic parameters of the molecular models employed in this work. The orientation of the dipole moment is defined in standard Euler angles, where
ϕ  is the azimuthal angle with respect to the x–z plane and � is the inclination angle with respect to the z axis. The spatial position of the sites can be found in the original
publications [13,43,44].

Interaction sites � (Å) ε/kB (K) � (◦) ϕ (◦) � (D) q (e)

Monomethylamine
CH3 3.6072 120.150 – – – +1.95250
NH2 3.3151 141.147 – – – −0.88653
H  – – – – – +0.34564

Dimethylamine
CH3 3.6072 120.150 – – – +0.03774
NH  3.4800 72.856 – – – −0.45959
H  – – – – – +0.38411

Dimethylether
O 2.727 89.570 – – – –
CH3 3.6072 120.150 – – – –
Dipole – – 180 0 1.7040 –

Hydrogen chloride
HCl 3.520 179.00 – – – –
H –  – – – – +0.438
Cl  – – – – – −0.438
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a system in equilibrium using the Green–Kubo formalism [46,47].
This method relates a transport coefficient to the time integral of
an autocorrelation function of a particular microscopic flux. It was
used here to calculate the self-diffusion coefficient and the shear
viscosity.

The general Green–Kubo expression for a transport coefficient
	 is given by

	 = 1
G

∫ ∞

0

dt〈Ȧ(t) · Ȧ(0)〉, (4)

where G is a property dependent prefactor, A is the related per-
turbation and Ȧ  its time derivative. <. . . > denotes the ensemble
average.

In the case of the self-diffusion coefficient, A(t) stands for the
position vector of a molecule k at some time t, i.e. rk(t), and Ȧk(t) is
the center of mass velocity vector, i.e. vk(t). Thus, the self-diffusion
coefficient Di is related to the individual molecule velocity autocor-
relation function as follows

Di = 1
3N

∫ ∞

0

dt 〈vk(t) · vk(0)〉 · (5)

Eq. (5) is an average over all N molecules in the ensemble, since all
contribute to the self-diffusion coefficient.

The shear viscosity 
 is associated with the time autocorrelation
function of the off-diagonal elements of the stress tensor Jxy

p [48]


 = 1
VkBT

∫ ∞

0

dt 〈Jxy
p (t) · Jxy

p (0)〉, (6)

where V stands for the molar volume, kB is the Boltzmann constant
and T denotes the temperature. Averaging over all three indepen-
dent elements of the stress tensor, i.e. Jxy

p , Jxz
p and Jyz

p , improves the
statistics of the simulation. The component Jxy

p of the microscopic
stress tensor Jp is given by [49]

Jxy
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i vy

i
− 1

2
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Si∑
a=1

Sj∑
b=1

rx
ij
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. (7)

Here, the lower indices a and b count all interaction sites Si =
SLJ

i
+ Se

i
, while the upper indices x and y denote the spatial vector

components of the velocity vx
i

and the distance rx
ij
.

3.2. Non-equilibrium molecular dynamics

Instead of using the Green–Kubo or Einstein EMD  formula-
tions, transport properties can be calculated via non-equilibrium
molecular dynamics (NEMD). NEMD methods involve an artificially
imposed external field that drives the system out of the equilibrium.
Similar to the experiment, the long-time response to this perturba-
tion is measured to determine transport properties. NEMD methods
are favored when the signal-to-noise ratio is high at long times,
therefore reverse NEMD [5,50,51] was used throughout this work
to calculate the thermal conductivity, but also to obtain some shear
viscosity data.

To determine the thermal conductivity �, a heat flux is imposed
onto a molecular system, e.g. in the z direction, and the resulting
temperature gradient is measured. For this purpose, the simulation
volume is divided perpendicular to the z direction into M slabs of
identical thickness Lz/M, where Lz is the length of the simulation
volume in the z direction. The slab at z = 0 is defined as the “cold
slab” and the one at z = Lz/2 as the “hot slab”. In order to create a heat
flux, the velocity of the molecule with the highest kinetic energy
in the cold slab vl and the velocity of the molecule with the lowest
kinetic energy in the hot slab vh are interchanged. This mechanism
enforces a kinetic energy transfer from the cold slab to the hot slab

that leads to a temperature gradient. In the steady state, this energy
transfer is balanced by the heat flux in the opposite direction. The
energy flux is given by [5]

