
ls1 mardyn: The massively parallel molecular

dynamics code for large systems

Christoph Niethammer,† Stefan Becker,‡ Martin Bernreuther,† Martin

Buchholz,¶ Wolfgang Eckhardt,¶ Alexander Heinecke,¶ Stephan Werth,‡

Hans-Joachim Bungartz,¶ Colin W. Glass,† Hans Hasse,‡ Jadran Vrabec,§ and

Martin Horsch∗,‡

High Performance Computing Center Stuttgart, Nobelstr. 19, 70569 Stuttgart, Germany,

University of Kaiserslautern, Laboratory of Engineering Thermodynamics,

Erwin-Schrödinger-Str. 44, 67663 Kaiserslautern, Germany, TU München, Chair for

Scientific Computing in Computer Science, Boltzmannstr. 3, 85748 Garching, Germany,

and University of Paderborn, Laboratory of Thermodynamics and Energy Technology,

Warburger Str. 100, 33098 Paderborn, Germany

E-mail: martin.horsch@mv.uni-kl.de

Abstract

The molecular dynamics simulation code ls1 mardyn is presented. It is a highly scal-

able code, optimized for massively parallel execution on supercomputing architectures,

and currently holds the world record for the largest molecular simulation with over

four trillion particles. It enables the application of pair potentials to length and time

∗To whom correspondence should be addressed
†High Performance Computing Center Stuttgart (HLRS), Germany
‡Laboratory of Engineering Thermodynamics (LTD), Univ. of Kaiserslautern, Germany
¶Scientific Computing in Computer Science (SCCS), TU München, Germany
§Thermodynamics and Energy Technology (ThEt), Univ. of Paderborn, Germany

1



scales which were previously out of scope for molecular dynamics simulation. With an

efficient dynamic load balancing scheme, it delivers high scalability even for challenging

heterogeneous configurations. Presently, multi-center rigid potential models based on

Lennard-Jones sites, point charges and higher-order polarities are supported. Due to

its modular design, ls1 mardyn can be extended to new physical models, methods, and

algorithms, allowing future users to tailor it to suit their respective needs. Possible

applications include scenarios with complex geometries, e.g. for fluids at interfaces, as

well as non-equilibrium molecular dynamics simulation of heat and mass transfer.

1 Introduction

The molecular dynamics (MD) simulation code ls1 mardyn (large systems 1: molecular dy-

namics) is presented here. The ls1 mardyn program is an interdisciplinary endeavor, whose

contributors have backgrounds from engineering, computer science and physics, aiming at

studying challenging scenarios with up to trillions of molecules. In the considered systems,

the spatial distribution of the molecules may be heterogeneous and subject to rapid unpre-

dictable change. This is reflected by the algorithms and data structures as well as a highly

modular software engineering approach. The source code of ls1 mardyn is made publicly

available as free software under a two-clause BSD license.1

Molecular modelling and simulation has become a powerful computational method2,3 and

is applied to a wide variety of areas such as thermodynamic properties of fluids,4 phase equi-

libria,5,6 interfacial properties,7 phase transitions,8,9 transport coefficients,10 adsorption,11,12

mechanical properties of solids,13 flow phenomena,14,15 polymer properties,16 protein fold-

ing,17,18 or self-assembly.19 The sound physical basis of the approach makes it extremely

versatile. For a given force field, the phase space can be explored by molecular dynamics

simulation under a variety of boundary conditions, which allows gathering information on

all thermodynamic states and processes on the molecular level. If required, external forces

(e.g. an electric field) can be imposed in addition to the intermolecular interactions.

2



MD simulation has an extremely high temporal and spatial resolution of the order of

10−15 seconds and 10−11 meters, respectively. This resolution is useful for studying physical

phenomena at small length scales, such as the structure of fluid interfaces. With a time dis-

cretization on the femtosecond scale, rapid processes are immediately accessible, while slower

processes may require particularly devised sampling techniques such as metadynamics.20 The

number of molecules is also a challenge for molecular simulation. While systems of practical

interest contain extremely large numbers of molecules, e.g. of the order of 1023, the largest

ensembles that can be handled today are of the order of 1012 molecules.21 This limitation

is usually addressed by focusing on representative subvolumes, containing a limited number

of molecules, to which an appropriate set of boundary conditions is applied. Depending on

the type of information that is determined, e.g. transport properties22 or phase equilibria5,6

of bulk phases, a number of molecules of the order of 1 000 may be sufficient. However,

non-equilibrium scenarios such as condensation23,24 or mass transfer through nanoporous

membranes15,25 require much larger simulation volumes.

There are so many scalable MD codes available that a comprehensive discussion would

be beyond the scope of the present paper. For the development of MD codes, as for any

software, there are trade-offs between generality and optimization for a single purpose, which

no particular implementation can completely evade. Several popular MD simulation envi-

ronments are tailored for studying biologically relevant systems, with typical application

scenarios including conformational sampling of macromolecules in aqueous solution. The

relaxation processes of such systems are often several orders of magnitude slower than for

simple fluids, requiring an emphasis on sampling techniques and long simulation times, but

not necessarily on large systems.

The AMBER package,26 for instance, scales well for systems containing up to 400 000

molecules, facilitating MD simulations that reach the microsecond time scale.27 Similarly,

GROMACS 28,29 and NAMD,30 which also have a focus on biosystems, have been shown to

perform quite efficiently on modern HPC architectures as well. Tinker was optimized for

3



biosystems with polarizable force fields,31 whereas CHARMM,32 which was co-developed by

Nobel prize winner Martin Karplus, is suitable for coupling classical MD simulation of macro-

molecules with quantum mechanics.33 The LAMMPS program34–37 as well as DL POLY,38

which scales well for homogeneous fluid systems with up to tens of millions of molecules,

and ESPResSo,39 which emphasizes its versatility and covers both molecular and mesoscopic

simulation approaches, are highly performant codes which aim at a high degree of generality,

including many classes of pair potentials and methods. The ms2 program performs well

for the simulation of vapor-liquid equilibria and other thermodynamic properties,4 but is

limited to relatively small numbers of molecules. The IMD code,40,41 which has twice before

held the MD simulation world record in terms of system size, has a focus on multi-body

potentials for solids.

