
591 TFLOPS Multi-Trillion Particles Simulation
on SuperMUC

Wolfgang Eckhardt1, Alexander Heinecke1,

Reinhold Bader2, Matthias Brehm2, Nicolay Hammer2, Herbert Huber2,
Hans-Georg Kleinhenz2, Jadran Vrabec3, Hans Hasse4, Martin Horsch4, Martin
Bernreuther5, Colin W. Glass5, Christoph Niethammer5, Arndt Bode1,2, and

Hans-Joachim Bungartz1,2

1 Technische Universität München, Boltzmannstr. 3, D-85748 Garching, Germany
2 Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften,

Boltzmannstr. 1, D-85748 Garching, Germany
3 University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany

4 Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern,
Erwin-Schrödinger-Str. 44, D-67663 Kaiserslautern, Germany

5 High Performance Computing Centre Stuttgart (HLRS), Nobelstr. 19, D-70569
Stuttgart, Germany

Abstract. Anticipating large-scale molecular dynamics simulations (MD)
in nano-fluidics, we conduct performance and scalability studies of an op-
timized version of the code ls1 mardyn . We present our implementation
requiring only 32 Bytes per molecule, which allows us to run the, to our
knowledge, largest simulation to date. Our optimizations tailored to the
Intel Sandy Bridge processor are explained, including vectorization as
well as shared-memory parallelization to make use of Hyperthreading.
Finally we present results for weak and strong scaling experiments on up
to 146016 Cores of SuperMUC at the Leibniz Supercomputing Centre,
achieving a speed-up of 133k times which corresponds to an absolute
performance of 591.2 TFLOPS.

1 Introduction and Related Work

MD simulation has become a recognized tool in engineering and natural sciences,
complementing theory and experiment. Despite its development for over half a
century, scientists still quest for ever larger and longer simulation runs to cover
processes on greater length and time scales. Due to the massive parallelism MD
typically exhibits, it is a preeminent task for high-performance computing.

An application requiring large-scale simulations is the investigation of nucle-
ation processes, where the spontaneous emergence of a new phase is studied [8].
To enable such simulations, we optimized our program derived from the code ls1
mardyn . A description of ls1 mardyn focusing on use cases, software structure
and load balancing considerations can be found in [1]. Based on the further devel-
opment of the memory optimization described in [3], the extremely low memory
requirement of only 32 Bytes per molecule has been achieved, which allows us

to carry out the to our knowledge largest MD simulation to date on SuperMUC
at Leibniz Supercomputing Centre. In order to run these large-scale simulations
at satisfactory performance, we tuned the implementation of the molecular in-
teractions outlined in [2] to the Intel Sandy Bridge processor and added a newly
developed shared-memory parallelization to make use of Intel Hyperthreading.
Thereby, this contribution continues a series of publications on extreme-scale
MD. In 2000, Roth [18] performed a simulation of 5 · 109 molecules, the largest
simulation ever at that time. Kadau and Germann [10, 4] followed up, holding
the current world record with 1012 particles. These simulations demonstrated the
state of the art on the one hand, and showed the scalability and performance of
the respective codes. More recent examples include the simulation of blood flow
[15] as well as the force calculation of 3 · 1012 particles by Kabadshow in 2011
[9], however without calculating particle trajectories.

The remainder of the paper is organized as follows: this Section describes the
computational model of our simulation code. Section 2 describes the architecture
of SuperMUC, Section 3 details the implementation with respect to vectorization
and memory-efficiency, and Section 4 presents the results.

The fluid under consideration is modeled as a system of N discrete particles.
Only particles i and j separated by a distance rij smaller than a cut-off radius
rc, interact pairwise through the truncated and shifted Lennard-Jones potential
[19], which is determined by the usual Lennard-Jones-12-6 potential (LJ-12-6)
ULJ (rij) with the potential parameters ε and σ:

ULJ (rij) = 4ε ·

((
σ

rij

)12

−
(
σ

rij

)6
)
.