〈J〉t = 1
2At

∑
transfers

m

2
(v2

h − v2
l ), (8)

where A is the cross sectional area in x and y direction and t is the
simulation time. The thermal gradient ∇Tz is obtained from a linear
fit of the temperature profile resulting from the simulation. In the
steady state, the thermal conductivity is thus given by

� = − 〈J〉t

∇Tz
· (9)

The shear viscosity 
 can be calculated via reverse NEMD by
measuring the resulting shear rate when a flux of transverse linear
momentum is imposed onto the molecular system [51]. The sim-
ulation volume is again divided into slabs perpendicular to the z
direction. The molecules in the “forward slab” at z = 0 are propelled
in the +x direction, while those in the “backward slab” at z = Lz/2
are propelled in the −x direction. This is done by interchanging the
momentum component in the x direction px = m · vx. The molecule
with the largest absolute value of px in the −x direction of the for-
ward slab interchanges its momentum with the molecule having
the largest absolute value of px in the +x direction of the back-
ward slab [51]. The system responds to the momentum transfer
by momentum flow in the opposite direction via friction [51]. In
the steady state, the imposed momentum flux is balanced by the
friction flux in the fluid. The momentum flux is given by [51]

〈Jpx 〉t = 1
2At

∑
transfers

m
(
vx,1 − vx,2

)
. (10)

The shear rate is obtained from the gradient of the mean velocity
in the x direction of each slab with respect to the z direction. In the
steady state, the shear viscosity is thus given by [50]


 = −〈Jpx 〉t
∂vx

∂z
· (11)

4. Simulation results

The thermodynamic conditions studied in this work were gen-
erally chosen according to the availability of experimental data or
correlations thereof in the literature which were used for direct
comparison with the simulation results. Data for previously unex-
plored conditions were predicted as well, e.g. for DMA at high
pressures.

4.1. Monomethylamine

4.1.1. Self-diffusion coefficient
The pressure dependence of the self-diffusion coefficient of liq-

uid MMA  was  predicted at 10, 50, 100, 150 and 200 MPa in the
temperature range from 203 to 423 K. Fig. 1 shows, exemplarly,
the temperature dependence of the self-diffusion coefficient at
selected pressures, i.e. 10, 100 and 200 MPa, in comparison to
experimental data by Chen et al. [52]. The full numerical simula-
tion results are listed in Table 1 of the Supplementary material. In
general, the present results are in very good agreement with the
experimental data, the mean deviation is approximately 6% for the
whole range of studied conditions. The accuracy of the predicted
self-diffusion coefficient is similar to that of the data published by
Feng et al. [23] who  used a more complex flexible model [14]. A
graphical comparison between the present work and the results
by Feng et al. [23] at 50 MPa  is shown in Fig. 1 of the Supplemen-
tary material.
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Fig. 1. Temperature dependence of the self-diffusion coefficient of liquid
monomethylamine. Present EMD  simulation results at 10 (�), 100 (�) and 200 MPa
(�)  are compared to experimental data [52] (open symbols). The error bars are within
symbol size.

The self-diffusion coefficient of saturated liquid MMA  was pre-
dicted at temperatures between 203 and 373 K, the numerical
results are given in Table 2 of the Supplementary material. To our
knowledge, there are no experimental data in the literature for the
self-diffusion coefficient of MMA  under these conditions. However,
due to the high accuracy shown for liquid MMA  in the homogeneous
region at high pressures, these results can be expected to match the
true fluid behavior.

Both Kosztolányi et al. [20] and Kusalik et al. [21] calculated
the self-diffusion coefficient of MMA  at 250 K and atmospheric
pressure based on the model by Impey et al. [22]. They reported
self-diffusion coefficients of 4.93 and 4.31 × 10−9 m2 s−1, respec-
tively. Bauer and Patel [7] reported a self-diffusion coefficient of
3.89 × 10−9 m2 s−1 at 266.8 K and 0.1 MPa  using their polarizable
model. Curiously, all these authors [7,20,21] compared their sim-
ulation results to one experimental value of 5.10 × 10−9 m2 s−1

apparently by Chen et al. [52]. However, Chen et al. [52] only pre-
sented experimental results for MMA  at pressures of 10 MPa  or
higher and none of their values near 250 K corresponds to the men-
tioned experimental self-diffusion coefficient. In the present work,
the self-diffusion coefficient at 250 K and 0.1 MPa  was  calculated to
be 3.49 × 10−9 m2 s−1.