With ls1 mardyn, which is presented here, a novel MD code is made available to the

public. It is more specialized than most of the molecular simulation programs mentioned

above. In particular, it is restricted to rigid molecules, and only constant volume ensembles

are supported, so that the pressure cannot be specified in advance. Electrostatic long-range

interactions, beyond the cut-off radius, are considered by the reaction field method,42 which

cannot be applied to systems containing ions. However, ls1 mardyn is highly performant

and scalable. Holding the present world record in simulated system size,21 it is furthermore

characterized by a modular structure, facilitating a high degree of flexibility within a single

code base. Thus, ls1 mardyn is not only a simulation engine, but also a framework for

developing and evaluating simulation algorithms, e.g. different thermostats or parallelization

schemes. Therefore, its software structure supports alternative implementations for methods

in most parts of the program, including core parts such as the numerical integration of

the equations of motion. The C++ programming language was used, including low level

optimizations for particular HPC systems. In this way, ls1 mardyn has been proven to

run efficiently on a variety of architectures, from ordinary workstations to massively-parallel

supercomputers.

4



In a fluid system, neighborhood relations between molecules are always subject to rapid

change. Thus, the neighbor molecules have to be redetermined throughout the simulation.

For this purpose, ls1 mardyn employs a linked-cell data structure,43–45 which is efficiently

parallelized by spatial domain decomposition.46,47 Thereby, the simulation volume is divided

into subvolumes that are assigned to different processes. Interactions with molecules in

adjacent subvolumes are explicitly accounted for by synchronized halo regions.3

Using ls1 mardyn, a wide range of simulation scenarios can be addressed, and pre-release

versions of ls1 mardyn have already been successfully applied to a variety of topics from

chemical and process engineering: Nucleation in supersaturated vapors24,48–50 was consid-

ered with a particular focus on systems with a large number of particles.23,51,52 On the

SuperMUC, over four trillion molecules were simulated.21 The vapor-liquid surface tension

and its dependence on size and curvature was characterized.49,53–56 The ls1 mardyn program

was furthermore employed to investigate fluid flow through nanoporous membrane materi-

als57 and adsorption phenomena such as the fluid-solid contact angle in dependence on the

fluid-wall interaction.12,58

Scenario generators for ls1 mardyn are available both internally, i.e. without hard disk

input/output, and as external executables. The internal generators create the initial config-

uration directly in memory, which is distributed among the processes, facilitating a better

scalability for massively-parallel execution. A generalized output plugin interface can be

used to extract any kind of information during the simulation and to visualize the simula-

tion trajectory with MegaMol59,60 and other compatible tools.

This paper is organized as follows: Section 2 describes molecular models which are avail-

able in ls1 mardyn. Section 3 introduces the underlying computational methods. The imple-

mented load balancing approach is discussed in detail in Section 4. A performance analysis

of ls1 mardyn is presented in Section 5, including results obtained on two of the fastest HPC

systems.

5



2 Interaction models in ls1 mardyn

Molecular motion has two different aspects: External degrees of freedom, corresponding to

the translation and rotation with respect to the molecular center of mass, as well as in-

ternal degrees of freedom that describe the conformation of the molecule. In ls1 mardyn,

molecules are modeled as rigid rotators, disregarding internal degrees of freedom and em-

ploying effective pair potentials for the intermolecular interaction. This modeling approach

is suitable for all small molecules which do not exhibit significant conformational transitions.

An extension of the code to internal degrees of freedom is the subject of a presently ongoing

development, which is not discussed here. The microcanonical (NV E), canonical (NV T )

and grand-canonical (µV T ) ensembles are supported, whereby the temperature is (for NV T

and µV T ) kept constant by velocity rescaling.

The Lennard-Jones (LJ) potential

ULJ(r) = 4ε

[

(σ

r

)12

−
(σ

r

)6
]

, (1)

with the size parameter σ and the energy parameter ε, is used to account for repulsive and

dispersive interactions. It can also be employed in a truncated and shifted (LJTS) version.2

LJ potential parameters for the unlike interaction, i.e. the pair potential acting between

molecules of different species, are determined by the Lorentz and Berthelot combination

rules,61–63 which can be further adjusted by binary interaction parameters.64–66

Point charges and higher-order point polarities up to second order (i.e. dipoles and

quadrupoles), are implemented to model electrostatic interactions in terms of a multipole

expansion.67,68 This allows an efficient computational handling while sufficient accuracy is

maintained for the full range of thermophysical properties.69 The Tersoff potential70 can be

used within ls1 mardyn in order to accurately describe a variety of solid materials.71,72 As

a multi-body potential, it is computationally more expensive than electrostatics and the LJ

potential.

6



Any system of units can be used in ls1 mardyn as long as it is algebraically consistent and

includes the Boltzmann constant kB = 1 as well as the Coulomb constant kC = 1/(4πεo) = 1

among its basic units. Thereby, expressions for quantities related to temperature and the

electrostatic interactions are simplified. The units of size, energy and charge are related (by

Coulomb’s law and the Coulomb constant unit) and cannot be specified independently of

each other. A temperature is converted to energy units by using kB = 1, and vice versa. In

this way, all other units are determined; for an example, see 1.

Table 1: A consistent set of atomic units (used by the scenario generators).

