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Abstract

For predictive applications, equation of state (EOS) models have to describe

all relevant physical interactions accurately. In this contribution, the vapor–

liquid equilibria of various dipolar two-center Lennard-Jones model molecules

are determined by molecular simulation, as function of molecular elongation

and deflection angle of the dipole. It is shown that present PC-SAFT-based

EOS models require additional adjustable parameters in order to describe

the orientational effects of the dipole-moment. We present extensions of the

model to avoid the additional parameters and apply the extended equations

to model systems and real molecules.
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1 Introduction

Equation of state (EOS) models are an established tool to describe thermo-

dynamic properties of fluids and amorphous materials such as polymers [1].
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While the well-known cubic EOSs are still applied in many industrial appli-

cations, models with a better physical basis have attracted much interest, in

academia as well as in industry. The Statistical Associating Fluid Theory

(SAFT) [2] is based on Wertheim’s thermodynamic perturbation theory of

first oder (TPT-1) [3, 4] and led to a group of successful equations of state.

In this group of SAFT-type EOS models, TPT-1 is used to account for re-

versible association (e. g. hydrogen bonds) and irreversible bonding (chains

formed by covalently bonded spheres). Main reasons for the success of the

SAFT model are the good description of molecular size and flexibility effects,

the explicit description of association interactions and the addition of disper-

sion and electrostatic terms in combination with a relatively simple form of

the EOS. While the treatment of repulsion, chain formation and association

is very similar in all SAFT models, there is some variation in the treatment

of dispersion interactions and even more so concerning electrostatics. A com-

prehensive review of the development of SAFT-type models can be found in

ref [1].

In the SAFT models, the residual Helmholtz energy Ares has several con-

tributions, the hard sphere term, Ahs, the formation of chains, Achain, the

dispersion term, Adisp, one or more multipole–multipole contributions, AMM,

and an association contribution, Aassoc.

Ares = Ahs + Achain + Adisp + AMM + Aassoc. (1)

Each non-polar component i is characterized by three pure component pa-
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rameters: the number of mi connected segments with a segment-diameter pa-

rameter σi and a dispersion energy parameter ǫi. This study is not concerned

with associating compounds and we only mention that two pure component

parameters and the definition of the number of associating sites are used to

describe the associating interactions.

In many applications of SAFT models the multipolar contributions are

accounted for only implicitly or not at all. Haslam et al. [5] have shown for

the SAFT-VR model (where ‘VR’ is for a square-well potential of variable

range) that an extension of the Hudson-McCoubrey combining rule leads

to a predictive combination rule for electrostatic interactions in this model.

The polar interactions are thereby treated as quasi-dispersive interactions. A

temperature dependent and potentially large deviation of the binary square

well depth from the geometric mean of those of the pure components can

result from this procedure. However, this is not unphysical or a problem, as

suggested by other authors (see refs. in [5]).

The polar contributions were in some studies explicitly formulated in

terms of the Helmholtz energy. In most applications were these polar terms

parameterized by adjusting effective dipole moments or quadrupolar mo-

ments (or related model-parameters) to experimental data [6, 7, 8, 9, 10, 11].

Since multipole interactions have a similar range as dispersion interactions,

it is not unambiguous to determine meaningful pure component parameters.

The flat minimum of the objective function for polar parameters and the

strong correlation to the dispersion energy parameter has been noted by
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Sauer et al. [7] and it is the basis for the work of Haslam et al. [5]. In re-

cent approaches, these parameters are taken from experimental tabulations

or from quantum mechanics [12, 13, 14, 15] so that no additional adjustable

parameter is introduced with the multipolar terms.

In this contribution we consider the modeling of electrostatic interactions

in the PC-SAFT model [16, 17] in more detail. In order to do so, we briefly

review the present models for these interactions, and present molecular sim-

ulation results for model systems of two-center Lennard-Jones (2CLJ) poten-

tials with multipoles rotated out of the symmetry axis of the molecular 2CLJ

body, resulting in an effectively stronger interaction. Since these effects are

not accounted for in the present models, we suggest extensions of the existing

models and discuss the improvements achieved and the limitations that do

still exist.