This interaction results in a force Fi =
∑

j∈particles Fij(rij) on each of the
particles, which is evaluated only once per particle pair, due to Newton’s law
Fij = −Fji.

In MD, the most time-consuming step is the

 r

cutoff

Fig. 1. Schematic of the
linked-cell algorithm (2D).

force calculation. To efficiently search for neighbor-
ing particles, the linked-cell algorithm is employed
in a similar way as in Ref. [10]. The computational
domain is subdivided into cubic cells with an edge
length rc. Consequently, for a given particle, the dis-
tances to all other particles contained in the same
cell as well as in the (in 3D) 26 adjacent cells have to
be computed. This results in a linear complexity of
the force calculation. The particles’ data are stored
in dynamic arrays, i.e. contiguous memory blocks,
per cell, to avoid additional memory for pointers.
Thus, the organization of the linked-cells data structure causes only small over-
head.

In accordance with preceding large-scale simulations [4] single-precision vari-
ables are used for the calculation. For a particle we store only its position (3 · 4
Bytes), velocity (3 · 4 Bytes) and an identifier (8 Bytes), i.e. 32 Bytes in to-

tal. The force vector does not need to be stored permanently, because the time
integration of the equations of motion is carried out on the fly, as detailed in
Section 3.

To evaluate our implementation, single-center Lennard-Jones particles were
distributed on a regular grid according to a body-centered cubic lattice, with
a number density of ρσ3 = 0.78 in reduced units, and the cut-off radius was
specified to be rc = 3.5σ. The time step length was set to 1 fs.

For the MPI parallelization, we employ a spatial domain decomposition
scheme. For n processes, the domain is divided in n equally-sized sub-domains,
which are assigned to one process each. Each sub-domain is surrounded by a
layer of ghost cells, residing on neighboring processes, so the particles at the
process boundaries have to be exchanged at the beginning of each time step.

2 SuperMUC - The World’s Largest x86 Machine

2.1 System Topology

We optimized our MD code on the micro-architecture level for a specific pro-
cessor: the Intel Sandy Bridge EP driving SuperMUC operated at the Leibniz
Supercomputing Centre in Munich. This system features 147456 cores and is at
present the biggest x86 system worldwide with a theoretical double precision
peak performance of more than 3 PFLOPS, placed #6 on the current Top500
list. The system was assembled by IBM and features a highly efficient hot-water
cooling solution. In contrast to supercomputers offered by Cray, SGI or even
IBM’s own BlueGene, the machine is based on a high-performance commodity
network: a FDR-10 infiniband pruned tree topology by Mellanox. Each of the
18 leafs, or islands, consists of 512 nodes with 16 cores at 2.7 GHz clock speed
(turbo mode is disabled) sharing 32GB of main memory. Within one island all
nodes can communicate at full FDR-10 data-rate. In case of inter-island commu-
nication, four nodes share one uplink to the spine switch. Since the machine is
operated diskless a significant fraction of the nodes’ memory has to be reserved
for the operation environment.

2.2 Intel Sandy Bridge Architecture

After a bird’s eye view on the entire system, we now focus on its heart, the Intel
Sandy Bridge EP processor that was introduced in January 2012, featuring a
new vector instruction set called AVX. In order to execute code with high per-
formance and to increase the core’s instructions per clock, major changes to the
previous core micro-architecture code-named Nehalem have been applied. These
changes are highlighted by italic letters in Fig. 2. Since the vector-instruction
width has been doubled with AVX (AVX is available with two vector widths:
AVX128 and AVX256), also the load port’s (port 2) width needs to be doubled.
However, doubling a load port’s width would impose tremendous changes to the
entire chip architecture. In order to avoid this, Intel changed two ports by ad-
ditionally implementing in each port the other port’s functionality as shown for

Scheduler (physical registerfile: 144 256bit VPU registers, 160 integer registers)