Boltzmann constant kB = 1
Coulomb constant kC = (4πε0)

−1 = 1

Unit length l0 = 1 aH (Bohr’s radius) = 5.29177 × 10−11 m
Elementary charge q0 = 1 e = 9.64854 × 109 C/mol
Unit mass m0 = 1 000 u = 1 kg/mol

Unit density ρ0 = 1/l30 = 11 205.9 mol/l
Unit energy E0 = kCq

2
0/l0 = 4.35946 × 10−18 J

Unit temperature T0 = E0/kB = 315 775 K
Unit pressure p0 = ρ0E0 = 2.94211 × 1013 Pa

Unit time t0 = l0
√

m0/E0 = 3.26585 × 10−14 s
Unit velocity v0 = l0/t0 = 1620.35 m/s
Unit acceleration a0 = l0/t

2
0 = 4.96148 × 10−15 m/s2

Unit dipole moment D0 = l0q0 = 2.54176 D
Unit quadrupole moment Q0 = l20q0 = 1.34505 DÅ

3 Data structures and numerical integration

The computational core of every MD program is the calculation of forces and torques acting

on the molecules, which are based on molecular models for the physical interactions. The

choice of a suitable model depends on many factors, like the material to be simulated, the

physical effects studied or the desired accuracy. Different models may require substantially

different algorithms for the numerical solution of Newton’s equations of motion. This can

even necessitate major changes in the software structure, e.g. when long-range interactions

7



have to be considered explicitly in addition to short-range interactions, or when models with

internal degrees of freedom are used instead of rigid molecular models.

In the present version of ls1 mardyn, only short-range interactions up to a specified cut-off

radius are explicitly computed. The long-range contribution to the pressure and the energy is

approximated by isotropic cut-off corrections, i.e. by a mean-field integral for the dispersive

interaction, which is supplemented by the reaction field method42 for dipolar molecules.

Calculating short range interactions in dynamic systems requires an efficient algorithm for

finding neighbors. For this purpose, ls1 mardyn employs an adaptive linked-cell algorithm.73

The basic linked-cell algorithm divides the simulation volume into a grid of equally sized

cubic cells, which have an edge length equal to the cut-off radius rc. This ensures that

all interaction partners for any given molecule are situated either within the cell of the

molecule itself or the 26 surrounding cells. Nonetheless, these cells still contain numerous

molecules which are beyond the cut-off radius. The volume covered by 27 cells is 27 r3c ,

whereas the relevant volume containing the interaction partners is a sphere with a radius rc,

corresponding to 4πr3c/3 ≈ 4.2 r3c . Thus, in case of a homogeneous configuration, only 16%

of all pairs for which the distance is computed are actually considered for intermolecular

interactions.

For fluids with computationally inexpensive pair potentials, e.g. molecules modeled by a

single LJ site, the distance evaluation requires approximately the same computational effort

as the force calculation. Reducing the volume which is examined for interaction partners

can therefore significantly reduce the overall runtime. This can be achieved by using smaller

cells with an edge length of e.g. rc/2, which reduces the considered volume from 27 r3c to

15.6 r3c , so that for a homogeneous configuration, 27% of the computed distances are smaller

than the cut-off radius.

However, smaller cells also cause an additional effort, since 125 instead of 27 cells have

to be traversed. This is only beneficial for regions with high density, where the cost of cell

traversal is small compared to the cost of distance calculation. Moreover, many applications

8



of molecular dynamics, such as processes at interfaces, are characterized by a heterogeneous

distribution of the molecules and thus by a varying density throughout the domain. To

account for this, adaptive cell sizes depending on the local density73 are (optionally) used

in ls1 mardyn, cf. 1. Due to periodic boundary conditions, molecules leaving the simulation

volume on one side re-enter it on the opposite side, and molecules near the volume boundary

interact with those on the opposite side of the volume.

Figure 1: Adaptive cell sizes for an inhomogeneous molecule distribution. Cells that contain
significantly more molecules than others are divided into smaller subcells. According to
Newton’s third law (actio = reactio), two interacting molecules experience the same force
(in opposite directions) due to their mutual interaction, so that a suitable enumeration
scheme can be employed to reduce the amount of cell pairs that are taken into account.
Following such a scheme, it is sufficient to compute the force exerted by the highlighted
molecule on molecules from the highlighted cells.73

After the calculation of all pairwise interactions, the resulting force and torque acting

on each molecule is obtained by summation. Newton’s equations of motion are solved nu-

merically for all molecules to obtain the configuration in the next time step. Most common

methods to integrate these equations are single-step methods, where a new position at the

time t + δt is calculated from the position, velocity and acceleration at the time t. This

is repeated for a specified number of time steps n up to the time t + n δt. Usually, algo-

rithms based on the (Størmer-)Verlet method74,75 are used. Instead, ls1 mardyn employs the

leapfrog method,76 which is algebraically equivalent to the Verlet method but more accurate

9



numerically. Positions ri and velocities ṙi are calculated by

ṙi

(

t +
δt

2

)

= ṙi

(

t−
δt

2

)

+ δt r̈i(t), (2)

ri(t + δt) = ri(t) + δt ṙi

(

t +
δt

2

)

. (3)

For molecules which are not rotationally symmetric, the equations for angular momentum j

and orientation q (with q being a quaternion)2 are applied as well. In analogy to Eqs. (2)

and (3) for the translational motion, the rotational motion is described by

ji

(

t +
δt

2

)

= ji

(

t−
δt

2

)

+ δt τ i(t), (4)

qi(t + δt) = qi(t) + δt dq̇i

(

t +
δt

2

)

, (5)

where τ i is the torque divided by the rotational moment of inertia.

4 Parallelization and load balancing

4.1 Load balancing based on domain decomposition

A parallelization scheme using spatial domain decomposition divides the simulation volume

into a finite number of subvolumes, which are distributed to the available processing units.

Usually, the number of subvolumes and the number of processing units are equal. This

method scales linearly with the number of molecules and is therefore much better suited for

large systems than other methods like force or atom decomposition.34,46,77

For heterogeneous scenarios, it is not straightforward that all processes carry a similar

share of the total workload. In simulation scenarios containing coexisting liquid and vapor

phases, the local density within the simulation volume can differ significantly, e.g. by a

factor of 1 000. The number of pairwise force calculations scales quadratically with the

density. Therefore, the computational costs for two subvolumes of equal size may differ

10



by a factor of a million, resulting in many idle processes unless an efficient load balancing

scheme is employed. Depending on the simulation scenario, it may be sufficient to apply a

static load balancing scheme which is adjusted only once, or to rebalance the decomposition

dynamically, e.g. every 100 to 1 000 time steps.

