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Abstract

Mutual diffusion is investigated my means of experiment and molecular simulation for liquid
mixtures containing water + methanol + ethanol. The Fick diffusion coefficient is measured
by Taylor dispersion as a function of composition for all three binary subsystems at ambient
conditions. For the aqueous systems, these data compare well with literature values. In case of
methanol + ethanol, experimental measurements of the Fick diffusion coefficient are presented
for the first time. The Maxwell-Stefan diffusion coefficient and the thermodynamic factor are
predicted for the ternary mixture as well as its binary subsystems by molecular simulation
in a consistent manner. The resulting Fick diffusion coefficient is compared to present mea-
surements and to the classical simulation approach, which requires experimental vapor-liquid
equilibrium or excess enthalpy data. Moreover, the self-diffusion coefficients and the shear
viscosity are predicted by molecular dynamics and are favorably compared to experimental
literature values. The presented ternary diffusion data should facilitate the development of
aggregated predictive models for diffusion coefficients of polar and hydrogen-bonding systems.
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1 Introduction

The chemical industry has a need for accurate thermodynamic properties of mixtures in gen-
eral1. Almost all separation processes in chemical engineering, such as distillation, absorption
or extraction, are affected by diffusion in liquids. Diffusion may even be the rate determining
process in mass transfer unit operations2 so that knowledge of the mutual diffusion coefficients
is required for their design and optimization3.

To determine diffusion coefficients, experimental methods, molecular simulation, theoret-
ical or empirical approaches are used. Numerous theoretical and empirical approaches to
predict mutual diffusion coefficients in multicomponent mixtures can be found in the liter-
ature1,4–7. However, these approaches often fail in predictive applications, especially when
highly polar and hydrogen-bonding liquids are considered, because they relate mutual dif-
fusion coefficients to one-component properties or simplify the interaction between unlike
molecules. In this context, molecular simulation offers a promising alternative for predicting
mutual diffusion coefficients.

Two rigorous descriptions of diffusive mass transport in multicomponent liquids are com-
monly used: generalized Fick’s law and Maxwell-Stefan (MS) theory5. Fick’s law relates a
diffusive flux to a gradient of a measurable quantity, e.g. a mole fraction, whereas in MS
theory, the driving force is the gradient of the chemical potential so that the MS diffusion
coefficient is not directly accessible by experiment. The MS diffusion coefficient can be calcu-
lated by equilibrium molecular dynamics (EMD) simulation from velocity correlation functions
(Green-Kubo formalism) or, alternatively, via the Einstein formalism5,8. The thermodynamic
factor serves as a conversion factor between both mutual diffusion coefficient types. Therefore,
knowledge of the thermodynamic factor is required to determine the Fick diffusion coefficient
on the basis of EMD simulation. It should be noted that the mutual diffusion coefficients and
the thermodynamic factor are matrices for mixtures containing three or more components.

The thermodynamic factor is usually estimated from experimental vapor-liquid equilibrium
(VLE) or excess enthalpy data9,10, employing an equation of state, like Soave-Redlich-Kwong
or PC-SAFT, or an excess Gibbs energy GE model, such as Margules, Van Laar, Wilson,
NRTL, UNIQUAC or UNIFAC. Some examples can be found in11–16. However, this classical
approach suffers from two drawbacks. First, the thermodynamic factor highly depends on
the underlying thermodynamic model, because different GE models may describe VLE data
equally well, but yield significantly different values for the thermodynamic factor10,17. The
high uncertainty related to the thermodynamic factor from a thermodynamic continuum model
that was regressed to VLE data has been recognized by many authors9,10,12,18. Second, the
thermodynamic factor determined by this approach corresponds to thermodynamic conditions
under which VLE data were measured. These conditions usually differ from those where the
thermodynamic factor is needed for the conversion between the mutual diffusion coefficient
types.

In recent years, there has been a growing effort to obtain the thermodynamic factor di-
rectly from molecular simulation. E.g., it can be estimated directly from the integration of
the radial distribution function with respect to the distance using the Kirkwood-Buff the-
ory19,20. This method has some drawbacks because of the presence of strong fluctuations at
large distances, thus, very large systems are required and it is difficult to obtain good statis-
tics21,22. Wedberg et al.23–25 describe a method for extending radial distribution functions
that allows the Kirkwood-Buff integrals to be calculated from simulations of relatively small
systems. Schnell et al.26–28 developed a method to compute the thermodynamic factor using
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the Kirkwood-Buff integrals that were obtained from density fluctuations in small subsystems
embedded in a larger simulation box using EMD simulations. They used the formalism of
Hill29 to obtain a finite size scaling factor, here the different boundary conditions of small
periodic and non-periodic systems were accounted for by adding an effective surface energy
term26. This approach has been tested by Schnell et al.26 for binary mixtures of WCA and
Lennard-Jones fluids and by Liuet al. for the binary liquid mixtures acetone + methanol
and acetone + tetrachloromethane30, as well as for the ternary liquid mixture chloroform +
acetone + methanol31.

Another molecular simulation approach is to determine the composition dependence of the
chemical potential using free energy perturbation methods like Widom’s particle insertion14.
Recently, Balaji et al.32 proposed a modification of the Widom method33 to compute the
thermodynamic factor from a single simulation for mixtures of Lennard-Jones fluids.

In this work, the thermodynamic factor was calculated from the composition dependence of
the chemical potential at constant temperature and pressure by Monte Carlo (MC) simulation.
Because this approach is (for dense liquids) challenging with respect to the quality of molecular
models, the technique used for the calculation of the chemical potential and the availability
of high performance computing resources, it has often been avoided. The aim of this work
is to show that the current capabilities of molecular simulation meet this challenge even for
strongly polar and hydrogen-bonding liquids like aqueous alcohol mixtures.

Experiments provide the Fick diffusion coefficient on the basis of a variety of usually
time consuming techniques from optical interferometry to NMR spin relaxation34. The most
frequently applied methods are interferometry, the diaphragm cell and Taylor dispersion, which
is also known as peak broadening technique. In Taylor dispersion35,36, a laminar flow of a
carrier solution is pumped through a long capillary tube. A pulse of the same solution with
a slightly different composition is injected. Convection and diffusion in the laminar capillary
flow lead to a distortion of the peak which takes the form of a Gaussian distribution of the
concentration37. The Fick diffusion coefficient is calculated from the resulting concentration
profile that is measured at the end of the capillary tube. This method was used in this work
because it is relatively fast (1 to 3 h per experimental point) and requires a rather simple
experimental set-up.

The systems under study, i.e. the ternary mixture water + methanol + ethanol and its
binary subsystems, are highly polar hydrogen-bonding liquids, which are challenging from the
point of view of both simulation and experiment. Molecular simulation results are provided for
several transport properties, i.e. MS and Fick diffusion coefficients, self-diffusion coefficients
and shear viscosity. Furthermore, experimental results for the Fick diffusion coefficient are
given for all binary subsystems. In particular, experimental Fick diffusion coefficient data of
methanol + ethanol are presented here for the first time.

Although binary data on the Fick diffusion coefficient are relatively abundant, experimental
data on diffusion of ternary and quaternary mixtures are scarce13,38, which is mainly because
of experimental difficulties. Recently, Wambui Mutoru and Firoozabadi38 made a literature
survey on diffusion coefficient data for mixtures containing three or more components. They
found experimental data points for only 94 ternary and 13 quaternary mixtures, where most
of them contain water. Moreover, only data at ambient pressure and temperatures between
286 and 323 K have been reported. Unfortunately, the ternary mixture water + methanol +
ethanol was not yet studied by experiment.

The number of molecular simulation studies on transport properties for complex liquids
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is still low. Simulation works on mixtures containing three or more components are almost
absent. Typically, aqueous solutions of methanol39–43 or ethanol22,39,43–46 have been studied
by EMD simulation. Nevertheless, most of these works investigate the self-diffusion coefficient
and leave aside mutual diffusion, which is more demanding than self-diffusion. For the mix-
ture methanol + ethanol, transport properties, including the MS diffusion coefficient, were
calculated in our preceding work47. Non-equilibrium molecular dynamics simulations have
also been applied to determine the shear viscosity for aqueous alcohols43,48,49. However, non-
equilibrium simulations are difficult to evaluate regarding diffusion, because they require very
high concentration gradients beyond the linear response regime.