2 Equation of state modeling of electrostatic

interactions

Sauer and Chapman [7] combined a model of Jog and Chapman [18, 6] where

some of the segments carrry a dipole moment forming an angle of 90 degrees

with the bond to the next segment with PC-SAFT and SAFT-HR. Here, the

number polar segments appears as an additional parameter. The model has

been applied sucessfully to, e.g., ketones [7]. An additional pure component

parameter was thereby introduced, that was fitted to pure component data.

Karakatsani et al. [10, 11] applied a perturbation theory with expressions for
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correlation integrals of hard-spheres [19] together with the PC-SAFT EOS.

An approach where the correlation integrals were set to constant values was

also tested. An additional parameter for the spatial range of polar interac-

tions was included [11]. There are several parameterizations for polar terms

based on a hard-sphere reference [20, 19, 21]. Application of these terms to

polar substances with SAFT-based EOS models (with an adjustable polar

parameter) leads, according to our experience, in some cases to ambiguous

results, where the best fit of the pure component behavior is obtained with

the polar moment (or a related parameter) equal to zero.

New multipolar terms for quadrupole–quadrupole [12], dipole–dipole [13]

and dipole–quadrupole [15] interactions were proposed in another approach,

based on molecular simulations for the 2CLJ fluid. The resulting polar terms

capture the effect of molecular elongation. However, the perturbation formal-

ism has not been based on the pair correlation function of the non-spherical

2CLJ fluid, so that the polar moments are fixed point multipole moments

oriented along the molecular axis. The advantage of this approach is that

there is no structure of a reference fluid used explicitly which may spoil the

results in the case of a strong perturbation. The disadvantage is that the

approach is based on a molecular model where the dipole and quadrupole mo-

ments are always aligned with the symmetry axis of the molecules (see Fig. 1,

right). The polar contributions were applied with the PC-SAFT EOS (then

termed PCP-SAFT model). It was found that dipole and quadrupole values

from experiment or quantum chemical calculations could be used for simple
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molecules without introducing an additional adjustable parameter. The cor-

relation results for pure components were also systematically improved, un-

like to polar contributions earlier suggested, where an improvement of pure

component behavior is found only in some cases. The treatment of more

complex molecules with multiple polar sites, however, is so far not obvious.

Leonhard et al. have combined the perturbation theory (PT) with spher-

ical reference [22, 23] with PC-SAFT, which they have termed PC-SAFTP1,

for PC-SAFT polar, version 1 [14]. The pair correlation function (PCF) of

the reference fluid, a one-center Lennard-Jones (1CLJ) fluid, has been deter-

mined by Monte Carlo (MC) simulations. In the same work [14] an empirical

combination of PC-SAFT with the dipole–dipole term of PCP-SAFT and all

other (dipole–quadrupole and quadrupole–quadrupole) terms from the PT

with spherical reference was tested. The quadrupole terms have the advan-

tage that the tensorial information of the multipolar moment is preserved.

The disadvantage of the approach is that the accuracy of the perturbation

series decreases when the PCF of the actual fluid is too different from the

spherical reference PCF, i.e. when shape effects are too different from the

spherical reference. Figure 1 visualizes the different approaches in the PCP-

SAFT and the PC-SAFTP1 model.

The generalisation of perturbation theory with spherical reference to the

non-spherical reference case may seem to be a logical next step. However, in

addition to the complexity of the necessary mathematical expressions, Vega

et al. [24] have shown that the PCF of the non-polar 2CLJ fluid changes
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drastically when combined with a dipole moment deflected from the axis of

symmetry of a strength typical for refrigerants. Therefore, this approach

seems not very promising and we evaluated other approaches here: On the

one hand the use of effective multipole moments, and on the other hand

expressions that capture the angle of dipole moments towards the molecular

elongation of small fluids.