Like in other parts of ls1 mardyn, an interface class is available for the domain de-

composition, allowing for the generic implementation of different decomposition approaches

and therefore facilitating the implementation of load-balancing strategies based on domain

decomposition. Several strategies were implemented in ls1 mardyn and evaluated for nucle-

ation processes.73 The strategy based on trees turned out to be the most efficient one. It is

available in the current version of ls1 mardyn as described in the remainder of the present

section.

4.2 Load costs

The purpose of load balancing is to decompose and distribute the simulation volume such

that all processes need the same computing time. Such a decomposition requires a method

to guess or measure the load that corresponds to a specific subvolume. The linked-cell algo-

rithm, which is used to identify neighbor molecules, introduces a division of the simulation

volume into cells. These cells are the basic volume units for which the load is determined.

On the basis of the computational cost for each of the cells, a load balancing algorithm can

group cells together such that p subvolumes of equal computational cost are created, where

p is the number of processing units. In 2, a 2D example is given for a simulation volume

divided into 8 × 8 cells. This volume is being partitioned along cell boundaries into two

subvolumes which will then be assigned to different processes. The implementation in ls1

mardyn requires each subvolume to cover at least two cells in each spatial dimension.

In a typical simulation, the largest part of the computational cost is caused by the force

and distance calculations. If Ni and Nj denote the number of molecules in cells i and j,

11



Figure 2: Left: The simulation volume (within the bold line) is divided into cells by the linked-
cell algorithm (thin lines) where the cell edge length is the cut-off radius rc. The simulation
volume is divided into two subvolumes along cell boundaries (dotted line). Right: Halo cells
(light shaded cells) are introduced storing copied molecule data from adjacent boundary cells
(dark shaded cells).

respectively, the number of distance calculations nd(i) for cell i can be estimated by

nd(i) ≈
Ni

2



Ni +
∑

j ∈ neigh(i)

Nj



 . (6)

The first term in Eq. (6), i.e. N2
i /2, corresponds to the distance calculations within cell i.

The second term represents the calculation of distances between molecules in cell i and an

adjacent cell j.

While Eq. (6) can be evaluated with little effort, it is far more demanding to predict

the number of force calculations. Furthermore, communication and computation costs at

the boundary between adjacent subdomains allocated to different process can be significant.

They depend on many factors, in particular on the molecule density at the boundary. There-

fore, even if the load on all compute nodes is uniform and remains constant, the location of

the subvolume boundaries has an influence on the overall performance. For a discussion of

detailed models for the respective computational costs, the reader is referred to Buchholz.73

In the present version of ls1 mardyn, the computational costs are estimated on the basis of

the number of necessary distance calculations per cell according to Eq. (6).

12



4.3 Tree-based decomposition

The distribution of cells to processes is in principle straightforward. One way is to bring the

cells into a linear order (e.g. row-wise), walk through the ordered list and sum up the load.

Having reached 1/p of the total load, the cells may be grouped together to a subvolume and

assigned to a process, ensuring that all processes carry a similar load. The problem with

this naive approach is that it creates subvolumes with large surface to volume ratios. A

homogeneous system with a cubic volume containing 100 × 100 × 100 cells, distributed to

100 processes, would for instance be decomposed to 100 subvolumes with the thickness of a

single cell so that all cells would be boundary cells. In such a case, the additional costs for

boundary handling and communication are prohibitively high.

To overcome this problem, a hierarchical decomposition scheme was implemented in

ls1 mardyn. This decomposition is similar to k-d trees,78 which are known to achieve a

good performance in general simulation tasks79 as well as in the special case of particle

simulations.80,81 The simulation volume is recursively bisected into subvolumes with similar

load by planes which are perpendicular to alternating coordinate axes.82 To determine the

optimal devision plane, the load distribution for every possible division plane is computed

and the one resulting in the minimal load imbalance is selected. This procedure is recursively

repeated until a subvolume is assigned to each process.

In case of extremely large simulation volumes, however, initial decompositions are deter-

mined following a simplified procedure, until a sufficiently small subvolume size is reached.

Thereby, the volume is decomposed into equally sized subvolumes, and the number of pro-

cesses per subvolume is assigned according to the estimated load for the respective subvolume.

5 Performance

Targeting large-scale parallel runs, ls1 mardyn has been designed for both good single-core

and parallel efficiency. While the code was written in a portable way, which allows to

13



build and execute the program on every standard Linux or Unix system, we focus here on

the HPC systems given in 2 for the performance analysis. In the following sections, we

especially explain the influence of the compiler used to build ls1 mardyn on its performance,

the overhead of the parallelization as well as its scalability.

Table 2: HPC platforms used for performance measurements.

System, location Processor type Interconnect Cores
hermit, Stuttgart AMD Opteron 6276 Cray Gemini 113 664

(Interlagos, 16 cores @2.3 GHz)
laki (NH), Stuttgart Intel Xeon X5560 InfiniBand 5 600

(Gainestown, 4 cores @2.8 GHz)
laki (SB), Stuttgart Intel Xeon E5-2670 InfiniBand 3 072

(Sandy Bridge, 8 cores @2.6 GHz)
SuperMUC, Garching Intel Xeon E5-2680 InfiniBand 147 456

(Sandy Bridge, 8 cores @2.7 GHz)

5.1 Sequential performance

The compiler used to build the code has a large impact on its performance. 3 shows results

obtained with a serial version of ls1 mardyn employing different compilers on the SB and

NH partitions of laki as well as on hermit. The test scenarios were a LJ vapor (at kT/ε =

0.7 and ρσ3 = 0.044) consisting of 40 000 molecules and ethylene oxide in a liquid state (at T

= 285 K and ρ = 19.4 mol/l) with 65 536 molecules. As can be seen, the sequential program

runs fastest on the Sandy Bridge based laki system and built with the GNU compiler. Unless

noted otherwise, the GNU compiler was also used for all further studies discussed below.

The computational complexity of the linked-cell algorithm and domain decomposition

scheme used in ls1 mardyn is O(N). To evaluate the efficiency of the implementation, runs

with different numbers of molecules were performed. The results in 4 show that in the

present case, the implementation scales almost perfectly with O(N), as the execution time

per molecule is approximately constant.