The success of molecular simulation to predict thermodynamic properties is primarily de-
pendent on the molecular model that describes the intermolecular interactions. In this work,
rigid, united-atom type models were used. The models for both alcohols were developed in
our group50,51; for water, the TIP4P/2005 model52 was taken from the literature. These
models were tested in our previous works with respect to the binary mixtures under consider-
ation39,47,48 and successfully reproduced the experimental values of transport properties in the
whole composition range without a need for introducing additional parameters to adjust the
interaction between unlike components. Furthermore, the TIP4P/2005 model was appreciated
by many authors to be the most successful among the rigid, non-polarizable water models with
respect to various structural and transport properties39,53–55.

This paper is organized as follows. In section 2, the methods for the determination of
the Fick diffusion coefficient from molecular simulation and experiment are described. The
employed molecular models and the technical simulation details are introduced in sections 3
and 4. The experimental details are described in section 5. In section 6, results from simulation
and experiment are presented and discussed. Finally, conclusions are drawn.

2 Methodology

To describe mass transport in liquid mixtures, Fick’s law and MS theory are used. Fick’s law5

relates a mass flux to a gradient of a driving force causing this flux. In this case, the driving
force is given in terms of the gradient of a mole fraction ∇xj. The diffusive molar flux Ji of
component i is

Ji = −ρ
n−1∑
j=1

Dij∇xj , i = 1 . . . n− 1, (1)

where n is the number of components in the mixture, ρ is the molar density of the mixture
and Dij denotes the Fick diffusion coefficient that couples the flux of component i with the
gradient of the mole fraction of component j. Because the molar fluxes depend on a choice of
the reference frame, the diffusion coefficients are defined accordingly. In this work, the average
molar velocity frame was used, which propagates with respect to the laboratory frame with
the velocity

u =
n∑

i=1

xiui , (2)
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where ui is the average velocity of component i in the laboratory frame. For this choice,∑n
i=1 Ji = 0 holds. Hence, the molar flux of the reference component n is obtained from the

flux balance and there are (n− 1)2 independent Fick diffusion coefficients.

In MS theory5, the driving force is the gradient of the chemical potential ∇µi, which is
assumed to be balanced by a friction force that is proportional to the mutual velocity between
the components

−β∇µi =
n∑

j 6=i=1

xj(ui − uj)
−Dij

, (3)

where β = 1/(kBT ) is the Boltzmann factor. The MS diffusion coefficient −Dij thus plays
the role of an inverse friction coefficient between components i and j. MS diffusivities are
symmetric −Dij = −Dji so that there are n(n− 1)/2 independent MS diffusion coefficients.

Because Eqs. (1) and (3) describe the same phenomenon, a relation between both sets of
diffusion coefficients exists5

D = B−1Γ , (4)

in which all three symbols represent (n−1)×(n−1) matrices. D is the matrix of Fick diffusion
coefficients Dij, the elements of the matrix B are given by

Bii =
xi

−Din

+
n∑

j 6=i=1

xj
−Dij

, Bij = −xi
(

1
−Dij

− 1
−Din

)
, (5)

and the so-called matrix of the thermodynamic factor Γ is defined by

Γij = δij + xi
∂ ln γi
∂xj

∣∣∣∣
T,p,xk,k 6=j=1...n−1

, (6)

where δij is the Kronecker delta and γi is the activity coefficient of component i.

For binary mixtures, Eq. (4) reduces to the scalar relation

D = −DΓ , (7)

because there is only a single independent MS and Fick diffusion coefficient. Here,

Γ = 1 + x1
d ln γ1
dx1

= 1 + x2
d ln γ2
dx2

. (8)

The MS diffusion coefficient can be transformed to the Fick diffusion coefficient and vice
versa if the thermodynamic factor is known. Only the Fick diffusion coefficient can be mea-
sured experimentally, whereas only the MS diffusion coefficient can be obtained directly from
EMD simulation.
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2.1 Molecular Simulation

The Fick diffusion coefficient was determined consistently by means of molecular simulation.
In particular, both the MS diffusion coefficient and the thermodynamic factor were computed.
As discussed above, the latter is usually derived from experimental VLE data, despite the
fact that this method suffers from inaccuracies. In the present method, the thermodynamic
factor was calculated straightforwardly following its definition (6). The chemical potentials,
and thus the activity coefficients, were sampled by MC simulation. The derivatives of the
activity coefficients at constant temperature and pressure were subsequently obtained from
a fit of the simulation results using a thermodynamic model. Having the thermodynamic
factor, the MS diffusion coefficients, as determined by EMD simulation, were transformed to
the Fick diffusion coefficients according to Eq. (4). It will be shown that with an appropriate
method and suitably chosen parameters, the composition profile of the chemical potentials
can be obtained by relatively inexpensive simulations (using efficient molecular models) more
plausibly than with the method based on experimental VLE data.

Transport Properties

EMD simulation and the Green-Kubo formalism56,57 were used here to calculate transport
properties. This formalism establishes a direct relationship between a transport coefficient
and the time integral of the auto-correlation function of the corresponding microscopic flux in
a system under equilibrium.

For the MS diffusion coefficient, the relevant Green-Kubo expression is based on the net
velocity auto-correlation function6

Lij =
1

3N

∫ ∞

0

dt
〈 Ni∑

k=1

vi,k(0) ·
Nj∑
l=1

vj,l(t)
〉
, (9)

where N is the total number of molecules, Ni is the number of molecules of component i and
vi,k(t) denotes the velocity of k-th molecule of component i relative to the molar averaged frame
of reference at a time t58 that was used in the definition of the Fick diffusion coefficient (2).
The MS diffusion coefficient in binary mixtures is defined by6

−D =
x2
x1
L11 +

x1
x2
L22 − L12 − L21 . (10)

For a ternary mixture, the B−1 matrix that represents the MS contribution to mutual diffu-
sivity, cf. Eqs. (4) and (5), reads

B−1
11 = (1− x1)

(
L11

x1
− L13

x3

)
− x1

(
L21

x1
− L23

x3
+
L31

x1
− L33

x3

)
,

B−1
12 = (1− x1)

(
L12

x2
− L13

x3

)
− x1

(
L22

x2
− L23

x3
+
L32

x2
− L33

x3

)
,

B−1
21 = (1− x2)

(
L21

x1
− L23

x3

)
− x2

(
L11

x1
− L13

x3
+
L31

x1
− L33

x3

)
,

B−1
22 = (1− x2)

(
L22

x2
− L23

x3

)
− x2

(
L12

x2
− L13

x3
+
L32

x2
− L33

x3

)
. (11)
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Beside the MS diffusion coefficient, the self-diffusion coefficient and the shear viscosity were
sampled. The self-diffusion coefficient Dself

i is related to the mass flux of a single molecule of
component i within a fluid. Therefore, the relevant Green-Kubo expression is based on the
individual molecule velocity auto-correlation function59

Dself
i =

1

3Ni

∫ ∞

0

dt

Ni∑
k=1

〈
vi,k(t) · vi,k(0)

〉
. (12)

Because all molecules of a given species contribute to the self-diffusion coefficient, the auto-
correlation function is averaged over all Ni molecules of component i. Thereby, a better
convergence than in case of Lij is achieved. This is favorable in connection with some classical
predictive approaches, such as the Darken model, that estimate the MS diffusion coefficient on
the basis of self-diffusion coefficients. The Darken model considers only the self-correlations
in Eq. (9), resulting for binary mixtures to60

−D = x1D
self
2 + x2D

self
1 . (13)

Hence, the Darken model is applicable for ideally diffusing mixtures, where the contribution
of the velocity cross-correlations to the net velocity auto-correlation function is negligible30.
Recently, Liu et al.61 proposed a model which requires only self-diffusion coefficients at infinite
dilution to parameterize Eq. (13)

1

Dself
i

=
n∑

j=1

xj
limxj→1Dself

i

. (14)

Diffusivity is often discussed in the context of viscous properties. The shear viscosity η, as
defined by Newton’s ”law”, is associated with the momentum transport under the influence
of velocity gradients. Hence, the shear viscosity can be related to the time auto-correlation
function of the off-diagonal elements of the stress tensor Jxy

p
59

η =
β

V

∫ ∞

0

dt
〈
Jxy
p (t) · Jxy

p (0)
〉
, (15)

where V stands for the molar volume. Averaging over all three independent elements of the
stress tensor, i.e. Jxy

p , Jxz
p and Jyz

p , improves the statistics of the simulation. The component
Jxy
p of the microscopic stress tensor Jp is given by62

Jxy
p =

N∑
i=1

miv
x
i v

y
i −

1

2

N∑
i=1

N∑
j 6=i

l∑
a=1

m∑
b=1

rxij
∂uij
∂ryab

. (16)

Here, the lower indices a and b count the interaction sites and the upper indices x and y
denote the spatial vector components. The index denoting a component is omitted, because
the summation is carried out over all molecules regardless of their species. Finally, mi is the
mass of molecule i.
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Chemical Potential

The chemical potential µi of component i can be separated into the solely temperature depen-
dent ideal contribution µid

i (T ) and the remaining contribution µ̃i(T, p,x) ≡ µi(T, p,x)−µid
i (T ).