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4

ALU

SSE MUL

SSE Shuffle

DIV

AVX FP MUL

Imm Blend

ALU

SSE ADD

SSE Shuffle

AVX FP ADD

ALU

JMP

AVX FP Shuffle

AVX FP Boolean

Imm Blend

Load

Store Address
Store Address

Load
Store Data

Memory Control

32 KB L1 Data Cache

256 KB

L2

Cache

(MLC)

32 KB L1 Instruction Cache

Instruction Fetch and Pre-Decode

4-way Decode

Branch

Prediction

Rename/Allocate/Retirement (Reorder-Buffer: 168 Entries)

uOP decoded

Cache (1.5k

uOps)

Fig. 2. Intel Sandy Bridge, changes w.r.t. Intel Nehalem are highlighted with italic
letters: trace-cache for decoded instructions, AVX support and physical registerfile.

port 2 and 3. Through this trick, the load bandwidth has been doubled from 16
bytes to 32 bytes per cycle at the price of reduced instruction level parallelism.
Changes to the ALUs are straight-forward: ports 0, 1 and 5 were simply doubled,
and they provide classic SSE functionality for AVX instructions and extensions
for blend and mask operations. However, this bandwidth improvement still does
not allow for an efficient exploitation of AVX256 instructions as this would re-
quire a 64 bytes per cycle load and 32 bytes per cycle store bandwidth. This in-
crease will be implemented with the up-coming Haswell micro-architecture [14].
Due to 32 bytes load bandwidth and the non-destructive AVX128 instruction
set, AVX128 codes can often yield the same performance as AVX256 on Sandy
Bridge but much better than SSE4.2 on an equally clocked Nehalem chip. This
can also be attributed to the fact that 16 bytes load instructions have a three
times higher throughput (0.33 cycles) than 32 bytes load instructions (here ports
2 and 3 have to be paired and cannot be used independently). According to ex-
periments we did with different application and kernels using AVX256 on Sandy
Bridge, the full performance enhancement of 2× speed-up can be just exploited
for kernels which can be perfectly register-blocked, e.g. DGEMM , see [7]. If in
contrast only a standard 1d-blocking is possible, roughly a 1.5-1.6 × speed-up
can be achieved in comparison to AVX128, see [6].

Up to Nehalem, each unit had dedicated memory for storing register contents
for executing operations on them. A so-called out-of-order unit took care of the
correctness of the execution pipeline. With AVX, a register allocation in each
compute unit of the core would be too expensive in terms of transistors required,
therefore a so-called register file was implemented: Register contents are stored
in a central directory. Shadow registers and pointers allow for an efficient out-
of-order execution. Furthermore, a general performance enhancement was added

to the Sandy Bridge architecture: a cache for decoded instructions. This trace-
cache like cache boosts the performance of kernels with small loop bodies, such
as the force calculation in MD. Furthermore, the Sandy Bridge EP cores feature
Intel’s SMT implementation called Hyperthreading Technology which helps to
increase the core’s utilization in workload scenarios where the instruction mix is
not optimal or the application is suffering from high memory latencies.

3 Implementation

3.1 Vectorization of the Compute Kernel

Since our simulation code is written in C++ and therefore applies standard
object-oriented design principles with cells and particles being single entities, we
follow an approach of memory organization and vectorization, first sketched in
[2]. That work describes, by using a simple proxy application and not the entire
ls1 mardyn code base, how the LJ-12-6 force calculation inside a linked cell
algorithm can be vectorized on x86 processors. That prototype implementation
does not feature important statistical measurements such as virial pressure and
potential energy calculations which we added in this work.

That memory layout is cache-efficient by design because particles belonging
to a cell are stored closely together. However, implementing particles in a cell as
a so-called array of structures (AoS) forbids easy vectorization, at least without
gather and scatter operations (see [5]) which, unfortunately, are not available
on Intel Sandy Bridge. Only in simple cases (e.g., updates of one member, etc.)
this drawback does not matter, because prefetch logic inside the hardware loads
only cache-lines containing data which have to be modified.

x_1y_1z_1f_x_1f_y_1f_z_1v_x_1v_y_1

v_z_1a_1b_1x_2y_2...

x_1x_2x_3...

y_1y_2y_3...