4.1.2. Shear viscosity
Fig. 2 shows the shear viscosity of saturated liquid MMA  at

temperatures between 203 and 373 K compared to experimental
data [53–55] and a correlation thereof [56]. The numerical results
are given in Table 2 of the Supplementary material. It can be seen
that the simulations well predict the temperature dependence of
the shear viscosity for the studied temperatures, the average devi-
ation from the correlation is 12.5%. However, the deviation from
experimental data is smaller. The lower values of the shear viscos-
ity from simulation with respect to the correlation for temperatures
>300 K are in better agreement with the experimental data [53–55].
The statistical uncertainty of the present results is around 12%,
being higher for low temperatures due to the elevated density of
MMA under these conditions.

The shear viscosity of liquid MMA  was predicted here also at
high pressures, i.e. 10, 50, 100, 150 and 200 MPa, however, exper-
imental data for comparison are available only at 10 MPa  [53]. The
agreement between the two data sets is very good, cf. Fig. 3. The
average deviation is only 2.8%.

Fig. 2. Temperature dependence of the shear viscosity of saturated liquid
monomethylamine. Present EMD simulation results (�) are compared to experi-
mental data [53–55] (+) and to a correlation thereof [56] (–). The dotted lines indicate
the  uncertainty of the correlation as specified in [56].

4.1.3. Thermal conductivity
Present predictions of the thermal conductivity of satu-

rated liquid MMA  at temperatures between 203 and 373 K are
compared to experimental data [57,58] and a correlation
thereof [56] in Fig. 4. Furthermore, the thermal conductivity
was predicted for liquid states in the homogeneous region at 2,
5, 10, 25 and 50 MPa  in the temperature range from 293 to 393 K.
Fig. 5 shows, exemplary, the present values at 10 and 50 MPa
together with experimental data [59]. The numerical results are
given in Tables 2 and 3 of the Supplementary material. The thermal
conductivity of the saturated liquid from simulation deviates
on average by 8% from the correlation, however, the simulation
values show a stronger dependence on the temperature than
the correlation [56], which has an error margin of 10%. On the
other hand, the two  available experimental data sets [57,58] are
contradictory, cf. Fig. 4. The present results at high pressures are in
excellent agreement with the experimental data by Fedosov [59]
over the entire range of studied conditions, the average deviation
is only 2.2%. Here, the temperature dependence of the thermal
conductivity is well predicted by simulation, cf. Fig. 5. Accordingly,
the present results suggest possible inaccuracies on the correla-
tion of experimental data by DIPPR [56] for the saturated liquid.
This finding is supported by the more pronounced slope of the

Fig. 3. Temperature dependence of the shear viscosity of liquid monomethy-
lamine. Present EMD  simulation results at 10 MPa  (◦) are compared to experimental
data  [53] (+).
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Fig. 4. Temperature dependence of the shear viscosity of saturated liquid
monomethylamine. Present EMD  simulation results (�) are compared to experi-
mental data by Gallant [58] (×) and by Engineering Sciences Data Unit [57] (+) as
well as to a correlation thereof [56] (–). The dotted lines indicate the uncertainty
of  the correlation as specified in [56]. The experimental data for the homogeneous
liquid at 5 MPa  [59] (�) are also shown.

thermal conductivity dependence on temperature from experi-
ment at 5 MPa, cf. Fig. 4. However, further experimental data or
simulations are required for a decisive conclusion.

4.2. Dimethylamine

4.2.1. Self-diffusion coefficient
The self-diffusion coefficient of liquid DMA  was predicted along

the saturated liquid line and for homogeneous liquid states at 50,
100, 150 and 200 MPa  in the temperature range between 203 and
423 K. The numerical results are given in Tables 4 and 5 of the Sup-
plementary material. To our knowledge, the self-diffusion
coefficient of DMA  has not been determined before neither
experimentally nor by molecular simulation. Hence, the simu-
lation results of this work are compared to the self-diffusion
coefficient of the amines MMA  and trimethylamine (TMA) under
the same conditions. Fig. 6 shows this comparison for the three flu-
ids at 50 MPa. Particularly at high temperatures, the self-diffusion
coefficient of DMA  is higher than that of TMA, but lower than that
of MMA, which is expected due to the molecular weight of DMA.
This behavior is less pronounced at low temperatures, where the
differences between the self-diffusion coefficient of MMA  and DMA

Fig. 5. Temperature dependence of the thermal conductivity of liquid monomethy-
lamine. Present reverse-NEMD simulation results at 10 (�) and 50 MPa  (�) are
compared to experimental data [59] (open symbols).