This contribution contains the desired ln γi term that appears in Eq. (6)

βµ̃i(T, p,x) ≡ βµ̃•
i (T, p) + lnxi + ln γi(T, p,x) ,

where • denotes a pure component property. Thus, the solely temperature dependent ideal
contribution does not need to be determined for the present purpose.

The composition derivative of the activity coefficient becomes

∂ ln γi
∂xj

∣∣∣∣
T,p,xk,k 6=j=1...n−1

=
∂(βµ̃i − ln xi)

∂xj

∣∣∣∣
T,p,xk,k 6=j=1...n−1

. (17)

This derivative was calculated here analytically from the Wilson model10 that was fitted to
present simulation data of βµ̃i − lnxi

βµ̃i − ln xi = βM̃i + 1− lnSi −
n∑

k=1

xkΛki/Sk , i = 1 . . . n , (18)

Si =
n∑

k=1

xkΛik , Λii = 1 ,

where M̃i and Λij for i 6= j are adjustable parameters. The parameter M̃i stands for the
chemical potential of the pure component i, while Λij is related to the change of the chemical
potential of component i with respect to the mole fraction of component j. The diagonal
terms Λii are constrained to be unity. In a ternary mixture, there are thus nine parameters to
fit the three chemical potentials with the Wilson model: three M̃i and six Λij.

Inserting Eq. (18) into Eq. (6) using Eq. (17) yields the thermodynamic factor

Γij = δij + xi(Qij −Qin) , (19)

Qij = −Λij/Si − Λji/Sj +
n∑

k=1

xkΛkiΛkj/S
2
k .

Note that the thermodynamic model of a n-component mixture determines the properties
of its subsystems. As a consequence, once the Wilson model for a ternary mixture is available
(Eq. (18) with n = 3), the properties of all binary subsystems can be expressed in terms of
mole fractions and the parameters of the model corresponding to the selected two components.
E.g., the thermodynamic factor of the binary mixture of components i and j is determined by
(only two) parameters of the ternary model, i.e. Λij and Λji,
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Γ = 1 + xi
d ln γi
dxi

= 1 + xi(Qii −Qij) =

= 1 + xi

(
−2 + Λij

xi + xjΛij

+
Λji

xj + xiΛji

+ xi
1− Λij

(xi + xjΛij)2
+ xjΛji

Λji − 1

(xj + xiΛji)2

)
.

(20)

2.2 Experiment

A fluid flowing through a tube develops a velocity profile which is a function of the radial
position. In a fully developed laminar flow, Newtonian fluids propagate with a parabolic
velocity profile. When a pulse of a solution with a different composition is injected into a
laminar carrier solution flow, it propagates with the carrier flow velocity that corresponds to
its position in the tube cross section63. This leads to a radial concentration gradient which
in turn causes radial diffusion. The molecules at the pulse front near the tube axis diffuse
towards the wall into streamlines with a lower flow velocity and the molecules near the wall
diffuse towards the center of the tube into streamlines with a higher flow velocity. These radial
motions become important if they are of the same order of magnitude as the convective axial
motion, i.e. when the axial flow velocity is low or the radial distances are small64. At the end
of the capillary tube, the pulse exhibits an axial Gaussian concentration profile35,65.

The mathematical description of this process in binary mixtures is given by2

D

[
∂2ci
∂z2

+
1

r

∂ci
∂r

+
∂2ci
∂r2

]
=
∂ci
∂t

+ U0

(
1− r2

R2

)
∂ci
∂z
, (21)

where D is the binary Fick diffusion coefficient, ci the molarity of component i and U0 is the
velocity maximum at the center of the tube with an internal radius R. t is the time, r and z
are the radial and axial coordinates, respectively.

Taylor35 used a set of assumptions to find a solution for Eq. (21). He assumed that at
low laminar flow rates transport via axial diffusion is small compared to the transport via
convection, and that the length of the capillary tube is much larger than its diameter2. When
a Dirac δ-pulse is injected into the carrier solution, the shape of the dispersed pulse can then
be related to a dispersion coefficient k by35

∆ci (t) =
∆ne

2πR2
√
πkt

exp

[
−L2 (1− t/τ)2

4kt

]
· (22)

Here, ∆ci (t) is the temporal change in concentration of component i, ∆ne is the excess number
of moles present in the pulse solution when compared to the carrier solution, L is the length
of the capillary tube and τ is the mean residence time. The dispersion coefficient is related to
the Fick diffusion coefficient D by65

k = D +
R2L2

48τ 2D
· (23)

If D is very small, the dispersion coefficient simplifies to36
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k =
R2L2

48τ 2D
· (24)

Aris65 proposed another solution to Eq. (21) that employs the first

t̄ =

∞∫
0

dt∆cit

∞∫
0

dt∆ci

, (25)

and second

σ2 =

∞∫
0

dt (t− t̄)2∆ci

∞∫
0

dt∆ci

, (26)

moments of the concentration distribution. The Fick diffusion coefficient is then given by

D =
R2t̄

24σ2
· (27)

3 Molecular Models

Throughout this work, rigid, non-polarizable molecular models of united-atom type were used.
These simple models account for the intermolecular interactions, including hydrogen-bonding,
by a set of Lennard-Jones (LJ) sites and point charges which may or may not coincide with
the LJ site positions. The potential energy uij between two molecules i and j can thus be
written as

uij (rijab) =
l∑

a=1

m∑
b=1

4εab

[(
σab
rijab

)12

−
(
σab
rijab

)6
]
+

qiaqjb
4πε0rijab

,

where a is the site index of molecule i, b the site index of molecule j, while l and m indicate
the number of interaction sites of molecules i and j, respectively. rijab represents the site-site
distance between molecules i and j. The LJ size and energy parameters are σab and εab. qia
and qjb are the point charges located at the sites a and b of the molecules i and j, whereas ε0
is the permittivity of vacuum.

For water, the TIP4P/2005 model by Abascal and Vega52 was used here. It consists of one
LJ site and three point charges. The molecular models for methanol and ethanol were taken
from prior work50,51 of our group. They consist of two (methanol) or three (ethanol) LJ sites
and three point charges each. All models are simple, i.e. they do not consider internal degrees
of freedom and also do not cover the polarizability in an explicit way. The interested reader
is referred to the original publications50–52 for detailed information about the three molecular
pure substance models and their parameters.
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To define a molecular model for a binary mixture on the basis of pairwise additive pure
substance models, only the unlike interactions have to be specified. In case of polar interaction
sites, i.e. point charges here, this can straightforwardly be done using the laws of electrostatics.
However, for the unlike LJ parameters, there is no physically sound approach so that combining
rules have to be employed for predictions. Here, the interactions between unlike LJ sites of
two molecules were determined by the simple Lorentz-Berthelot combining rule

σab =
σaa + σbb

2
,

and

εab =
√
εaaεbb .

The mixture data presented below are strictly predictive, because not a single experimental
data point on mixture properties or on transport properties was considered in the model
parameterization.

4 Simulation Details

All simulations were carried out in a cubic volume with periodic boundary conditions. Electro-
static long-range corrections were considered by the reaction field technique with conducting
boundary conditions (εRF = ∞). The statistical uncertainties of the predicted values were
estimated with a block averaging method66.