�

b_1b_2b_3...

0512
64 byte (512 bit)

(a) AoS to SoA conversion: In or-
der to allow an efficient vectorization
corresponding elements has to be
stored for data streaming accesses.

x_3x_4

y_3y_4

z_3z_4

x_a

y_a

z_a

d_a_3d_a_4

d
_
a
_
i
<

 r
c

u
to

ff

1
 <

 i
 <

 4

calculate forces (LJ-12-6)

f_x_3f_x_4

f_y_3f_y_4

f_z_3f_z_4

f_x_a

f_y_a

f_z_a

calculate distances x_1x_2

y_1y_2

z_1z_2

f_x_1f_x_2

f_y_1f_y_2

f_z_1f_z_2

d_a_1d_a_2

(b) Kernel-Vectorization: The vectorization
of the LJ-12-6 force calucation is optimized
by duplicating one particle and streaming
four other particles.

Fig. 3. Optimizing LJ-12-6 force calculation by SoA storage scheme and vectorization.

Implementing the LJ-12-6 force calculation on AoS-structures poses major
challenges: The upper part of Fig. 3a shows elements scattered across several
cache-lines. Taking into account that only a small portion of the members is
needed for the force calculation, a temporary structure of arrays (SoA) can be

constructed in order to address cache-line pollution and vectorization opportu-
nities, illustrated in the lower part of Fig. 3a. Figure 3b sketches the applied
vectorization of the LJ-12-6 calculations. In contrast to other methods which
vectorize across the spatial coordinates [11–13], the present approach can ex-
ploit vector-units of arbitrary length.

In this work single-precision AVX128 instructions were employed. The cal-
culation is performed on particle pairs, therefore we broadcast-load the required
data of one particle in the first register (a), the second register is filled by data
from four different particles (1, 2, 3 and 4). Dealing with four particle pairs in
one step, we can theoretically reduce the number of operations by a factor of
four. Since the force calculation may be required for all, some or none of the
pairs in the vector register, we need to apply some pre- and post-processing
performed by regular logical operations: It has to be determined, if for any par-
ticle pair the distance is smaller than rc (pre-processing), because only then the
force calculation has to be executed. If the force calculation has been executed,
the calculated results need to be zeroed by a mask for all particle pairs whose
distance is larger than rc (post-processing). In order to ensure vectorization of
the kernel we employed intrinsics. Due to the cut-off radius if-condition inside
the inner-most loop, current compilers (gcc and icc) denied to vectorize the loop
structure iterating over particles in cell-pairs. For the chosen simulation scenario
(cut-off radius rc = 3.5σ) a speed-up of 3 × is possible on a single core by using
the proposed SoA-structure and vectorization.

With increasing vector length, this masking technique becomes the major
bottleneck. Here, it can easily happen that more elements are being masked
than elements which have to be computed. Therefore, moving to a wider vector-
instruction set may result in more instructions being executed. However, if the
vector-instruction set features gather and scatter instructions, this issue can be
overcome because only the particle pairs taking part in the interaction are pro-
cessed, which has been successfully demonstrated by Rapaport with the layered-
linked-cell algorithm [17, 16]. The first x86 processor which offers full gather/s-
catter support is the so-called Xeon Phi coprocessor. Enabling ls1 mardyn for
Xeon Phi is ongoing research.

A different issue inhibiting the most efficient usage of the Sandy Bridge core
is the lack of instruction level parallelism in the compute kernel. The evaluation
of distances and potential as well as the force on the particles contains signifi-
cantly more multiplications than additions, thus the ADD unit cannot be fully
utilized. Even worse, the calculation of the power-12-term of the LJ-12-6 re-
quires a sequence of dependent multiplications. Therefore, the superscalarity of
a Sandy Bridge core can not be exploited optimally, a fact we address by using
Hypterthreading Technology as described below.