14



 0

 2

 4

 6

 8

 10

 12

 14

Hermit Laki (NH) Laki (SB)

ru
nt

im
e 

[s
]

GNU-4.7.3
Intel-13.1.3

PGI-13.4
Cray-8.1.3

 0

 20

 40

 60

 80

 100

 120

 140

Hermit Laki (NH) Laki (SB)

ru
nt

im
e 

[s
]

GNU-4.7.3
Intel-13.1.3

PGI-13.2
Cray-8.1.3

Figure 3: Sequential execution times of ls1 mardyn on various platforms with different
compilers. Scenarios: LJ vapor with N = 40 000, ρσ3 = 0.044, and kT/ε = 0.7 (left) as well
as liquid ethylene oxide with N = 65 536, ρ = 19.4 mol/l, and T = 285 K (right).

5.2 Sequential to parallel overhead

For the scalability evaluation of ls1 mardyn, different target scenarios with a varying degree

of complexity were considered, produced by the internal scenario generators, cf. 5.

• Homogeneous liquid: Ethylene oxide at a density of ρ = 16.9 mol/l and a tempera-

ture of T = 375 K. The molecular model for ethylene oxide consists of three LJ sites

and one point dipole.69

• Droplet: Simulation scenario containing a LJTS nanodroplet (cut-off radius rc = 2.5

σ) surrounded by a supersaturated vapor at a reduced temperature of kT/ε = 0.95.

• Planar interface: Simulation of a planar vapor-liquid interface of the LJTS fluid

(cut-off radius rc = 2.5 σ) at a reduced temperature of kT/ε = 0.95.

In the scenarios, the number of molecules was varied. They were simulated on the platforms

given in 2 for 1 000 time steps and with disabled final I/O.

Parallelization is associated with additional complexity due to communication and syn-

chronization between the different execution paths of the program. In comparison with se-

quential execution on a single processing unit, this introduces an overhead. To determine the

magnitude of this overhead for ls1 mardyn, the planar interface scenario with N = 102 400

15



Figure 4: Sequential execution time of ls1 mardyn per molecule, for simulations of a homo-
geneous LJ fluid at kT/ε = 0.95, ρσ3 = 0.6223 with different system sizes on laki (SB).

LJ sites was executed over 1 000 time steps on the hermit system, both with the sequential

and the MPI parallel version of the code, but using only a single process. Execution of the

sequential program took 530.9 s, while the MPI parallel version took 543.4 s. This indicates

that the overhead due to imperfect concurrency amounts to around 2% only.

5.3 Scalability

Scaling studies were carried out with the homogeneous liquid scenario on the entire hermit

system, using the standard domain decomposition method, i.e. all processes were assigned

equal volumes. The results presented in 6 show that ls1 mardyn scales favorably in the

present case.

As discussed above, load balancing is of major importance for inhomogeneous molecule

distributions. Strong scaling experiments were therefore carried out for the planar interface

and droplet scenarios. The droplet was positioned slightly off the center of the simulation

volume to avoid symmetry effects. The scenarios were run for 1 000 time steps, and the

decomposition was updated every 100 time steps. The results are presented in 7 and show a

clear advantage of the dynamic tree-based decomposition, making the simulation up to four

times as fast as the static decomposition into subdomains with equal volume.

16



(a) Homogeneous liquid (N = 2 048) (b) Droplet (N = 46 585) (c) Planar interface

(N = 102 400)

Figure 5: Scenarios used during the performance evaluation of ls1 mardyn.

In addition to comparing the run times, the effectiveness of the dynamic load balancing

implementation in ls1 mardyn is supported by traces revealing the load distribution between

the processes. 8 shows such traces, generated with vampirtrace, for 15 processes of a droplet

scenario simulation on the hermit system. For the trivial domain decomposition, 12 out of 15

processes are waiting in MPI routines most of the time, while the remaining three processes

have to carry the bulk of the actual computation. In contrast, the k-d decomposition exhibits

a more balanced distribution of computation and communication.

5.4 Trillion particle simulation

A version of ls1 mardyn was optimized for simulating single-site LJ particles on the Super-

MUC system,21 one of the largest x86 systems worldwide with 147 500 cores and a theoretical

peak performance of more than 3 PFLOPS. It is based on a high-performance FDR-10 Infini-

Band interconnect by Mellanox and composed of 18 so-called islands, each of which consists

of 512 nodes with 16 Intel Sandy Bridge EP cores at 2.7 GHz clock speed (turbo mode

disabled) sharing 32 GB of main memory.

17



Figure 6: Scaling of ls1 mardyn on hermit with the fluid example. The starting points of the
plots are placed on the diagonal, i.e. normalized to a parallel efficiency of 100 %, neglecting
the deviation from perfect scaling for the respective reference case with the smallest number
of processes.

Main features of the optimized code version include a lightweight shared-memory par-

allelization and hand-coded intrinsics in single precision for the LJ interactions within the

kernel. The kernels were implemented in AVX128 (rather than AVX256), mainly for two

reasons: First, the architecture of the Intel Sandy Bridge processor is unbalanced with re-

spect to load and store bandwidth, which may result in equal performance for both variants.

Second, AVX128 code usually shows better performance on the AMD Bulldozer architecture,

where two processor cores share one 256-bit floating-point unit.

To evaluate the performance with respect to strong scaling behavior, a scenario with

N = 9.5 × 108 particles was studied, which fits into the memory of two nodes, as 18 GB per

node are needed. Thereby, a cut-off radius of rc = 5 σ was employed. 9 shows that a very good

scaling was achieved for up to 32 768 cores using 65 536 threads. Built with the Intel compiler,

the implementation delivered a sustained performance of 113 GFLOPS, corresponding to 8

% single-precision peak performance at a parallel efficiency of 53% compared to 32 cores

(64 threads). In addition, a weak scaling analysis with N = 1.6 × 107 particles per node was

performed, where a peak performance of 12.9% or 183 TFLOPS was achieved at a parallel

efficiency of 96 % when scaling from 1 to 32 768 cores.