Transport Properties

EMD simulations were performed with the program ms267. These were done in two steps:
first, a simulation in the isobaric-isothermal (NpT ) ensemble was carried out to calculate
the density at the desired temperature, pressure and composition. Second, a canonic (NV T )
ensemble simulation was carried out to determine the MS and self-diffusion coefficient as well
as the shear viscosity at the temperature, composition and density from the first step.

The simulations in the NpT ensemble were equilibrated over 8×104 time steps, followed by
a production run over 7×105 time steps. The NV T simulations were equilibrated over 8×104

time steps, followed by production runs of 9 to 14 × 106 time steps. The MS and the self-
diffusion coefficients were calculated with Eqs. (10) to (12) using up to 7 × 104 independent
time origins of the auto-correlation functions. The sampling length of the auto-correlation
functions was 13 ps. The separation between the time origins was chosen such that all auto-
correlation functions have decayed at least to 1/e of their normalized value to achieve their
time independence68.

In all EMD simulations, Newton’s equations of motion were solved using a fifth-order
Gear predictor-corrector numerical integrator with the integration time step of 0.98 fs. The
temperature was controlled by velocity scaling. Here, the velocities were scaled such that the
actual kinetic energy matches the specified temperature. The scaling was applied equally over
all molecular degrees of freedom. The pressure was maintained using Andersen’s barostat69.
The number of molecules and the cut-off radius were chosen according to our experience for
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simulations of polar liquids39,47. As shown there, transport properties obtained by molecular
simulation may be sensitive to the system size and the cut-off radius. The cut-off was set to
rc = 15 Å and the number of molecules was N = 4000. These values were also confirmed by
other authors70 to be large enough to suppress finite size effects.

Chemical Potential

Chemical potentials were calculated by MC simulations in the NV T ensemble with the pro-
gram ms267. The density was determined in the NpT ensemble by EMD simulation as dis-
cussed above. The system was equilibrated over 2.5 × 104 MC moves per molecule, followed
by production runs of 7.5× 105 MC moves per molecule. Here, N = 1024 molecules were used
and the cut-off radius was set to rc = 15 Å.

Because the system under study is an associating liquid with a high density, Widom’s test
molecule insertion33 is inappropriate to determine the chemical potential and a more complex
technique has to be used. In this work, the gradual insertion method71 was employed. Instead
of inserting complete test molecules, a fluctuating molecule was introduced into the simulation,
which appears in different states of coupling with the other molecules. In its decoupled state,
the fluctuating molecule does not interact at all with the other molecules, while in the fully
coupled state, it acts like a ”real” molecule of the specified component i. Between these
states, a set of partially coupled states has to be defined, each with a larger fraction of the
real molecule interaction.

The N real molecules plus the fluctuating molecule πl in the state l form a set of sub-
ensembles, which can be depicted by the following scheme

[N + π0] ↔ [N + π1] ↔ ...↔ [N + πl] ↔ ...↔ [N + πk−1] ↔ [N + πk] . (28)

To switch between neighboring sub-ensembles, an additional move is introduced in a standard
MC simulation. The probability of accepting a change of the fluctuating molecule from a state
of coupling l to a state of coupling m is given by

Pacc(l → m) = min
(
1,
ωm

ωl

exp
[
− β(ψm − ψl)

])
, (29)

where ψl denotes the interaction energy of the fluctuating molecule in the state l with all other
N real molecules. The states of coupling are weighted by the weighting factors ωl to avoid
an unbalanced sampling of the different states. The weighting factors were adjusted during
simulation, depending on the number of times Ns the fluctuating molecule appeared in state
l, according to

ωnew
l = ωold

l

Ns(k)

Ns(l)
. (30)

The fully coupled state k serves as a reference state for the weighting factors. Local relaxation
around the fluctuating molecule was enhanced by biased translational and rotational moves in
the vicinity of the fluctuating molecule throughout the simulation72. The chemical potential
µ̃i(T, p,x) of component i was then determined by

βµ̃i(T, p,x) = ln
〈Ni

V

ωk

ω0

Prob[N + π0]

Prob[N + πk]

〉
, (31)

where Prob[N + π0] and Prob[N + πk] are the probabilities to observe an ensemble with the
fluctuating molecule in the fully decoupled and fully coupled state, respectively.
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The gradual insertion method yields good results for the chemical potential in cases where
Widom’s test molecule method fails. Disadvantages of the method are the extended simulation
time and the additional effort needed to define the fluctuating states.

In the present simulations, six unique successive states of coupling were employed to turn
on the interaction of the fluctuating molecule with the remaining molecules. These states are
given in Table 1.

5 Experimental Equipment and Procedure

5.1 Apparatus

Figure 1 shows the set-up of the Taylor dispersion equipment that was employed in this
work. Its design fulfills the criteria described by Alizadeh et al.73. The diffusion tube was a
polyetheretherketone (PEEK) capillary with a length L = 30.945 m and an internal diameter
2R = 0.53 mm. The capillary was coiled around a cylinder with a radius Rc = 0.2 m and
was placed in a thermostat (Julabo, ± 0.1 K) to maintain a specified temperature. A HPLC
pump (Varian ProStar 240) with a built-in pulsation dampener was used to propagate the
carrier solution in laminar flow through the dispersion tube. The part of the dispersion tube
between the thermostat and the detector was also maintained at the specified temperature by
shielding it with insulated tubing through which thermostat water was pumped. Zero dead
volume fittings were used to connect the capillary with a six-port injection valve (Rheodyne
7725i) with an injection volume Vinj = 20 µL and with the differential refractive index (RI)
detector (Varian ProStart 355 RI). This differential detector measures the difference of the
refractive index between the sample stream and a liquid in a reference cell. It is equipped with
a thermostatted prism and a low dead volume flow cell (6 µL). The detector was connected to
a computer for digital data acquisition using the Galaxy Chromatography Software by Varian.
The sampling interval of the detector was 0.2 s.

5.2 Operating Conditions

In order to investigate possible errors arising from pulsation of the HPLC pump, some test
runs were carried out with a pulsation-free syringe pump. The Fick diffusion coefficient of the
mixture water + ethanol at infinite dilution (pure water as a carrier) was measured for this
purpose. The results from three independent measurements obtained with the syringe pump
deviated by less than 1% from the results with the HPLC pump. Furthermore, no significant
difference with respect to detector noise was observed. This conclusion was also reached by
Van de Ven-Lucassen et al.37. Subsequently, the HPLC pump was preferred, because it allows
for continuous operation.

Taylor’s solution of Eq. (21) requires the composition of the injected sample to be as close
as possible to the composition of the carrier. In this work, the composition difference between
carrier and injected pulse solution was kept below 0.04 g/g (relative difference). The RI
detector was found to have a linear response up to a mass fraction difference of 0.06 g/g, i.e.
the measured diffusion coefficient did not show any significant dependence on the composition
of the pulse solution in this range.
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The influence of flow rate and capillary tube coiling on the measured Fick diffusion coef-
ficient was examined for the two mixtures water + methanol and water + ethanol. Different
experiments were carried out for flow rates from 0.05 to 0.5 mL min−1. It was found that for
flow rates below 0.1 mL min−1, the Fick diffusion coefficient remained constant, whereas it
increased above that flow rate. These erroneously high values of the Fick diffusion coefficient
are most likely due to the presence of a secondary flow induced by coiling74. Therefore, an
operating flow rate of 0.05 mL min−1 was chosen. As consequence, the retention time was
between 7100 and 7300 s.

5.3 Experimental Procedure

Bidestilled water was used for the present experiments. Both alcohols were of analytical grade
and were purchased from Sigma-Aldrich. Methanol p.a. absolute ≥ 99.8% and Ethanol ACS
reagent ≥ 99.5% were used without further purification. The carrier solutions were prepared
gravimetrically with an accuracy of ±0.001 g. The pulse solutions were prepared volumet-
rically; approximately 10 mL of the carrier solution was poured into a vial, subsequently, a
small amount (0.1 to 0.3 mL) of one of the components was added. After each step, the vial
was weighed to determine the composition of the solution. This procedure was repeated three
times for each component, giving rise to six different pulse solutions for every measured state
point. When the carrier was a pure liquid, four different pulse solutions were prepared.