We restricted ourselves to AVX128 instructions for several reasons. In Sect. 2.2
we described that Intel Sandy Bridge is not able to handle AVX256 instructions
at full speed. This fact would also forbid to use Hyperthreading efficiently as
currently ports 2 and 3 inside the core can be used by different threads. Switch-
ing to AVX256, these ports are operated in paired mode, available to just one

of both threads. Furthermore, we showed in the outlook of [2] that AVX256 in-
struction are only beneficial when increasing the cut-off radius to values which
might be questionable from an application’s perspective. Last but not least we
want to ensure that ls1 mardyn runs best on various x86 platforms. Besides
Intel Sandy Bridge AMD Interlagos plays an important role since this chip is
used as processor in most of Cray’s supercomputers. AMD Interlagos features
two 128bit FPUs shared between two integer units. Therefore an AVX128 code
is essential for best performance on Interlagos. With the current code base we
only expect slight changes when moving to an Interlagos based machine.

3.2 Memory and Utilization Optimizations

In order to achieve the low memory requirement of only 32 Byte per molecule,
we refine the linked-cells algorithm with the sliding window that was introduced
in [3]. It is based on the observation that the access pattern of the cells can be
described by a sliding window, which moves through the domain. After a cell
has been searched for interacting particles for the first time in a time step, its
data will be required for several successive force calculations with particles in
neighboring cells. If the force calculation proceeds according to the cells’ index
as depicted in Fig. 4a, these data accesses happen within a short time, until
the interactions with all neighbors have been computed. While the cells in the
window are accessed several times, they naturally move in and out of the window
in FIFO-order.

6 7 8 9 10

18 18 1915 16 1712 13 1411

24 25 2621 22 2320

5

27

4321

28 29

(a) Sliding window (cells in bold black
frame) in 2d. Particles of cells in the win-
dow will be accessed several times, cells
2 through 23 are covered by the window
in FIFO-order. For the force calculation
for the molecules in cell 13, cell 23 is
searched for interacting particles for the
first time in this iteration. The particles
in cell 2 are checked for the last time for
interactions.

6 7 8 9 10

18 18 1915 16 1712 13 1411

24 25 2621 22 2320

5

27

4321

28 29

(b) Extension of the sliding window for
multi-threading. By increasing the win-
dow by 6 cells, two threads can indepen-
dently work on three cells each: thread 1
works on cells 13, 14, 15; thread 2 works
on cells 16, 17, 18. To avoid that threads
work on same cells (e. g., thread 1 on the
cell pair 15–25, thread 2 on 16–25), a
barrier is required after each thread fin-
ished its first cell.

Fig. 4. Basic idea of the sliding window algorithm and extension for multi-threading.

Particle data outside the the sliding window are stored in form of C++ ob-
jects in AoS-manner, only with position, velocity and a unique identifier. Per
cell, particle objects are stored in dynamic arrays. When the sliding window is

shifted further and covers a new cell, the positions and velocities of the par-
ticles in that cell are converted to SoA-representation. Additionally, arrays for
the forces have to be allocated. The force calculation is now performed on the
particles as described above. When a cell has been considered for the last time
during an iteration, its particles are converted back to AoS-layout. Therefore,
the calculation of forces, potential energy and virial pressure can be performed
memory- and runtime-efficiently on the SoA, while the remaining parts of the
simulation code can be kept unchanged according to their object-oriented lay-
out. To avoid the overhead of repeated memory (de-)allocations when particle
data in a cell are converted, we initially allocate dynamic arrays fitted to the
maximum number of particles per cell for each cell in the window, and reuse
that memory. Since the sliding window covers three layers of cells, these buffers
consume a comparably small amount of memory, while the vast majority of the
particles is stored memory-efficiently. At this point, it becomes apparent that
the traversal order imposed by the sliding window also supports cache reusage:
when particle data is converted to SoA-representation, that data is placed in the
cache and will be reused several times soon after.