18



Figure 7: Accumulated execution time of ls1 mardyn for a strong scaling experiment on
hermit using the planar interface scenario with N = 5 497 000 (left) and the droplet scenario
with N = 3 698 000 (right). A straightforward static domain decomposition (�), which
assigns subdomains with equal volumes to all processing units, is compared with the dynamic
k-d tree based decomposition (◦).

As the kernel was implemented using AVX128, the same scenario was executed on the

Cray XE6 system hermit at HLRS, however, without shared-memory parallelization and

built with the GNU compiler. A noteworthy feature of the Cray XE6 machine is its 3D

torus network with Gemini interconnect, which directly plugs in to the HyperTransport 3

host interface for fast MPI communication. On hermit, the code achieved a parallel efficiency

of 82.5% and 69.7 GFLOPS in case of strong scaling and 91.5 % and 76.8 TFLOPS or 12.8%

peak performance for weak scaling, respectively, on 32 768 cores in comparison to 64 cores,

i.e. two nodes.

As can be seen in 9, the scalability on hermit is superior, particularly for strong scaling.

The Gemini interconnect allows for higher bandwidth and lower latency for MPI communi-

cations than the FDR-10 InfiniBand interconnect of SuperMUC. Furthermore, a 3D torus

network is more favorable for the communication pattern of ls1 mardyn than the tree topol-

ogy of SuperMUC, where the nodes belonging to each island (8 192 cores) communicate via

a fully connected network, while for inter-island communication four nodes have to share a

single uplink. This can also be seen in 9, where the scalability noticeably drops when going

19



(a) Trivial domain decomposition

(b) Tree-based domain decomposition

Figure 8: Traces for the droplet scenario on hermit, generated with vampirtrace. The program
state over two time steps is shown for 15 parallel processes. Computation is indicated by
blue colour, communication by red colour. Vertical lines indicate message passing between
processes.

from 8 192 to 16 384 processes.

As described by Eckhardt et al.,21 a larger weak scaling benchmark on the whole Su-

perMUC was performed with that code version. Simulating 4.125 × 1012 molecules, to our

knowledge the largest MD simulation to date, with a cut-off radius of rc = 3.5 σ, one time

step took roughly 40 s. For this scenario, a speedup of 133 183 compared to a single core

with an absolute performance of 591.2 TFLOPS was achieved, which corresponds to 9.4 %

peak performance efficiency.

20



Figure 9: Weak scaling (◦) and strong scaling (•) of ls1 mardyn on hermit (left) and Su-
perMUC (right), including the speedup (top) and the parallel efficiency (bottom), i.e. the
speedup reduced by the number of processes. Almost ideal scaling was achieved in case of
weak scaling, whereas a parallel efficiency of 53 % was obtained in the strong scaling tests
on SuperMUC and 82.5 % on hermit, compared to two nodes.

6 Conclusions

The massively parallel MD simulation code ls1 mardyn was introduced and presented. The

ls1 mardyn program is designed to simulate homogeneous and heterogeneous fluid systems

containing very large numbers of molecules. Fluid molecules are modeled as rigid rotators

consisting of multiple interaction sites, enabling simulations of a wide variety of scenarios

from noble gases to complex fluid systems under confinement. The code, which presently

holds the world record for the largest MD simulation, was evaluated on large-scale HPC

architectures. It was found to scale almost perfectly on over 140 000 cores for homogeneous

scenarios. The dynamic load balancing capability of ls1 mardyn was tested with different

scenarios, delivering a significantly improved scalability for challenging, highly heterogeneous

21



systems.

It can be concluded that ls1 mardyn, which is made publicly available as free software,1

represents the state of the art in MD simulation. It can be recommended for large-scale

applications, and particularly for processes at fluid interfaces, where highly heterogeneous

and time-dependent particle distributions may occur. Due to the modularity of its code

base, future work can adjust ls1 mardyn to newly emerging HPC architectures and further

extend the range of available molecular modeling approaches and simulation methods. In

this way, ls1 mardyn aims at driving the progress of molecular simulation in general, paving

the way to the micrometer length scale and the microsecond time scale for computational

molecular engineering.

Acknowledgement

The authors would like to thank A. Bode and M. Brehm for their help in accessing the su-

percomputing infrastructure at the Leibniz Supercomputing Center (LRZ) of the Bavarian

Academy of Sciences and Humanities. They thank D. Mader for his contribution to develop-

ing the very first version of the ls1 mardyn program, S. Grottel, M. Heinen, D. Jenz and G.

Reina for their work on libraries and tools, as well as C. Avendaño Jiménez, S. Eckelsbach,

K. Langenbach, R. Lustig, S. K. Miroshnichenko, E. A. Müller, G. Rutkai, F. Siperstein,

R. Srivastava and N. Tchipev for fruitful discussions. The present work was conducted un-

der the auspices of the Boltzmann-Zuse Society for Computational Molecular Engineering

(BZS), and the molecular simulations were carried out within the supercomputing project

pr83ri on the SuperMUC at the LRZ, Garching, and within MMHBF2 on hermit and laki

at the HLRS, Stuttgart. Financial support is acknowledged due to the IMEMO and SkaSim

grants of the German Federal Ministry of Education and Research (BMBF), and the Rein-

hart Koselleck Program as well as the Collaborative Research Center MICOS (SFB 926) of

the German Research Foundation (DFG).

22



References

(1) Large systems 1: molecular dynamics ; http://www.ls1-mardyn.de/, accessed August

19, 2014.

(2) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids ; Clarendon: Oxford,

1987.

(3) Frenkel, D.; Smit, B. Understanding Molecular Simulation, 2nd ed.; Academic Press:

San Diego, 2002.

(4) Deublein, S.; Eckl, B.; Stoll, J.; Lishchuk, S. V.; Guevara Carrión, G.; Glass, C. W.;

Merker, T.; Bernreuther, M.; Hasse, H.; Vrabec, J. Comput. Phys. Comm. 2011, 182,

2350–2367.

(5) Möller, D.; Fischer, J. Mol. Phys. 1990, 69, 463–473.

(6) Vrabec, J.; Hasse, H. Mol. Phys. 2002, 100, 3375–3383.