The carrier was allowed to flow through the Taylor apparatus for at least one day to ensure
a stationary base line. The pulse solutions were then injected manually into the carrier flow.
Every hour after an injection, a new sample was injected into the carrier. The time between
two successive injections was chosen such that there was no overlap between the dispersion
peaks of the injected pulses. Each pulse solution was injected at least three times. Hence,
a total of 12 (pure carrier) or 18 measurements was carried out for each studied state point.
When the carrier solution was exchanged, the apparatus was flushed for 2 h with a flow rate
of 1 mL min−1, before it was allowed to run overnight at the operating flow for equilibration.

The detector voltage output signal s(t) was assumed to be linearly dependent on the
concentration change of the flow37. The base line drift of the detector was modeled using a
polynomial fit of order N

s(t) = w∆ci +
N∑
i=0

ait
i, (32)

where w is the detector sensitivity. The data acquired by the detector was processed with a
Matlab program that was complemented with a visualization tool.

The data processing program employed three different approaches to calculate the Fick
diffusion coefficient from the detector signal. The numerical values of the Fick diffusion co-
efficient obtained from these approaches generally differed by less than 0.8%, which is below
the estimated uncertainty of the Taylor dispersion method.

In the first approach, the baseline was fitted with a cubic polynomial (N = 3) using a least
squares fit. A visual inspection of the fit was made. If it was not satisfactory, N was increased
until a good fit was obtained. The base line drift was then subtracted from the detector signal.
In the following step, the program localized and isolated each peak in the detector signal, i.e.
data points having values below 5% of a peak maximum were discarded. The data points of an
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isolated peak were then used to calculate the first and second moments of the concentration
profile according to Eqs. (25) and (26). The corrections for the first and second moments given
by Alizadeh et al.73 were applied to account for errors caused by a finite injection volume and
the volume of the detector cell. Finally, the Fick diffusion coefficient was calculated with Eq.
(27).

The second approach followed the work of Van de Ven-Lucassen et al.37. The following
equation was fitted to the detector signal

s (t) =
A√
πkt

exp

[
−L2 (1− t/τ)2

4kt

]
+ a1t+ a0. (33)

Note that the baseline was modeled in this case by a linear function (N = 1). Here, A, k, τ ,
a1 and a0 were fitted simultaneously using a trust-region-reflective algorithm75,76.

In the third approach, a three-parameter (A, k and τ) fit was carried out on the basis
of data points where the base line was corrected as in case of the first approach. A visual
inspection of the validity of the fit was made for every measurement. If the fit was acceptable
and the Peclet number was larger than 700, Eq. (24) was employed to calculate the Fick
diffusion coefficient. Otherwise, Eq. (23) was used.

The values for the Fick diffusion coefficient that are obtained with the Taylor dispersion
method refer to an average composition between the composition of the carrier solution and
that of the injected pulse solution. This effective concentration was calculated by77

ci,eff = ci,car + (ci,inj − ci,car)
Vinj
2πR3

√
48D

πUL
· (34)

6 Results

6.1 Experiment

To determine the reliability of the present experimental set-up and the operating procedure,
experiments were carried out for the two mixtures water + methanol and water + ethanol
at 298.15 K and 1 bar. These mixtures have been studied before by other authors using the
diaphragm cell78–82 and the Taylor dispersion technique37,83–86. The present results are given
in Table 2. Each reported value is an average over the individual Fick diffusion coefficient
measurements of the different injected samples as well as from the three different fitting ap-
proaches. The mole fraction is an average over the effective composition calculated by Eq. (34)
for each injected solution. The standard deviation of the averaged values is also reported.

The present measurements are consistent with the experimental data from the literature
for both mixtures at 298.15 K, cf. Figure 2. The average deviation of the present data to a
polynomial fit of the literature data sets is in both cases ≤ 2%. Furthermore, the standard
deviation from the observed values was also ≤ 2%, which is in agreement with the expected
accuracy of the present measurements (2%).

In addition, new experimental data for the Fick diffusion coefficient of the mixture methanol
+ ethanol are listed in Table 2 and shown in Figure 2. In this case, the Fick diffusion
coefficient does not exhibit a strong composition dependence, which is in contrast to the
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aqueous mixtures. The Fick diffusion coefficient depends almost linearly on the mole fraction,
which is evidence for an ideal solution. This finding was expected, since both alcohols are very
similar in terms of their molecular interactions.

Besides the measurements at 298.15 K the isotherm 288.15 K was also considered for the
mixture water + methanol. To the best of our knowledge, there are no previous measurements
of the Fick diffusion coefficient for this mixture at this temperature. Figure 3 shows the present
results together with the literature data at 278.15, 298.15 and 308.15 K. It can be seen that
small variations of temperature strongly affect the Fick diffusion coefficient, however, the
composition dependence remains almost unchanged.

The present experimental results are compared with predictions from molecular simulation
and classical models in the following section.

6.2 Molecular Simulation

Predictive molecular simulations of transport properties and the thermodynamic factor of the
ternary mixture water + methanol + ethanol and its binary subsystems were carried out at
298.15 K and 1 bar for various compositions as depicted in Figure 4.

The chemical potentials, which were obtained by the gradual insertion method, are listed
in Table 3. The ternary Wilson GE model, i.e. Eq. (18) with n = 3, was fitted to these
data. For this purpose, the binary mixtures were treated as ternary mixtures with a vanishing
mole fraction of the absent component. The parameters of the Wilson model are reported
in Table 4. The resulting composition dependence of the chemical potentials is plotted in
Figure 5. Figure 6 shows a comparison of the Wilson model with the original simulation
data for the three binary subsystems. While the composition dependence of the chemical
potentials of the mixture methanol + ethanol is well described by the ideal mixing term lnxi,
the aqueous alcohols are strongly non-ideal. A comparison of the Wilson model with true
ternary simulation data is given in Table 3. Obviously, the model reproduces the simulation
data well.

On the basis of the Wilson model for the chemical potentials, the thermodynamic fac-
tor was computed according to Eq. (19) for the ternary mixture or Eq. (20) for the binary
subsystems. For the latter case, it is compared to the thermodynamic factor obtained from
experimental VLE data in Figure 7. For this purpose, recommended values for the interaction
and non-randomness parameters of the Wilson model were taken (as listed in the DECHEMA
Vapor-Liquid Equilibrium Data Collection87) for 298.15 K. In addition, the thermodynamic
factor resulting from a direct fit of the Wilson model to experimental VLE data88 at 298.15 K
is plotted. The mole fraction derivatives of the activity coefficients were calculated analytically
using the equations given by Taylor and Kooijman10. Figure 7 shows that all three approaches
give a different thermodynamic factor, except for the binary subsystem methanol + ethanol.
In particular, the results based on two different parameterizations of the GE model differ
substantially. This demonstrates the general problem encountered when deriving the thermo-
dynamic factor from experimental VLE data: although parameterizations of a GE model may
reproduce the VLE data equally well10, the differing composition derivatives may lead to a
significantly differing thermodynamic factor. The fit of the chemical potential to the Wilson
GE model, introduces some systematic error to the reported thermodynamic factors. This er-
ror was estimated to be less than 5% in magnitude by comparing the thermodynamic factors
reported in this work with the results using other GE models. This shows that the present
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approach suffers from model sensitivity too, though not as much the classical approach.

Figure 8 shows the MS diffusion coefficient of the three binary subsystems. The present
simulation results are compared to predictions from the Darken model, Eq. (13). The self-
diffusivities needed in the Darken equation were taken from experimental data or were com-
puted by EMD simulation. Alternatively, they were predicted with the approach by Liu et al.,
Eq. (14), which requires only data at infinite dilution. The most pronounced difference be-
tween the data sets is the apparently S-shaped slope of the simulation data for the aqueous
systems, for which the other approaches lead to a convex or concave slope. Except for the
mixture methanol + ethanol, the Darken model yields only a rough estimate of the MS dif-
fusion coefficient, confirming that aqueous alcohols cannot be considered as ideally diffusing
mixtures. Similarly, the prediction by Liu et al. fails for the aqueous binaries.

Multiplying the MS diffusion coefficient with the thermodynamic factor according to Eq. (7)
leads to the Fick diffusion coefficient. To compare the present method with the method based
on experimental VLE data, the MS diffusion coefficient was multiplied with the thermody-
namic factor obtained from present simulations as well as from the VLE approach. In the
latter case, the two parameterizations of the Wilson model were employed as discussed above,
resulting in two different values of the thermodynamic factor. Figure 9 compares all respective
simulation results to the present experimental data.