Fig. 6. Temperature dependence of the self-diffusion coefficient of liquid amines
at  50 MPa. Present EMD  simulation results for dimethylamine (�) are compared to
experimental data [52] for monomethylamine (�) and trimethylamine (�) [52]. The
error bars are within symbol size.

are smaller, which can be attributed to the presence of hydrogen
bonding in MMA  and DMA.

4.2.2. Shear viscosity
The predicted shear viscosity of saturated liquid DMA  is shown

in Fig. 7 in comparison to experimental data [60,61] and a corre-
lation thereof [56]. As can be seen, the present simulation results
accurately cover the temperature dependence of the shear viscos-
ity, the mean deviation to the correlation is approximately 7%. The
numerical results are given in Table 4 of the Supplementary mate-
rial. Analogously to MMA,  the shear viscosity of liquid DMA  was also
predicted at high pressures, i.e. 50, 100, 150 and 200 MPa. However,
no experimental data are available for validation.

4.2.3. Thermal conductivity
The thermal conductivity of liquid DMA  was calculated along

the saturated liquid line between 224 and 333 K. Fig. 8 shows the
simulation results in comparison to experimental data [57,58] and
a correlation thereof [56]. As can be seen, the experimental data
sets are contradictory. On the other hand, the present simula-
tion results accurately predict the temperature dependence of the
thermal conductivity given by the DIPPR correlation [56] based on
the experimental data reported by the Engineering Sciences Data

Fig. 7. Temperature dependence of the shear viscosity of saturated liquid dimethy-
lamine. Present EMD simulation results (�) are compared to experimental
data [60,61] (+) and to a correlation thereof [56] (–). The dotted lines indicate the
uncertainty of the correlation as specified in [56].
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Fig. 8. Temperature dependence of the thermal conductivity of saturated liquid
dimethylamine. Present reverse-NEMD simulation results (�) are compared to
experimental data by Gallant [58] (×) and by Engineering Sciences Data Unit [57] (+)
as well as to a correlation thereof [56] (–). The dotted lines indicate the uncertainty
of  the correlation as specified in [56].

Unit [57]. They match throughout within their statistical error, cf.
Fig. 8. The average deviation between the two data sets is merely
2.2%. Therefore, the present results suggest that the experimen-
tal thermal conductivity data reported by Gallant [58] could be
inaccurate. However, further simulation or experimental data are
required for a conclusive determination.

4.3. Dimethylether

4.3.1. Self-diffusion coefficient
Fig. 9 shows the present simulation results for the tempera-

ture dependence of the self-diffusion coefficient of liquid DME  at
50, 100 and 200 MPa  in comparison to experimental data [62]. The
self-diffusion coefficient of DME  was also predicted at 150 MPa,
which is not shown graphically. All numerical results are given in
Table 6 of the Supplementary material. As can be seen in Fig. 9, all
predicted data correctly reproduce the temperature dependence
of the self-diffusion coefficient and are in good agreement with
the experimental data (6% average deviation). However, it can be
noticed for temperatures >360 K that there is a tendency to under-
estimate the self-diffusion coefficient.

Fig. 9. Temperature dependence of the self-diffusion coefficient of liquid
dimethylether. Present EMD  simulation results at 50 (�), 100 (�) and 200 MPa  (�)
are compared to experimental data [62] (open symbols). The error bars are within
symbol size.

Fig. 10. Temperature dependence of the shear viscosity of liquid dimethylether.
Present EMD simulation results at 50 MPa  (�) are compared to a correlation based
on  the estimation method by Huber et al. [63] (–). The dotted lines indicate the
uncertainty of the correlation as specified in [63].

4.3.2. Shear viscosity
The shear viscosity of liquid DME  was predicted at 50, 100, 150

and 200 MPa  in the temperature range between 212 and 458 K.
However, only a correlation based on an estimation method at
50 MPa  is available in the literature [63]. Thus, only the simulation
results at 50 MPa  were compared to literature values, cf. Fig. 10.  At
this pressure, the simulation results agree well with the correla-
tion, the predicted shear viscosity deviates on average by 8% from
the correlation. It can be noticed for temperatures <300 K that the
simulations tend to underestimate the shear viscosity. The simu-
lation results have a mean statistical uncertainty of around 12%,
which is higher at low temperatures due to the high density of the
fluid.