Recently, we have shown that dipole moments, µ, and quadrupole mo-

ments, Θ, can be obtained from quantum mechanical calculations with high

accuracy compared to experimental values [25, 26]. The average absolute

deviation was found to be 2.6 % for the dipole moment and 4.2 % for the

C6 coefficient compared to experimental data. An accurate determination of

the quadrupole moment is more difficult than for the dipole moment, exper-

imentally as well as computationally. Not much accurate experimental data

is available for a critical evaluation of our results.

EOS calculations have been performed with the ThermoC software pack-

age [27] and with software developed by us.

3 Molecular model

Two-center Lennard-Jones plus point dipole fluids (2CLJD) were investigated

here by molecular simulation regarding their vapor-liquid phase behavior.

The 2CLJD pair potential is composed of two identical Lennard-Jones sites

separated by a fixed distance L (2CLJ) plus a point dipole with a moment

µ placed in the geometric center of the molecule. In this work, the polarity
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was not aligned along the molecular axis, but the dipole vector was inclined

by an angle γ with respect to it, cf. Figure 2. The full potential writes as

u2CLJD(rij,ωi,ωj, L, µ, γ, σ, ǫ) = u2CLJ(rij,ωi,ωj, L, σ, ǫ)

+ uD(rij,ωi,ωj, µ, γ), (2)

where

u2CLJ(rij,ωi,ωj, L, σ, ǫ) =
2

∑

a=1

2
∑

b=1

4ǫ

[

(

σ

rab

)12

−

(

σ

rab

)6
]

, (3)

is the Lennard-Jones part. Herein, rij is the center-center distance vector of

two molecules i and j, rab is one of the four Lennard-Jones site-site distances,

a counts the two sites of molecule i, b counts those of molecule j. The

vectors ωi and ωj represent the orientations of the two molecules. The

Lennard-Jones parameters σ and ǫ represent size and energy, respectively.

Two dipoles with the same moment µ interact with the potential

uD(rij,ωi,ωj, µ) =
µ2

|rij|
3

(sin θi sin θj cos φij − 2 cos θi cos θj) . (4)

Note that θi is the angle between the dipole vector of molecule i and the

connection line of the interacting dipoles, whereas φij is the azimuthal angle

between the dipole vectors of molecules i and j.

For very small intermolecular distances |rij| of more elongated fluids, the

positive Lennard-Jones part u2CLJ of the full potential cannot outweigh the

divergence to −∞ of the polar part uD. This divergence of u2CLJD leads

to infinite Boltzmann factors, i.e. non-existence of the configurational inte-

gral. During molecular dynamics phase space sampling within the pressure
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range in question, this artifact of the 2CLJD potential causes no problem

as intermolecular dipole-dipole distances are very improbable to fall below

critical values. However, during Monte-Carlo simulation or the calculation

of entropic properties by test particle insertion [28], critical intermolecular

dipole-dipole distances might occur. Following Möller and Fischer [29], a

hard sphere of diameter 0.4σ was placed directly on the dipolar sites to pre-

vent unphysically attractive interaction energies for critical configurations to

avoid this problem.

The parameters σ and ǫ were used for the reduction of all thermodynamic

properties as well as the other model parameters: T ∗ = TkB/ǫ, p∗ = pσ3/ǫ,

ρ∗ = ρσ3, h∗ = h/ǫ, L∗ = L/σ and µ∗2 = µ2/ (ǫσ3). For a specified reduced

dipole moment µ∗2 = 6, elongation and inclination angle were varied in the

following range: L∗ = 0.2, 0.4, 0.6, 0.8 and 1 as well as γ = 30, 60 and 90◦. In

case of the elongation L∗ = 1, where the Lennard-Jones part of the molecular

model resembles two adjoining spheres, it was not feasible to simulate the

inclination angles γ = 60◦ and 90◦. Thus, combining these values leads to a

set of 13 model fluids that were investigated here, c.f. Table 1.