The present strictly predictive simulation results for the MS and the Fick diffusion coeffi-
cients as well as the thermodynamic factor are listed for the binary systems in Table 5. For
the ternary mixture, the MS diffusion is given in Table 6 in terms of the B−1 matrix, which
is identical to the MS diffusion coefficient in case of binary mixtures, cf. Eqs. (4) and (5).

Figure 9 reveals for the aqueous binary subsystems that the present simulation method
yields a smoother profile for the Fick diffusion coefficient, which qualitatively better reproduces
experimental data than the classical method based on VLE data. Although both methods yield
comparable deviations from the experimental data points, the profiles resulting from VLE data
are flatter and exhibit a broader minimum, which is most pronounced for the case water +
methanol. On the other hand, the simulation results are systematically below the experimental
values. An enlarged deviation on the alcohol end of the composition range and a shift of the
composition minimum are present. These drawbacks are mainly caused by deviations of pure
component properties. Considering that simple molecular models were used that were fitted
to static properties only and the Lorentz-Berthelot combining rule was employed to describe
the interaction between unlike LJ sites, the prediction quality with respect to mutual diffusion
is nonetheless remarkable.

The simulations of ternary diffusion coefficients yield consistent results. The numerical
values of D fulfill the theoretical restrictions for thermodynamic stability given by Taylor and
Krishna5,i.e. D has positive and real eigenvalues, positive diagonal elements and a positive
determinant38. The main term diffusion coefficient Dii is larger than Dij, i6=j, which is expected
as the diffusive flow of component i is mainly driven by its own concentration gradient89. The
coupling effects described by the cross-term diffusion coefficient D21 are usually smaller by one
order of magnitude than D22. On the other hand, the absolute numerical values of the cross-
term diffusion coefficient D12 are important when compared to the main term D22, suggesting
larger coupling effects, which are typical for non-ideal mixtures. With the exception of a single
state point, the cross-term D12 is negative. Furthermore, D22 is greater than D11 in all cases.

Unfortunately, because of the absence of experimental data on the ternary mixture, it is
not possible to compare them to the present simulation results as it was done for the binary
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mixtures. However, no dramatic changes in the precision of the present results for ternary
mixtures when compared to the binary case are expected. The chemical potential was fitted
to a unique model comprising both binary and ternary data and reproduce ternary data as
good as binary ones, thus there is no loss of precision. On the other hand, the simulation
uncertainty of the ternary mixtures is expected to be higher but still of the same order of
magnitude than in the binary case. E.g., the Maxwell-Stefan diffusion coefficients for the
ternary mixtures contain more terms than the binary ones, so their uncertainty is accordingly
increased. Another factor that influence the simulation uncertainty is the reduced amount of
particles for each component in the ternary case because the number of the simulated particles
was kept constant.

To complete the prediction of transport properties, self-diffusion coefficients and shear
viscosity are reported in Table 7 and plotted in Figures 10 and 11. The simulation results
show a very good agreement with experimental data.

7 Conclusions

The Fick diffusion coefficient of the ternary mixture water + methanol + ethanol was consis-
tently determined by equilibrium molecular simulation, i.e. both the MS diffusion coefficient
and the thermodynamic factor were calculated by simulation on the basis of a given molecular
model. The MS diffusion coefficient was sampled by EMD simulation, while the thermo-
dynamic factor was obtained from a fit of the Wilson model to the composition profile of
the chemical potentials that were directly determined by MC simulation. This method was
compared for the studied binary subsystems with the classical method in which the Wilson
model is regressed to experimental VLE data. As a benchmark, new experimental data for the
Fick diffusion coefficient were measured by Taylor dispersion, including the mixture methanol
+ ethanol for which no data was previously available. For this almost ideal mixture, both
simulation methods yielded very similar results and followed the experimental composition
trend. However, for water + methanol and water + ethanol, the present method predicted
the composition profiles qualitatively better, exhibiting pronounced minima that reflect the
strong non-ideality of these systems. Furthermore, the use of classical method is limited to
systems and conditions for which experimental VLE data exist, and its results vary signifi-
cantly depending on which set of VLE data is used. Hence, the present simulation method
is more plausible, while its agreement with experimental results is at least comparable to the
classical method.

Predictive models for the MS diffusion coefficient, i.e. the Darken model and its simplifi-
cation by Liu et al., were compared to the present simulation results. For this purpose, the
self-diffusion coefficients were simulated. The predictions of these models were found to be
unsatisfactory for the aqueous alcohols. To complement the picture of transport properties,
the shear viscosity was calculated. Similarly, as in case of the self-diffusion coefficients, the
results for the shear viscosity showed a very good agreement with the experimental data from
the literature.

When comparing experimental and simulative results, the experiment yields more precise
data for binary mixtures (the accuracy of the Fick diffusion coefficient in present measurements
is 2%). However, the use of experimental techniques for ternary diffusion measurements is
hindered by serious complications, leading to the lack of experimental data in the literature.
In this case, molecular simulation is an interesting alternative, since the present simulation
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method does not rely on ternary experimental data and yields the ternary Fick diffusion
coefficient in a similar computation time and with a similar accuracy as in the binary case.

Acknowledgments

The presented research was conducted under the auspices of the Boltzmann-Zuse Society of
Computational Molecular Engineering (BZS), and the simulations were performed on the na-
tional supercomputer hermit at the High Performance Computing Center Stuttgart (HLRS)
within the project MMHBF2 and on the HP X6000 supercomputer at the Steinbuch Centre
for Computing, Karlsruhe within the project MOCOS. Stanislav Pařez acknowledges financial
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Table 1. Successive states used for the gradual insertion method to couple the fluctuating
molecule with the system. d∗/d is the geometric factor scaling the intramolecular distances,
σ∗/σ as well as ε∗/ε are the fractions of the actual LJ parameters and q∗/q is the fraction of
charge magnitudes of the fully interacting molecule.

state d∗/d σ∗/σ ε∗/ε q∗/q

0 0 0 0 0
1 0.10 0.10 0.10 0
2 0.25 0.25 0.25 0
3 0.30 0.60 0.60 0.25
4 0.50 0.90 0.90 0.50
5 0.75 1.00 1.00 0.75
6 1 1 1 1
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Table 2. Fick diffusion coefficient of the binary subsystems containing water (1), methanol
(2) or ethanol (3) from present experiment. The numbers in parentheses indicate the standard
deviation in the last digits.

x1 x2 x3 D (288.15 K) D (298.15 K)

molmol−1 molmol−1 molmol−1 10−10m2s−1 10−10m2s−1

water (1) + methanol (2)

0.998 (1) 0.002 (1) 11.87 (14) 15.23 (16)
0.800 (1) 0.200 (1) 7.84 (8) 10.31 (10)
0.601 (2) 0.399 (2) 7.21 (7) 9.20 (10)
0.502 (3) 0.498 (3) 7.69 (12) 10.20 (7)
0.401 (2) 0.599 (2) 9.19 (10) 11.83 (14)
0.220 (4) 0.780 (4) 12.67 (11) 15.85 (9)
0.008 (5) 0.992 (5) 18.29 (10) 21.06 (18)

water (1) + ethanol (3)

0.9990 (8) 0.0010 (8) 12.37 (12)
0.899 (2) 0.101 (2) 6.61 (8)
0.750 (3) 0.250 (3) 3.83 (6)
0.594 (2) 0.406 (2) 4.11 (9)
0.506 (3) 0.494 (3) 4.92 (12)
0.459 (3) 0.541 (3) 5.54 (11)
0.291 (2) 0.709 (2) 7.78 (8)
0.189 (4) 0.811 (4) 9.60 (7)
0.008 (6) 0.992 (6) 11.65 (10)

methanol (2) + ethanol (3)

0.995 (3) 0.005 (3) 12.32 (10)
0.799 (2) 0.201 (2) 13.45 (5)
0.601 (2) 0.399 (2) 14.92 (9)
0.501 (3) 0.499 (3) 15.60 (6)
0.402 (3) 0.598 (3) 16.39 (7)
0.201 (3) 0.799 (3) 18.42 (15)
0.008 (5) 0.992 (5) 20.34 (18)
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Table 3. Chemical potentials of the ternary mixture water (1) + methanol (2) + ethanol (3) and
its binary subsystems from present simulations. The density ρ was chosen to yield a pressure of
1 bar at the temperature 298.15 K. The numbers in parentheses indicate the standard deviation
in the last digits. The numbers in square brackets below the ternary data are the corresponding
values of the present Wilson model.