In order to reduce the memory requirement to 32 Byte per particle and to
further improve the hardware utilization, this algorithm needs two further re-
visions: the time integration has to be performed on the fly, and opportunity
for multi-threading needs to be created. Since the forces are not stored with the
molecule objects, the time integration has to be performed during that conver-
sion, i. e., the particles’ new positions and velocities have to be calculated at that
moment. Nevertheless the correct traversal of the particles is ensured, because
cells that have been converted are not required for the force calculation during
this time step any more and the update of the linked-cells data structure, i.e.
the assignment of particles to cells, takes place only between two time steps.

As stated above, the LJ-12-6 kernel is not well instruction-balanced, impeding
the use of the superscalarity of a Sandy Bridge core. In order to make use
of Hyperthreading Technology, we implemented a lightweight shared-memory
parallelization. By extending the size of the sliding window as shown in fig.
4b, two threads can perform calculations concurrently on three independent
cells. Exploiting Newtons third law Fij = −Fji for the force calculation and
considering cell pairs only once, it must be avoided that threads work on directly
neighboring cells simultaneously. Therefore, a barrier, causing comparably little
overhead on a Hyperthreading core, is required after each thread has processed
the first of its three cells. This allows the execution of one MPI rank per core with
two (OpenMP-)threads to create sufficient instruction level parallelism, gaining
an 12% absolute performance improvement.

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

2048 4096 8192 16384 32768 65536 131072

S
p

e
e

d
-U

p

 a
n

d

G
F

LO
P

S

number of used cores

ideal scaling

weak-scaling

strong-scaling

GFLOPS, ideal

GFLOPS, weak-scaling

GFLOPS, strong-scaling

Fig. 5. Weak and strong scaling for 2048 to 146016 cores with respect to speed-up and
GFLOPS on SuperMUC. Ideal scaling was achieved in case of weak scaling whereas as
a parallel efficiency of 42% was obtained in the strong scaling tests. We cut off the plot
at 2048 cores, here we obtained a parallel efficiency of 91.1% in case of strong scaling
(compared to 128 cores) and 98.6% in case of weak scaling (compared to one core).

4 Strong and Weak Scaling on SuperMUC

In order to evaluate the performance of the MD simulation code ls1 mardyn , we
executed different tests on SuperMUC. With respect to strong scaling behavior,
we ran a scenario with N = 4.8 · 109 particles, which perfectly fits onto 8 nodes;
18 GB per node are needed for particle data. Fig. 5 nicely shows that a very good
scaling was achieved for up to 146016 cores using 292032 threads at a parallel
efficiency of 42 % comparing 128 to 146016 cores.

In this case, less than 20 MB (5.2 · 105 particles) of main memory per node,
which fits basically into the processors’ caches, are used. This excellent scaling
behavior can be explained by analyzing Fig. 6. Here we measured achievable
GFLOPS depending on the number of particles simulated on 8 nodes. Already
for N = 3 · 108 particles (approx. 8% of the available memory) we are able
to hit the performance of roughly 550 GFLOPS which we also obtained for
N = 4.8 · 109.

It should be pointed out that the performance shows only a small decrease
for systems containing fewer particles (reducing the particle system size by a
factor 100): for N = 107 (which corresponds to the strong scaling setting in
case of 146016 cores w.r.t. particles per node) we see a drop by 27% which only
increases to the mentioned 58% when moving from 128 to 146016 cores. We have
to note that the overall simulation time in this case was 1.5 s for 10 time steps,

thereof 0.43 s were communication time. Since 0.43 s are roughly 29% of 1.5 s,
it becomes clear that the biggest fractions of the 58% decrease are stemming
to 56% from low particle counts per process and relatively high communication
costs.