4.4. Hydrogen chloride

4.4.1. Self-diffusion coefficient
Fig. 11 shows the present simulation results for the self-diffusion

coefficient of saturated liquid HCl between 175 and 310 K in com-
parison to the available experimental data [64,65] and to simulation
results by Powles et al. [32], Murad et al. [37] and Yogi [40]. Numer-
ical data are given in Table 7 of the Supplementary material. As can

Fig. 11. Temperature dependence of the self-diffusion coefficient of saturated liquid
hydrogen chloride. Present EMD  simulation results (�) together with the simulation
results by Murad et al. [37] (�), by Yogi [40] (�) and by Powles et al. [32] (�) are
compared to experimental data [64,65] (+).
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Fig. 12. Temperature dependence of the shear viscosity of saturated liquid hydrogen
chloride. Present EMD  (�) and reverse-NEMD simulation results (�) and the simula-
tion results by Kielpinski et al. [42] (�) are compared to experimental data [66–68]
(+)  as well as to correlations thereof by DIPPR [56] (–) and by Yaws [69] (−−).

be seen in Fig. 11,  the agreement between simulation and experi-
mental data reported by O’Reilly [64] and Krynicki et al. [65] is very
good. The simulation works by Murad et al. [37] and Yogi [40] also
reported a good agreement of the predicted self-diffusion coeffi-
cient with experimental data using a rigid rotor model [40] and a
polarizable model [33], respectively. Other simulation studies, e.g.
by Powles et al. [32], also predicted the self-diffusion coefficient,
achieving only a poor agreement with the experiment, cf. Fig. 11.

4.4.2. Shear viscosity
The shear viscosity of saturated liquid HCl was  predicted

between 160 and 300 K. Fig. 12 shows the simulation results from
this work and by Kielpinski et al. [42] together with experimen-
tal data [66–68] and correlations thereof by DIPPR [56] and by
Yaws [69]. Numerical data are given in Table 7 of the Supplemen-
tary material. Due to the large differences between simulation,
experiment and correlations at low temperatures, the shear viscos-
ity was additionally predicted using another simulation tool [70]
employing a reverse-NEMD method [51]. EMD  methods show
higher statistical uncertainties than NEMD methods due to the
presence of a high signal to noise ratio. As can be seen in Fig. 12,
present data from EMD  and NEMD methods match within their
uncertainty so that it can be assumed that both simulation data
sets are statistically reliable. For temperatures above 230 K, the
present predictions are in good agreement with the experimen-
tal data and the DIPPR [56] correlation. However, for temperatures
below 230 K, the calculated temperature dependence of the shear
viscosity from simulation shows a very different inclination than
the correlations, which disagree with each other. An inspection of
the temperature dependence of the available experimental data
shows that the data sets at high and low temperatures do not
match, one of them being from the year 1906 [66]. Furthermore,
for temperatures below 230 K, both correlations and the available
experimental data are significantly different. Unfortunately, to our
knowledge, further experimental data sets are not available and the
only preceding simulation work on the prediction of the shear vis-
cosity of HCl by Kielpinski et al. [42] based on the model by Murad
et al. [37] was limited to temperatures above 250 K.

4.4.3. Thermal conductivity
Present simulation results for the thermal conductivity of

saturated liquid HCl between 160 and 275 K are compared to
experimental data [71] and to correlations thereof by Yaws [69]
and by Kang et al. [72] in Fig. 13.  Numerical results are given

Fig. 13. Temperature dependence of the thermal conductivity of saturated liquid
hydrogen chloride. Present reverse-NEMD simulation results (�) are compared to
experimental data [71] (+) and to correlations thereof by Kang et al. [72] (–) and by
Yaws [69] (−−).

in Table 7 of the Supplementary material. In general, a good
agreement was  found between simulation and both correlations,
however, the simulation data tend to be lower than the correla-
tions for temperatures above 240 K. The present results deviate on
average by approximately 6% from the correlation by Yaws [69].

5. Conclusion

Self-diffusion coefficient, shear viscosity and thermal con-
ductivity of four liquids were predicted for a wide range of
thermodynamic conditions by MD simulation on the basis of rigid,
non-polarizable molecular models. The self-diffusion coefficient
was calculated by EMD  and the Green–Kubo formalism, while the
thermal conductivity was obtained using reverse boundary driven
NEMD. The shear viscosity was  determined by both methods. The
molecular models chosen for this work are computationally inex-
pensive and were parameterized using experimental data on the
vapor–liquid equilibrium only.

For monomethylamine, dimethylamine, dimethylether and
hydrogen chloride, it was  shown that molecular simulation can be
used as a powerful tool for the prediction and data discrimination
of transport properties over a wide range of thermodynamic condi-
tions. In general, the predicted transport properties agree very well
with the available experimental data or correlations thereof from
the literature. The average deviations from experimental data are
in most cases below 10%.