4 Molecular simulation method

For all VLE simulations, the Grand Equilibrium method [30] was used, where

the temperature is the independent thermodynamic variable in case of a pure

fluid.

In the first step, it samples the liquid phase in the isobaric-isothermal
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ensemble at this temperature and some pressure not too far from the vapor

pressure. Thereby, the chemical potential and its derivative with respect to

the pressure, i.e. the molar volume, is determined. On the basis of these

data, a first-order Taylor series for the pressure dependence of the chemi-

cal potential is known. In the second step, the Grand Equilibrium method

samples the vapor phase by means of a pseudo grand canonical simulation.

Here, the chemical potential is specified according to the Taylor series from

the liquid, where the instantaneous pressure of the vapor phase is inserted.

In this way, the vapor phase simulation is steered to the saturated state,

where temperature, pressure and chemical potential of the two phases are

equal.

In all simulations the center of mass cut-off radius was rc = 5σ. Outside

the cut-off sphere, the fluid was assumed to have no preferential relative

orientation of the molecules, i.e. for the calculation of the Lennard-Jones long

range corrections, orientational averaging was done with equally weighted

relative orientations as proposed by Lustig [31]. Long range corrections for

the dipolar interaction were calculated with the reaction field method [32,

33], which has been demonstrated to yield reliable results for spherical and

elongated dipolar molecules [34, 35]. the relative permittivity ǫs was set to

infinity (tinfoil boundary condition).

Configuration space sampling was done with N = 1372 particles by molec-

ular dynamics for liquid phase and N = 500 by Monte-Carlo for vapor phase

simulations. For liquid phase simulations, the reduced integration time step
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was set to ∆t
√

m/ǫ/σ = 0.001 and the reduced membrane mass parameter

of Anderson’s barostat [36] was set to 2 · 10−5.

Starting from a face centered lattice arrangement, every liquid run was

equilibrated over 100, 000 time steps. Data production was performed over

300, 000 time steps. At each production time step 4N test particles [28] were

inserted into the liquid phase to calculate the chemical potential.

After an equilibration of 10,000 cycles, the vapor was sampled over 50,000

production cycles. One Monte Carlo loop is defined here as N trial trans-

lations, (2/3) N trial rotations, one trial volume change as well as three

insertion and deletion moves.

In some cases, where a highly dense and strongly polar liquid phase was

present, the more elaborate gradual insertion scheme had to be employed to

obtain the chemical potential with sufficient accuracy. The gradual insertion

method is an expanded ensemble method [37] based on the Monte Carlo

technique. Here, the version proposed by Nezbeda and Kolafa [38] was used,

in a form that was extended to the NpT ensemble [39]. This concept leads to

a considerably improved accuracy of the residual chemical potential. Gradual

insertion simulations were performed with N = 864 particles in the liquid

phase. Starting from a face-centered lattice arrangement, every simulation

run was given 5, 000 Monte Carlo loops to equilibrate. Data production was

performed over 100, 000 Monte Carlo loops. Further simulation parameters

for runs with gradual insertion were taken from Vrabec et al. [39].

VLE data were determined for temperatures of about 55 % to 95 %
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of T ∗

c , which is dependent on L∗, µ∗2 and γ. In the whole temperature

range all thermodynamic properties of both phases were obtained by sim-

ulation. To conduct the large number of VLE calculations, a Grid-based

Simulation Framework for Engineering Applications (GridSFEA) [40] was

employed. This is an easy-to-use mechanism for application-independent pa-

rameter studies, which enables a checkpoint-based migration of long-running

simulations in Grid environments.