x1 x2 x3 ρ βµ̃1 − lnx1 βµ̃2 − ln x2 βµ̃3 − lnx3

molmol−1 molmol−1 molmol−1 mol l−1

water (1) + methanol (2)

1.00 0.00 55.29 -12.30 (2)
0.95 0.05 52.41 -12.29 (2) -8.18 (11)
0.90 0.10 49.80 -12.32 (2) -8.46 (9)
0.80 0.20 45.25 -12.27 (3) -8.72 (6)
0.60 0.40 37.89 -12.11 (4) -9.13 (5)
0.40 0.60 32.33 -11.92 (4) -9.33 (3)
0.20 0.80 27.99 -11.73 (5) -9.35 (2)
0.10 0.90 26.18 -11.64 (6) -9.34 (2)
0.05 0.95 25.31 -11.56 (8) -9.36 (2)
0.00 1.00 24.54 -9.34 (4)

water (1) + ethanol (3)

1.00 0.00 55.29 -12.30 (2)
0.99 0.01 54.16 -12.30 (2) -7.71 (30)
0.90 0.10 46.13 -12.34 (3) -8.64 (21)
0.80 0.20 39.33 -12.28 (3) -9.43 (16)
0.60 0.40 30.00 -12.10 (3) -9.96 (8)
0.40 0.60 24.11 -11.89 (3) -10.04 (5)
0.20 0.80 20.08 -11.46 (5) -10.05 (5)
0.10 0.90 18.49 -11.34 (6) -10.06 (4)
0.01 0.99 17.24 -11.08 (15) -10.10 (2)
0.00 1.00 17.13 -10.09 (4)

methanol (2) + ethanol (3)

1.00 0.00 24.54 -9.34 (4)
0.89 0.11 23.40 -9.37 (2) -10.09 (7)
0.80 0.20 22.57 -9.36 (2) -10.09 (6)
0.60 0.40 20.89 -9.35 (2) -10.09 (4)
0.40 0.60 19.47 -9.35 (3) -10.07 (4)
0.20 0.80 18.21 -9.38 (4) -10.11 (4)
0.14 0.86 17.85 -9.39 (4) -10.13 (3)
0.00 1.00 17.13 -10.09 (4)

water (1) + methanol (2) + ethanol (3)

0.20 0.40 0.40 23.39 -11.61 (4) -9.42 (2) -10.04 (4)
[-11.63] [-9.39] [-10.08]

0.40 0.20 0.40 26.37 -11.83 (3) -9.39 (3) -10.01 (6)
[-11.82] [-9.37] [-9.95]

0.40 0.40 0.20 29.045 -11.88 (3) -9.38 (3) -9.99 (5)
[-11.88] [-9.32] [-9.93]

0.33 0.33 0.34 26.09 -11.77 (3) -9.37 (2) -9.98 (5)
[-11.78] [-9.37] [-9.99]
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Table 4. Parameters of the Wilson model, cf. Eq. (18), fitted to the chemical potentials of the
ternary mixture water (1) + methanol (2) + ethanol (3) and its binary subsystems from present
simulations, cf. Table 3.

M̃1 -12.34

M̃2 -9.37

M̃3 -10.13
Λ12 1.02
Λ21 0.22
Λ13 0.80
Λ31 0.10
Λ23 1.01
Λ32 1.03
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Table 5. Maxwell-Stefan and Fick diffusion coefficients of the binary subsystems containing
water (1), methanol (2) or ethanol (3) from present simulations. The density ρ was chosen to
yield a pressure of 1 bar at the temperature 298.15 K. The numbers in parentheses indicate the
standard deviation in the last digits.

x1 x2 x3 ρ −D Γ D

molmol−1 molmol−1 molmol−1 mol l−1 10−10m2 s−1 10−10m2 s−1

water (1) + methanol (2)

0.95 0.05 52.41 15.5 (1.2) 0.73 11.4
0.90 0.10 49.80 15.9 (1.1) 0.59 9.4
0.80 0.20 45.25 17.7 (1.7) 0.48 8.4
0.70 0.30 41.28 18.0 (1.4) 0.47 8.5
0.60 0.40 37.89 17.6 (1.9) 0.51 9.0
0.40 0.60 32.33 16.0 (1.6) 0.65 10.4
0.20 0.80 27.99 17.0 (1.7) 0.82 13.9
0.10 0.90 26.18 17.3 (1.7) 0.91 15.7
0.05 0.95 25.31 17.7 (1.8) 0.95 16.9

water (1) + ethanol (3)

0.99 0.01 54.16 12.2 (7) 0.84 10.3
0.95 0.05 50.30 10.8 (8) 0.49 5.3
0.90 0.10 46.13 9.7 (7) 0.32 3.1
0.80 0.20 39.33 9.7 (8) 0.25 2.4
0.70 0.30 34.11 11.2 (9) 0.27 3.1
0.60 0.40 30.00 11.2 (1.0) 0.33 3.7
0.40 0.60 24.11 10.0 (1.2) 0.51 5.1
0.20 0.80 20.08 9.5 (1.1) 0.73 7.0
0.10 0.90 18.49 9.1 (1.1) 0.86 7.83
0.01 0.99 17.24 10.3 (1.1) 0.99 10.2

methanol (2) + ethanol (3)

0.89 0.11 23.40 21.7 (1.6) 1.01 21.8
0.80 0.20 22.57 19.5 (2.0) 1.01 19.8
0.60 0.40 20.89 17.1 (1.9) 1.02 17.5
0.40 0.60 19.47 16.1 (1.4) 1.02 16.4
0.20 0.80 18.21 15.0 (1.4) 1.01 15.2
0.14 0.86 17.85 14.1 (1.4) 1.01 14.2
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Table 6. Maxwell-Stefan and Fick diffusion coefficients of the ternary mixture water (1) +
methanol (2) + ethanol (3) from present simulations. The density ρ was chosen to yield a pressure
of 1 bar at the temperature 298.15 K. Note that for the 2×2 matrices B−1, Γ andD, the reference
component is ethanol.

x1 x2 x3 ρ B−1 Γ D

molmol−1 molmol−1 molmol−1 mol l−1 10−10m2 s−1 10−10m2 s−1

0.33 0.33 0.34 26.09
(

13.4 0.2

−1.7 9.6

) (
0.59 −0.10

0.14 1.07

) (
8.0 −1.2

0.3 10.5

)
0.20 0.40 0.40 23.39

(
12.1 −0.1

−0.4 11.7

) (
0.75 −0.06

0.06 1.06

) (
9.0 −0.9

0.4 12.4

)
0.40 0.20 0.40 26.37

(
10.0 −1.3

−0.4 11.4

) (
0.52 −0.11

0.10 1.06

) (
5.1 −2.5

1.0 12.1

)
0.40 0.40 0.20 29.05

(
12.5 −1.0

−1.6 11.5

) (
0.53 −0.12

0.26 1.10

) (
6.3 −2.6

2.2 12.9

)
0.20 0.20 0.60 21.60

(
12.1 0.9

0.3 9.6

) (
0.74 −0.06

0.01 1.03

) (
8.9 0.2

0.3 9.9

)
0.20 0.60 0.20 25.48

(
12.9 −1.2

0.7 16.2

) (
0.75 −0.06

0.14 1.07

) (
9.5 −2.1

2.8 17.2

)
0.60 0.20 0.20 33.53

(
14.3 −1.8

−3.3 10.1

) (
0.34 −0.16

0.27 1.10

) (
4.4 −4.3

1.6 11.7

)
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Table 7. Self-diffusion coefficients and shear viscosity of the ternary mixture water (1) +
methanol (2) + ethanol (3) and its binary subsystems from present simulations. The density
ρ was chosen to yield a pressure of 1 bar at the temperature 298.15 K. The numbers in paren-
theses indicate the standard deviation in the last digits.

x1 x2 x3 ρ Dself
1 Dself

2 Dself
3 η

molmol−1 molmol−1 molmol−1 mol l−1 10−10m2 s−1 10−10m2 s−1 10−10m2 s−1 10−4Pa s

water (1) + methanol (2)