Moreover, we performed a weak scal-

200

300

400

500

600

700

800

5 105 205 305 405 505

G
F

LO
P

S

Millions of particles

GFLOPS rc=3.5 σ

GFLOPS rc=2.5 σ

GFLOPS rc=5.0 σ

Fig. 6. GFLOPS dependeding on particle
count and cut-off on 128 cores.

ing analysis which is, to our knowl-
edge, the largest MD simulation to date.
Due to MPI buffers on all nodes, we
were not able to keep the high num-
ber of particles per node (6.0 · 108)
and were forced to reduce it to 4.52 ·
108. Especially eager protocol buffers
turned out to be the most limiting fac-
tor. Although we reduced them to a
bare minimum (64 MB buffer space
for each process), roughly 1GB per node
has to be reserved as we use one MPI
rank per core. By keeping Fig. 6 in
mind, we know that this slight reduc-
tion has no negative impact on the overall performance of our simulation. In
case of 146016 cores we were able to run a simulation of 4.125 · 1012 particles
with one time step taking roughly 40 s. For this scenario a speed-up of 133183
× (compared to a single core) with an absolute performance of 591.2 TFLOPS
was achieved, which corresponds to 9.4% peak performance efficiency.

These absolute performance numbers can be easily improved by increas-
ing simulation parameters like the cut-off radius rc which results in a higher
vector-register utilization. However, preceding publications [18, 10, 4] used cut-
off radii within the interval 2.5σ < rc < 5.0σ. Therefore we restricted ourselves
to rc = 3.5σ in order to ensure fairness, please consult Fig. 6 for a performance
comparison of ls1 mardyn for different cutoff radii in this interval.

5 Conclusions

In this paper we demonstrated that MD simulations can be scaled up to more
than 140000 cores and a multi-trillion (4.125·1012) number of particles on modern
supercomputers. Due to the sliding window technique only 32 bytes are required
per particle, and with the help of a shared memory parallelization and a carefully
optimized force calculation kernel we achieved 591.2 TFLOPS, which is 9.4% of
the system’s theoretical peak performance.

We were able to show not only perfect weak scaling, but also excellent strong
scaling results together with a good performance of the kernel also for com-
parably small particle numbers per core. These properties are essential for the
investigation of large inhomogeneous molecular systems. Such scenarios are char-
acterized by highly heterogeneous particle distributions, which requires a pow-

erful load balancing method implementation. Therefore, we are working on the
incorporation of the load balancing from the original ls1 mardyn code.

As indicated during the force kernel’s discussion, the current kernel imple-
mentation suffers from not fully exploited vector-registers. Increasing the net-
usage of vector-registers is subject of ongoing research. The most promising
instruction set is currently provided by the Intel Xeon Phi coprocessor which
features a full blown gather/scatter implementation.

Beside tuning ls1 mardyn for better performance on emerging architectures,
energy efficiency with focus on the energy to solution ratio is an additional
research direction, especially when targeting MD scenarios with several hundreds
of thousands of time steps. Since SuperMUC is capable of dynamic frequency
scaling, it provides an optimal testbed for such activities.

References

1. Martin Buchholz, Hans-Joachim Bungartz, and Jadran Vrabec. Software design for
a highly parallel molecular dynamics simulation framework in chemical engineering.
Journal of Computational Science, 2(2):124–129, May 2011.

2. Wolfgang Eckhardt and Alexander Heinecke. An efficient vectorization of linked-
cell particle simulations. In ACM International Conference on Computing Fron-
tiers, pages 241–243, Cagliari, May 2012.

3. Wolfgang Eckhardt and Tobias Neckel. Memory-efficient implementation of a rigid-
body molecular dynamics simulation. In Proceedings of the 11th International
Symposium on Parallel and Distributed Computing - ISPDC 2012, pages 103–110,
Munich, June 2012. IEEE.

4. Timothy C. Germann and Kai Kadau. Trillion-atom molecular dynamics becomes
a reality. International Journal of Modern Physics C, 19(09):1315–1319, 2008.