5 Computation of effective reduced multipole

moments based on a continuum solvation

model

A first analysis of the results of the simulations has shown that the orientation

of the multipole moments can have strong effects on thermodynamic prop-

erties which can be modeled by effective multipole moments, as described in

the results section. It turned out that a continuum solvation model (CSM),

namely the classical COnductor-like Screening Model (COSMO) [41], can be

used to estimate the required effective multipole moments based on the ratio

of the dielectric screening energy of the actual molecule to that of a spherical

reference particle. In a CSM, a multipolar molecule is immersed in a fluid

assumed to be a completely structureless but polarizable continuum with rel-

ative permittivity ǫr. Since the permittivity enters via a universal function

into the screening energy (i.e. the function is independent from the shape

of the molecule) in the COSMO model [41], it always cancels out in the re-
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quired ratio. Therefore, the conversion from the real molecule to the effective

spherical one is independent of the density and the composition of the envi-

ronment of the solute molecule under consideration. We apply the COSMO

model classically which means the computation of the dielectric energy for

a given charge distribution, opposed to a quantum chemical calculation that

is usually performed in combination with the COSMO model. The authors

like to stress here that the COSMO model is different from the COMSO-RS

model and, in contrast to the latter, well able to differentiate between dipolar

and quadrupolar molecules. The probably more-widely known COSMO-RS

model is an extention of the COSMO model. In COSMO-RS, intermolecu-

lar interactions are modeled on the basis of the surface charges obtained by

the COSMO model and a statistical thermodynamical model of independent

segments. By these statistics, the temperature, which is absent is the purely

electrostatic COSMO model, is introduced into the COSMO-RS model.

For 2CLJ molecules a first approach consists of defining the COSMO

cavity by replacing the LJ sites by spheres of diameter σ and keeping the

bond length unchanged. COSMO cavities, however, should be space filling

which is not the case for 2CLJ fluids at liquid densities. Therefore, the size

of the COSMO cavities should be increased compared to the LJ segment

diameter. Van der Waals radii increased by 15 to 20 % are usually employed

in CSMs. Since we compare our results with a spherical cavity of the same

volume, the absolute size of the radii is irrelevant. Instead, we rescale L∗

by an adjustable, but system and state-independent, rescaling parameter
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(L∗

scaled = αL∗

COSMO) to make the effective reduced dipole moments obtained

via the COSMO model match those of the 2CLJ fluid.

We smooth the cusp between the two spheres to a radius rsolvent that is

identical to the diameter of the segments [41]. Next, the dielectric screen-

ing energy is computed for the desired multipole moments and equated to

the screening energy of the same multipole moments in a spherical cavity

of radius r. Finally, we solve for r. The ratio of the sizes of both cavities

determines the effective reduced multipole moment that has to be used in

a perturbation theory with a spherical reference according to the CSM ap-

proach. Essentially, this procedure corresponds to the assumption that two

different molecules having the same screening energy for any given relative

permittivity ǫr, should also be described similarly by a perturbation theory.

For 2CLJ molecules, the reduced dipole and quadrupole moments are

defined as

µ∗2
2CLJ =

µ2

ǫσ3
, (5)

Q∗2
2CLJ =

Q2

ǫσ5
, (6)

and in PC-SAFTP1 the reduced spherical (s) moments are defined as

µ∗2
s =

µ2

ǫVs

, (7)

Q∗2
s =

Q2

ǫV
5/3
s

. (8)

Assuming identical energy parameters for the ”real” and the effective spher-
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ical molecule with volume Vs , we obtain

µ∗2
s = µ∗2

2CLJ

σ3

Vs

. (9)

We note that for the 2CLJ model the volume of a site, not that of the

molecule, has to be used. The effective reduced dipole moment with a spher-

ical cavity is

µ∗

eff, spherical = µ∗

2CLJ

√

r3
original site

Vs

, (10)

where Vs is the volume of a spherical cavity with the same dielectric screening

energy as the original cavity.