The results of the present work for the thermal conductiv-
ity of liquid monomethylamine along the saturation line and the
shear viscosity of hydrogen chloride suggest the presence of some
innacurancies of the available experimental data and the according
correlations.

List of symbols

Abbreviations
DMA  dimethylamine
DME  dimethylether
EMD  equilibrium molecular dynamics
LJ Lennard–Jones
MMA  monomethylamine
NEMD non-equilibrium molecular dynamics
Si site i
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Latin symbols
A cross sectional area
Di self-diffusion coefficient
J heat flux
Jpx momentum flux
Jp stress tensor
kB Boltzmann constant
q point charge
M number of slabs
N number of molecules in the ensemble
p moment
r site–site separation distance
t time
T temperature
u interaction potential
v velocity vector
V molar volume

Greek symbols
� Lennard–Jones energy parameter
ε0 permittivity of vacuum: ε0 = 8.8541×1012 C2 J−1 m−1


 shear viscosity
� thermal conductivity
� dipole moment
ω orientation vector
� Lennard–Jones size parameter

Subscripts
a site index
aa related to site a–site a interactions
ab related to site a–site b interactions
b site index
bb related to site b–site b interactions
c electrostatic site index
i related to molecule i
ij related to molecules i and j
j related to molecule j
k related to molecule k
l related to the cold slab
h related to the hot slab

Superscripts
e related to an electrostatic site
LJ related to a Lennard–Jones site
x spatial vector component in the x direction
y spatial vector component in the y direction
z spatial vector component in the z direction
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Appendix A. Simulation details

EMD  simulations were performed in two  steps using the
program ms2 [73]. In the first step, a simulation in the
isobaric-isothermal (NpT) ensemble was performed at the desired

temperature and pressure to obtain the density. The simulations
of the saturated liquid were carried out using the corresponding
saturated density of the models. The system was equilibrated over
8 × 104 time steps, followed by a production run of 5 × 105 time
steps. In the second step, a canonic (NVT) ensemble simulation was
performed at this temperature and density to calculate the trans-
port properties. The simulations in the NpT and the NVT ensemble
were carried out in a cubic volume with periodic boundary con-
ditions containing 1372 molecules. Newton’s equations of motion
were solved using a fifth-order Gear predictor-corrector numeri-
cal integrator. The temperature was controlled by velocity scaling.
In all simulations, the integration time step was  0.97 fs. The cut-off
radius was  set to rc = 15 Å. Electrostatic long-range corrections were
made using the reaction field technique with conducting boundary
conditions (�RF = ∞).  On the basis of a center of mass cut-off scheme,
the LJ long-range interactions were corrected using angle averag-
ing [74]. The simulations were equilibrated in the NVT ensemble
over 105 time steps, followed by production runs of 1.2–1.6 × 106

time steps. The self-diffusion coefficient and the shear viscosity
were calculated using Eqs. (5)–(7) with up to 8000 independent
time origins of the autocorrelation functions. The sampling length
of the autocorrelation functions was between 8 and 12 ps, depend-
ing on the thermodynamic conditions. The separation between the
time origins was chosen such that all autocorrelation functions
have decayed at least to 1/e  of their normalized value to guarantee
their time independence [75]. The uncertainties of the predicted
values were estimated by a block averaging method [76].

The NEMD simulations for predictions of the shear viscosity and
the thermal conductivity were performed with the YASP simulation
package [70]. Here, 1000 molecules were placed in a parallelepiped
volume, where periodic boundary conditions were applied in all
directions. The system was then equilibrated over 8 × 105 time
steps at the desired temperature and pressure by NpT simulation
using a weak coupling bath [77] with long-range corrections [76]
for energy and pressure. The resulting density of the equilibration
run was  then taken to generate a new set of simulations in order
to develop the thermal or shear gradient in a run over 2 × 106 time
steps using the NEMD scheme. In this case, the simulation volume
was divided in 20 slabs and an exchange frequency of 1/ (300 time
steps) was  used. The electrostatic long-range interactions were also
treated with the reaction field technique with conducting bound-
ary conditions. The shear viscosity and the thermal conductivity
were computed via an average of six different runs. The integration
of the equations of motion was  performed with a time step of 1 fs
and a cut-off radius of 15 Å. A Verlet neighbor list was  employed to
improve the performance of the simulations.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.fluid.2011.12.009.
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