(7) Rusanov, A. I.; Brodskaya, E. N. J. Colloid Interf. Sci. 1977, 62, 542–555.

(8) Rao, M.; Berne, B. J.; Kalos, M. H. J. Chem. Phys. 1978, 68, 1325–1336.

(9) Angélil, R.; Diemand, J.; Tanaka, K. K.; Tanaka, H. J. Chem. Phys. 2014, 140, 074303.

(10) Chialvo, A. A.; Debenedetti, P. G. Phys. Rev. A 1991, 43, 4289–4295.

(11) Soko lowski, S.; Fischer, J. Phys. Rev. A 1990, 41, 6866–6870.

(12) Horsch, M.; Heitzig, M.; Dan, C.; Harting, J.; Hasse, H.; Vrabec, J. Langmuir 2010,

26, 10913–10917.

(13) Rösch, F.; Trebin, H.-R. Eur. Phys. Lett. 2009, 87, 66004.

(14) Thompson, P. A.; Troian, S. M. Nature 1997, 389, 360–362.

23



(15) Frentrup, H.; Avendaño, C.; Horsch, M.; Salih, A.; Müller, E. A. Mol. Sim. 2012, 38,

540–553.

(16) Müller-Plathe, F. ChemPhysChem 2002, 3, 754–769.

(17) Lee, E. H.; Hsin, J.; Sotomayor, M.; Comellas, G.; Schulten, K. Structure 2009, 17,

1295–1306.

(18) Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Shaw, D. E. Science 2011, 334, 517–520.

(19) Engel, M.; Trebin, H.-R. Phys. Rev. Lett. 2007, 98, 225505.

(20) Laio, A.; Parrinello, M. Proc. Nat. Acad. Sci. 2002, 99, 12562–12566.

(21) Eckhardt, W.; Heinecke, A.; Bader, R.; Brehm, M.; Hammer, N.; Huber, H.; Klein-

henz, H.-G.; Vrabec, J.; Hasse, H.; Horsch, M.; Bernreuther, M.; Glass, C. W.; Nietham-

mer, C.; Bode, A.; Bungartz, J. In Supercomputing – Proceedings of the XXVIII. Inter-

national Supercomputing Conference (ISC); Kunkel, J. M., Ludwig, T., Meuer, H. W.,

Eds.; Lecture Notes in Computer Science 7905; Springer: Heidelberg, 2013; pp 1–12.

(22) Guevara Carrión, G.; Vrabec, J.; Hasse, H. J. Chem. Phys. 2011, 134, 074508.

(23) Horsch, M.; Vrabec, J.; Bernreuther, M.; Grottel, S.; Reina, G.; Wix, A.; Schaber, K.;

Hasse, H. J. Chem. Phys. 2008, 128, 164510.

(24) Horsch, M.; Vrabec, J. J. Chem. Phys. 2009, 131, 184104.

(25) Müller, E. A. Curr. Opin. Chem. Eng. 2013, 2, 223–228.

(26) Case, D. A.; Cheatham, I., T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, j., K. M.;

Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. Comput. Chem. 2005, 26, 1668–

1688.

(27) Salomon Ferrer, R.; Götz, A. W.; Poole, D.; Le Grand, S.; Walker, R. C. J. Chem.

Theory Comput. 2013, 9, 3878–3888.

24



(28) Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R. Comput. Phys. Comm. 1995,

91, 43–56.

(29) Pronk, S.; Szilárd, P.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M. R.;

Smith, J. C.; Kasson, P. M.; van der Spoel, D.; Hess, B.; Lindahl, E. Bioinformatics

2013, 29, 845–854.

(30) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.;

Chipot, C.; Skeel, R. D.; Kalé, L.; Schulten, K. J. Comput. Chem 2005, 26, 1781–

1802.

(31) Ren, P.; Wu, C.; Ponder, J. W. J. Chem. Theory Comput. 2011, 7, 3143–3461.

(32) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.;

Karplus, M. J. Comput. Chem. 1983, 4, 187–217.

(33) Brooks, B. R.; Brooks, I., C. L.; Mackerell, A. D.; Nilsson, L.; Petrella, R. J.;

Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.;

Cui, Q.; Dinner, A. R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kucz-

era, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R. W.; Post, C. B.;

Pu, J. Z.; Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.;

York, D. M.; Karplus, M. J. Comput. Chem. 2009, 30, 1545–1615.

(34) Plimpton, S. J. Comput. Phys. 1995, 117, 1–19.

(35) Brown, W. M.; Wang, P.; Plimpton, S. J.; Tharrington, A. N. Comput. Phys. Comm.

2011, 182, 898–911.

(36) Plimpton, S. J.; Thompson, A. P. MRS Bulletin 2012, 37, 513–521.

(37) Diemand, J.; Angélil, R.; Tanaka, K. K.; Tanaka, H. J. Chem. Phys. 2013, 139, 074309.

(38) Todorov, I. T.; Smith, W.; Trachenko, K.; Dove, M. T. J. Materials Chem. 2006, 16,

1911–1918.

25



(39) Limbach, H.-J.; Arnold, A.; Mann, B. A.; Holm, C. Comput. Phys. Comm. 2006, 174,

704–727.

(40) Stadler, J.; Mikulla, R.; Trebin, H.-R. Int. J. Mod. Phys. C 1997, 8, 1131–1140.

(41) Roth, J.; Gähler, F.; Trebin, H.-R. Int. J. Mod. Phys. C 2000, 11, 317–322.

(42) Saager, B.; Fischer, J.; Neumann, M. Mol. Sim. 1991, 6, 27–49.

(43) Quentrec, R.; Brot, C. J. Comput. Phys. 1973, 13, 430–432.

(44) Hockney, R. W.; Eastwood, J. W. Computer Simulation Using Particles ; McGraw-Hill:

New York, 1981.

(45) Schamberger, S.; Wierum, J.-M. In Proceedings of the VII. International Conference

on Parallel Computing Technologies (PaCT); Malyshkin, V., Ed.; Lecture Notes in

Computer Science 2763; Springer: Heidelberg, 2003; pp 165–179.