For real molecules, we compute the gas phase charge distribution on the

MP2/aug-cc-pVDZ level and use the CHelp [42] method to fit atom-centered

charges and point dipole moments to the electrostatic potential obtained from

the full charge distribution using Gaussian09 [43]. These distributed multi-

pole moments are then used in a COSMO calculation with standard COSMO

radii. We feel that it makes more sense to use gas phase multipole moments

than COSMO ones since the here-studied molecules have relatively low di-

electric constants. A spherical particle is constructed with a point dipole

and a point quadrupole moment in its center that reproduce the molecule’s

dipole and quadrupole moments and its volume is adjusted to obtain the

same dielectric screening energy as for the real-shape particle. Finally, the

effective reduced multipole moments for use in the PC-SAFTP1 model can
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be obtained:

µ∗

eff, spherical = µ∗

QM

√

VCOSMO, real molecule

Vs

(11)

Θ∗

eff, spherical = Θ∗

QM

(

VCOSMO, real molecule

Vs

)
5

6

(12)

(13)

6 Results

6.1 Results and Discussion of the model systems

6.1.1 Comparison of equation of state theories to simulation re-

sults

Table 1 reports the VLE data of the regarded 13 model fluids. Vapor pressure

p∗σ, saturated liquid density ρ′∗, saturated vapor density ρ′′∗ and enthalpy of

vaporization ∆hv * are listed. The statistical uncertainties were determined

by usual block averaging [44] and the error propagation law.

Figures 3 to 5 illustrate the strong influence of the deflection angle on the

VLE data exemplarily for L∗ = 0.6 and µ∗2 = 6. At constant elongation and

dipole moment, the vapor-pressure curve decreases with growing deflection

angle, corresponding to an increase of particle interaction (Figure 3). At

the same time, the saturated liquid density (Figure 4) and the enthalpy of

evaporation (Figure 5) increase with increasing deflection angle. Molecules

are therefore closest packed at γ = 90o, due to an effectively stronger polar

interaction.

These results have a simple explanation, as illustrated in Figure 6: The
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interaction of two dipoles, indicated by double cones and their overlapping

regions, is hindered by the molecular geometry, i.e. by the two LJ sites in

the present case. Although the dipolar potential is the same for all three

cases, the average interaction energy is lowest (most negative) if the dipole

is oriented perpendicular to the 2CLJ body axis. The results in Figures 3

to 5 show that the combination of the molecular shape and the orientation

of its multipole moments have a strong effect on thermodynamic properties.

The results also suggest to introduce effective reduced multipole moments

to account for the fact that the accessible volume for favorable interactions

depends on the deflection angle.

Two equation of state approaches are compared here to the molecular

simulation data for the 2CLJD fluids. On the one hand, the dipole term

of the original PCP-SAFT model combined with a 2CLJ equation of state

(here abbreviated as 2CLJ-PCP). On the other hand, the dipole term of the

original PC-SAFT-P1 model with a 2CLJ equation (abbreviated as 2CLJ-P1

model). The 2CLJ EOS proposed in [12] served as the equation of state for

the non-polar 2CLJ fluid. Neither the2CLJ- P1 nor 2CLJ-PCP model take

the effect of the deflection angle into account and it gets clear from Figures 3

to 5 that neither a spherical reference nor an elongated reference fluid with

fixed dipole-angle are sufficient to describe these model fluids.

Solid lines in Figures 7 and 8 show the deviations in vapor pressure and

saturated liquid density for the 2CLJ-P1 model with the molecular multipole

moments for all elongations and deflection angels studied. The vapor pressure
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of the 2CLJ-P1 model parameterized with an effective dipole moment is

sometimes only half of that of the molecular simulation, while the 2CLJ-

PCP model can produce results almost twice as large as the correct ones.

Liquid densities deviate by 5 to 10 % for the 2CLJ-P1 model.

6.1.2 Individually adjusted effective dipole moments

When an effective multipole moment is fitted to each model system, the vapor

pressure deviations can be reduced to 2–6 % for almost all systems (data not

included in Figure 7). These results show that adjusted effective multipolar

moments can be used to model deflected multipole moments, but all predic-

tivity is lost if they have to be adjusted to data. Effectively, this approach

requires the introduction of at least one additional adjustable parameter for

real molecules, similar to other approaches [7, 11].