5. Chunyang Gou, Georgi Kuzmanov, and Georgi N. Gaydadjiev. SAMS multi-layout
memory: providing multiple views of data to boost SIMD performance. In Pro-
ceedings of the 24th ACM International Conference on Supercomputing, ICS ’10,
pages 179–188, New York, NY, USA, 2010. ACM.

6. Alexander Heinecke and Dirk Pflüger. Emerging architectures enable to boost
massively parallel data mining using adaptive sparse grids. International Journal
of Parallel Programming, 41(3):357–399, June 2013.

7. Alexander Heinecke and Carsten Trinitis. Cache-oblivious matrix algorithms in
the age of multi- and many-cores. Concurrency and Computation: Practice and
Experience, January 2013. accepted for publication.

8. M. Horsch, J. Vrabec, M. Bernreuther, S. Grottel, G. Reina, A. Wix, K. Schaber,
and H. Hasse. Homogeneous nucleation in supersaturated vapors of methane,
ethane, and carbon dioxide predicted by brute force molecular dynamics. The
Journal of Chemical Physics, 128(16):164510, 2008.

9. Ivo Kabadshow, Holger Dachsel, and Jeff Hammond. Poster: Passing the three
trillion particle limit with an error-controlled fast multipole method. In Proceedings
of the 2011 companion on High Performance Computing Networking, Storage and
Analysis Companion, SC ’11 Companion, pages 73–74, New York, NY, USA, 2011.
ACM.

10. Kai Kadau, Timothy C. Germann, and Peter S. Lomdahl. Molecular dynamics
comes of age: 320 billion atom simulation on bluegene/l. International Journal of
Modern Physics C, 17(12):1755–1761, 2006.

11. Erik Lindahl, Berk Hess, and David van der Spoel. Gromacs 3.0: a package
for molecular simulation and trajectory analysis. Journal of Molecular Modeling,
7:306–317, 2001.

12. S. Olivier, J. Prins, J. Derby, and K. Vu. Porting the gromacs molecular dynamics
code to the cell processor. In Parallel and Distributed Processing Symposium, 2007.
IPDPS 2007. IEEE International, pages 1 –8, march 2007.

13. Liu Peng, Manaschai Kunaseth, Hikmet Dursun, Ken-ichi Nomura, Weiqiang
Wang, Rajiv Kalia, Aiichiro Nakano, and Priya Vashishta. Exploiting hierarchical
parallelisms for molecular dynamics simulation on multicore clusters. The Journal
of Supercomputing, 57:20–33, 2011.

14. Piazza, Tom and Jiang, Hong and Hammarlund, Per and Singhal, Ronak. Tech-
nology Insight: Intel(R) Next Generation Microarchitecture Code Name Haswell,
September 2012.

15. Abtin Rahimian, Ilya Lashuk, Shravan Veerapaneni, Aparna Chandramowlish-
waran, Dhairya Malhotra, Logan Moon, Rahul Sampath, Aashay Shringarpure,
Jeffrey Vetter, Richard Vuduc, Denis Zorin, and George Biros. Petascale direct
numerical simulation of blood flow on 200k cores and heterogeneous architectures.
In Proceedings of the 2010 ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC ’10, pages 1–11, Wash-
ington, DC, USA, 2010. IEEE Computer Society.

16. D. C. Rapaport. The Art of Molecular Dynamics Simulation. Cambridge University
Press, April 2004.

17. D. C. Rapaport. Multibillion-atom molecular dynamics simulation: Design con-
siderations for vector-parallel processing. Computer Physics Communications,
174(7):521–529, 2006.

18. J. Roth, F. Gähler, and H.-R. Trebin. A molecular dynamics run with 5 180 116
000 particles. International Journal of Modern Physics C, 11(02):317–322, 2000.

19. Jadran Vrabec, Gaurav Kumar Kedia, Guido Fuchs, and Hans Hasse. Comprehen-
sive study of the vapour-liquid coexistence of the truncated and shifted lennard-
jones fluid including planar and spherical interface properties. Molecular Physics,
104(9):1509–1527, 2006.