1.00 0.00 55.29 22.68 (7) 9.0 (8)
0.95 0.05 52.41 19.23 (4) 14.82 (9) 10.9 (7)
0.90 0.10 49.80 16.97 (4) 13.66 (5) 12.8 (7)
0.80 0.20 45.25 14.56 (5) 12.67 (5) 15 (1)
0.70 0.30 41.28 13.58 (4) 12.67 (4) 14.5 (8)
0.60 0.40 37.89 13.22 (5) 13.01 (5) 12.8 (9)
0.40 0.60 32.33 13.78 (4) 15.00 (3) 10.6 (5)
0.20 0.80 27.99 15.81 (7) 18.63 (4) 8.2 (4)
0.10 0.90 26.18 17.18 (9) 21.31 (4) 6.7 (3)
0.05 0.95 25.31 18.4 (1) 23.66 (4) 6.0 (3)
0.00 1.00 24.54 24.76 (7) 5.7 (4)

water (1) + ethanol (3)

1.00 0.00 55.29 22.68 (7) 9.0 (8)
0.99 0.01 54.16 21.01 (4) 11.7 (1) 11.3 (7)
0.95 0.05 50.30 16.10 (4) 8.98 (5) 14.9 (8)
0.90 0.10 46.13 12.49 (3) 7.32 (3) 21 (1)
0.80 0.20 39.33 9.42 (3) 6.04 (2) 22 (1)
0.70 0.30 34.11 8.23 (3) 5.80 (2) 23 (1)
0.60 0.40 30.00 7.68 (3) 5.93 (2) 21 (1)
0.40 0.60 24.11 7.33 (3) 6.60 (2) 18.3 (8)
0.20 0.80 20.08 7.74 (4) 7.88 (2) 14.6 (6)
0.10 0.90 18.49 8.12 (6) 8.82 (2) 12.4 (5)
0.01 0.99 17.24 8.9 (2) 10.01 (2) 11.6 (4)
0.00 1.00 17.13 10.02 (4) 11.2 (6)

methanol (2) + ethanol (3)

1.00 0.00 24.54 24.76 (7) 5.7 (4)
0.89 0.11 23.40 23.03 (6) 19.40 (9) 6.1 (4)
0.80 0.20 22.57 21.72 (7) 18.26 (9) 5.8 (5)
0.60 0.40 20.89 18.83 (6) 15.76 (6) 7.0 (5)
0.40 0.60 19.47 16.08 (5) 13.36 (4) 9.5 (5)
0.20 0.80 18.21 14.13 (6) 11.67 (4) 9.4 (6)
0.14 0.86 17.85 13.85 (7) 11.44 (4) 9.4 (6)
0.00 1.00 17.13 10.02 (4) 11.2 (6)

water (1) + methanol (2) + ethanol (3)

0.33 0.33 0.34 26.09 9.96 (4) 11.50 (3) 9.16 (3) 14.8 (6)
0.20 0.40 0.40 23.39 10.72 (5) 13.08 (3) 10.63 (3) 12.3 (5)
0.40 0.20 0.40 26.37 8.84 (3) 9.84 (3) 7.83 (2) 17.0 (7)
0.40 0.40 0.20 29.05 10.89 (4) 12.03 (3) 9.49 (3) 14.0 (6)
0.20 0.20 0.60 21.60 9.05 (4) 11.26 (4) 9.15 (2) 13.3 (5)
0.20 0.60 0.20 25.48 12.87 (5) 15.54 (3) 12.65 (3) 10.1 (4)
0.60 0.20 0.20 33.53 9.83 (3) 9.77 (3) 7.48 (3) 18.1 (8)
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Figure 1. Experimental set-up of the Taylor dispersion measurements.
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Figure 2. Fick diffusion coefficient of the binary subsystems water + methanol (top), water +
ethanol (center) and methanol + ethanol (bottom) at 298.15 K and 1 bar as a function of the
mole fraction of the second respective component. Present experimental results (•) are compared
to other experimental values when available. Top: the diaphragm cell results by Derlacki et al.81

(4) and Woolf82 (O) and the Taylor dispersion results by Van de Ven-Lucassen et al.37 (◦) and
Bosse86 (�) are shown. Center: the diaphragm cell results by Hammond and Stokes78 (×),
Dullien and Shemilt79 (+) and Tyn and Calus80 (�) as well as the Taylor dispersion results
by Pratt and Wakeham83 (4), Harris et al.84 (O), Van de Ven-Lucassen et al.37 (◦), Hao and
Leaist85 (open hexagon) and Bosse86 (�) are shown.
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Figure 3. Temperature dependence of the Fick diffusion coefficient of water + methanol at 1
bar. Present measurements at 288.15 K (•) are shown together with a polynomial fit of various
experimental data sets at 298.15 K (–). The data sets by Derlacki et al.81 at 278.15 K (O) and
Van de Ven-Lucassen et al.37 at 308.15 K (4) are also shown.
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Figure 4. Compositions of the ternary mixture water (1) + methanol (2) + ethanol (3) and its
binary subsystems for which the chemical potentials (×) and the transport properties (◦) were
studied by present simulations.
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Figure 5. Chemical potential βµ̃i − lnxi of water (bottom), methanol (center) and ethanol
(top) in their ternary mixture at 298.15 K and 1 bar as a function of mole fraction. The plot
is based on the ternary Wilson model, cf. Eq. (18), that was fitted to the present simulation
results.
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Figure 6. Chemical potentials of the binary subsystems water + methanol (top), water +
ethanol (center) and methanol + ethanol (bottom) at 298.15 K and 1 bar as a function of
the mole fraction of the second respective component from present simulations. The chemical
potentials βµ̃i of water (�), methanol (•) and ethanol (N) are denoted by full symbols. The
corresponding open symbols denote the values after subtraction of ideal term: βµ̃i − lnxi. The
solid line (−) shows the present ternary Wilson model.
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Figure 7. Thermodynamic factor of the binary subsystems water + methanol (top), water +
ethanol (center) and methanol + ethanol (bottom) at 298.15 K and 1 bar as a function of the
mole fraction of the second respective component. The ternary Wilson model fitted to present
simulation results for the chemical potentials (−) is compared to the Wilson model based on
experimental VLE data with parameters recommended by DECHEMA87 (— —) for 298.15 K
and to a direct fit to experimental VLE data by Hall et al.88 at 298.15 K (– –).
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Figure 8. Maxwell-Stefan diffusion coefficient of the binary subsystems water + methanol
(top), water + ethanol (center) and methanol + ethanol (bottom) at 298.15 K and 1 bar as
a function of the mole fraction of the second respective component. Present simulation results
(�) are compared to the predictive Darken model, cf. Eq. (13), with experimental (4)81,90,91

and present predicted (◦) self-diffusion coefficients, as well as with the model by Liu et al.61, cf.
Eq. (14), (−).
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Figure 9. Fick diffusion coefficient of the binary subsystems water + methanol (top), water +
ethanol (center) and methanol + ethanol (bottom) at 298.15 K and 1 bar as a function of the
mole fraction of the second respective component. Present simulation results (•) are compared
to simulation results using the thermodynamic factor from experimental VLE data (triangles)
and to present experimental data from Taylor dispersion (�). In case of the VLE data based
method, the thermodynamic factor was calculated using the Wilson model with recommended
parameters (4) as well as by fitting it to experimental VLE data (O) as commented in the
caption of Figure 7. The straight lines serve as a guide to the eye.35



Figure 10. Self-diffusion coefficient of water (�), methanol (•) and ethanol (N) in the binary
subsystems water + methanol (top), water + ethanol (center) and methanol + ethanol (bottom)
at 298.15 K and 1 bar as a function of the mole fraction of the second respective component from
present simulations. The corresponding open symbols represent experimental data81 (water +
methanol),90,92 (water + ethanol) and91 (methanol + ethanol).
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Figure 11. Shear viscosity of the binary subsystems water + methanol (top), water + ethanol
(center) and methanol + ethanol (bottom) at 298.15 K and 1 bar as a function of the mole fraction
of the second respective component. Present simulation results (•) are compared to experimental
data (◦)93–95 (water + methanol),96 (water + ethanol) and 97,98 (methanol + ethanol).
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