(46) Bernreuther, M.; Vrabec, J. In High Performance Computing on Vector Systems ;

Resch, M., Bönisch, T., Benkert, K., Bez, W., Furui, T., Seo, Y., Eds.; Springer:

Heidelberg, 2006; pp 187–195.

(47) Bernreuther, M.; Buchholz, M.; Bungartz, H.-J. In Parallel Computing: Architectures,

Algorithms and Applications – Proceedings of the XII. International Conference on Par-

allel Computing (ParCo); Joubert, G., Bischof, C., Peters, F., Lippert, T., Bücker, M.,

Gibbon, P., Mohr, B., Eds.; Advances in Parallel Computing 15; IOS: Amsterdam,

2008; pp 53–60.

(48) Horsch, M.; Vrabec, J.; Hasse, H. Phys. Rev. E 2008, 78, 011603.

(49) Vrabec, J.; Horsch, M.; Hasse, H. J. Heat Transfer (ASME) 2009, 131, 043202.

(50) Horsch, M.; Lin, Z.; Windmann, T.; Hasse, H.; Vrabec, J. Atmospher. Res. 2011, 101,

519–526.

26



(51) Grottel, S.; Reina, G.; Vrabec, J.; Ertl, T. IEEE Transact. Vis. Comp. Graph. 2007,

13, 1624–1631.

(52) Horsch, M.; Miroshnichenko, S.; Vrabec, J. J. Physical Studies (L’viv) 2009, 13, 4004.

(53) Horsch, M.; Hasse, H.; Shchekin, A. K.; Agarwal, A.; Eckelsbach, S.; Vrabec, J.;

Mller, E. A.; Jackson, G. Phys. Rev. E 2012, 85, 031605.

(54) Werth, S.; Lishchuk, S. V.; Horsch, M.; Hasse, H. Physica A 2013, 392, 2359–2367.

(55) Horsch, M.; Hasse, H. Chem. Eng. Sci. 2014, 107, 235–244.

(56) Werth, S.; Rutkai, G.; Vrabec, J.; Horsch, M.; Hasse, H. Mol. Phys. 2014, in press

(DOI: 10.1080/00268976.2013.861086).

(57) Horsch, M.; Vrabec, J.; Bernreuther, M.; Hasse, H. In Proceedings of the 6th Interna-

tional Symposium on Turbulence, Heat and Mass Transfer ; Hanjalić, K., Ed.; Begell

House: New York, 2009; pp 89–92.

(58) Horsch, M.; Niethammer, C.; Vrabec, J.; Hasse, H. Informat. Technol. 2013, 55, 97–

101.

(59) Grottel, S.; Reina, G.; Ertl, T. In Proceedings of the IEEE Pacific Visualization Sym-

posium; Eades, P., Ertl, T., Shen, H.-W., Eds.; IEEE Computer Society, 2009; pp

65–72.

(60) Grottel, S.; Reina, G.; Dachsbacher, C.; Ertl, T. Comp. Graph. Forum 2010, 29, 953–

962.

(61) Lorentz, H. A. Ann. Phys. (Leipzig) 1881, 12, 127–136, 660–661.

(62) Schnabel, T.; Vrabec, J.; Hasse, H. J. Mol. Liq. 2007, 135, 170–178.

(63) Berthelot, D. Compt. Rend. Acad. Sci. 1898, 126, 1703–1706, 1857–1858.

27



(64) Vrabec, J.; Huang, Y.-L.; Hasse, H. Fluid Phase Equilib. 2009, 279, 120–135.

(65) Stoll, J.; Vrabec, J.; Hasse, H. AIChE J. 2003, 49, 2187–2198.

(66) Vrabec, J.; Stoll, J.; Hasse, H. Mol. Sim. 2005, 31, 215–221.

(67) Stone, A. J. Science 2008, 321, 787–789.

(68) Gray, C. G.; Gubbins, K. E. Theory of Molecular Fluids ; Oxford University Press, 1984;

Vol. 1: Fundamentals.

(69) Eckl, B.; Vrabec, J.; Hasse, H. Fluid Phase Equilib. 2008, 274, 16–26.

(70) Tersoff, J. Phys. Rev. Lett. 1988, 61, 2879–2882.

(71) Tersoff, J. Phys. Rev. B 1989, 39, 5566–5568.

(72) Ghiringhelli, L. M.; Valeriani, C.; Los, J. H.; Meijer, E. J.; Fasolino, A.; Frenkel, D.

Mol. Phys. 2008, 106, 2011–2038.

(73) Buchholz, M. Framework zur Parallelisierung von Molekulardynamiksimulationen in

verfahrenstechnischen Anwendungen. Dissertation, Technische Universität München,

2010.

(74) Störmer, C. Radium (Paris) 1912, 9, 395–399.

(75) Verlet, L. Phys. Rev. 1967, 159, 98–103.

(76) Hockney, R. W. Methods Comput. Phys. 1970, 9, 136–211.

(77) Plimpton, S.; Hendrickson, B. In Parallel Computing in Computational Chemistry ;

Mattson, T. G., Ed.; ACS: Washington, D.C., 1995; pp 114–132.

(78) Bentley, J. L. Comm. ACM 1975, 18, 509–517.

(79) Simon, H. D.; Teng, S.-H. SIAM J. Sci. Comput. 1995, 18, 1436–1445.

28



(80) Bernard, P.-E.; Gautier, T.; Trystram, D. Parallel Processing – Proceedings of the XIII.

International Conference on Parallel and Distributed Processing (IPPS/SPDP); IEEE:

Washington, D.C., 1999; pp 638–644.

(81) Fleissner, F.; Eberhard, P. In Parallel Computing: Architectures, Algorithms and Ap-

plications – Proceedings of the XII. International Conference on Parallel Computing

(ParCo); Joubert, G., Bischof, C., Peters, F., Lippert, T., Bücker, M., Gibbon, P.,

Mohr, B., Eds.; Advances in Parallel Computing 15; IOS: Amsterdam, 2008; pp 37–44.

(82) Berger, M. J.; Bokhari, S. H. IEEE Transact. Comput. 1987, C-36, 570–580.

29