6.1.3 Angle dependent expansion coefficients

An alternative approach is to extend the parameterization of the polar PCP-

terms to account for the deflection angle. Five parameters were adjusted to

the molecular simulation data of Table 1. In the nomenclature of ref. [13],
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we get the parameters

a10 = â10 + 0.20144 · sin2 γ

a20 = â20 − 1.7411 · sin2 γ

a11 = â11 + 1.3165 · sin2 γ

c10 = ĉ10 + 0.28503 · sin2 γ

c20 = ĉ20 + 2.2195 · sin2 γ (14)

where the coefficients indicated by the hat are the ones published earlier for

2CLJD fluids with axially aligned dipole moments [13]. The resulting EOS is

in good agreement to molecular simulation data, as Figures 9 and 10 show.

When these terms are applied to butanone or pentanone, however, and the

angle is optimized one gets the angle zero to be most optimal. We suspect,

that the 2CLJ fluid with multipole moment located between the two sites is

not the most suitable reference for real fluids. In addition, the strategy can

not be extended to molecules with multiple polar sites.

6.1.4 Continuum solvent modeling

For predictive applications, a model without additional adjustable parame-

ters, however, is highly desirable, even if some accuracy has to be sacrificed.

Figure 11 shows a comparison of reduced multipole moments fitted to VLE

data obtained by molecular simulation and those determined directly by the

COSMO model, as described in section 5. For all systems, COSMO cavi-

ties were chosen to be a factor of 1.7 larger than the LJ diameter σ. The
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CSM-based results show a quite similar behavior, even though all structure

except that of the central molecule is neglected. The individually fitted

dipole moment for L∗ = 0 is almost 3 % smaller than the CSM-based one

(which is identical to the original one) because the Padé approximation in

the perturbation theory overestimates the effects of strong multipoles, even

for spherical particles.

When the CSM-based effective reduced dipole moments are used in the

2CLJ-P1 EOS model, the dashed lines in Figures 7 and 8 are obtained.

For most systems, the vapor pressure deviations can be reduced to 3 to

8 % with this predictive model. Exceptions are an elongation of 1.0 with

a deflection angle of 30 and L∗ = 0.8 with γ = 60o at low temperature.

For these elongations, the 2CLJ molecules are somewhat artificial since the

multipole moments in real molecules cannot approach as closely as in the

model molecules because of repulsive interactions. For the liquid volume,

however, on average no improvement is found by using effective multipole

moments.

The CSM-based approach opens up the opportunity to predictively com-

pute effective multipole moments not only for 2CLJD molecules, but the

basic assumptions should also allow to model more complicated molecules

by a perturbation theory with a spherical reference. This is especially in-

teresting when no axis of “near” rotational-symmetry axis exists. For the

future, improvement should be possible by including one (or more) solvation

shell(s) into the CSM model.
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6.2 Application of the CSM formalism to real molecules

For some molecules, for which an unsatisfactory performance of the PC-

SAFTP1 model was known and/or could be expected from the molecule’s

charge distribution, we compared the performance of the model with quan-

tum chemically obtained gas phase multipole moments and effective ones.

Interesting are linear molecules, e.g. acetonitrile (NCCH3), and molecules

that deviate strongly from rotational symmetry, (e.g. butanone). In addi-

tion to the effects studied with the model molecules in the previous section,

both molecules have off-center multipole moments. Molecules that have a

strong hexadecapole moment, (e.g. CO and C2H2) are also interesting, since

the hexadecapole moment is not accounted for in our present EOS models,

but Wojcik and Gubbins [45] found that it can have a strong decreasing ef-

fect on the effective quadrupole moment. It was also observed by us that

the PC-SAFTP1 and the PCP-SAFT models show more accurate results for

such molecules when quadrupole moments smaller than the best available

experimental or theoretical values are used.

Table 2 shows the calculated gas phase multipole moments and the three

adjusted PC-SAFTP1 parameters ǫ, σ, and m as well as the same data

for effective multipole moments computed as described in section 5. The

effective multipole moments predicted with the COSMO model on average

allow for a more accurate correlation of experimental VLE data with the usual

three adjustable parameters than the original gas phase moments do, see

Table 3. We note that the effective multipole moments for nitrogen, ethyne,
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and carbon monoxide are smaller than the gas phase ones. This coincides

with our expectations because of the zero degree orientation and because of

the hexadecapole moment with should also decrease the effective quadrupole

moment. For butanone, the effective multipole moments are larger than

the original ones. This is mainly because of the 90 degree deflection of the

carbonyl group and its off-center position. The effective moments increase for

acetonitrile, too, even though its dipole moment has a zero degree orientation.

This is probably due to its vicinity of the cavity boundary in the COSMO

calculation leading to a pronounced interaction with the continuum. In real

acetonitrile, no dipole moment of a second molecule can come in such a

favorable position. Therefore, the continuum approach may be insufficient for

strongly asymmetric molecules and one solvation shell of explicit molecules

may be necessary in the CSM calculation. This will be the objective of a

future investigation.

7 Conclusion

We have shown by molecular simulation that the orientation of molecular

multipole moments with respect to the molecular shape has a strong influ-

ence on the fluid’s thermodynamic properties. We found that even a simple

PT with spherical reference can reproduce the simulation data reasonably

when effective multipole moments are used. These effective moments can be

estimated via the dielectric screening energy obtained from a continuum sol-

vation model for the model molecules and not too asymmetric real molecules.
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The approach can also be applied to molecules with multiple polar sites. Fur-

ther investigation of this approach will probably lead to EOS models with a

better predictivity.
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List of Symbols and Abbreviations

Latin alphabet

COSMO Conductor like Screening MOdel
CSM Continuum Solvation Model
d effective segment diameter
EOS Equation Of State
h enthalpy
A free energy
a interaction site index
b interaction site index
h enthalpy
i molecule index
j molecule index
kB Boltzmann constant
L molecular elongation
m number of segments
MC Monte Carlo
N number of particles
p pressure
PCF Pair Correlation Function
PC-SAFT Perturbed-Chain Statistical Associating Fluid Theory
PCP-SAFT Perturbed-Chain Polar Statistical Associating Fluid Theory
PC-SAFTP1 Perturbed-Chain Statistical Associating Fluid Theory Polar
PT Perturbation Theory
r site-site distance
rc center of mass cut-off radius
SAFT Statistical Associating Fluid Theory
SAFT-HR Statistical Associating Fluid Theory by Huang and Radosz
SAFT-VR Statistical Associating Fluid Theory with attraction of Variable Range
T temperature
TPT Thermodynamic Perturbation Theory
u pair potential
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Vector properties

r position vector
ω orientation vector

Greek alphabet

γ inclination angle
∆hv enthalpy of vaporization
∆t integration time step
ǫ Lennard-Jones energy parameter (in simulations)

square-well depth parameter (in EOS)
ǫs relative permittivity of dielectric continuum
θi angle of nutation of molecule i
µ dipolar moment
ρ density
σ Lennard-Jones size parameter
φij azimuthal angle between the dipole vectors of molecules i and j

Subscript

D dipole
i molecule index
j molecule index
1CLJ one-center Lennard-Jones
2CLJ two-center Lennard-Jones
2CLJD two-center Lennard-Jones plus point dipole
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Superscript

* reduced property
′ saturated liquid
′′ saturated vapor
assoc association
chain chain
disp dispersion
hs hard sphere
MM multipole–multipole
res residual
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Table 1: Vapor-liquid equilibrium data of different 2CLJD model fluids with
µ∗2 = 6. For the low temperature state points indicated by †, the data are
based on the chemical potential calculated by gradual insertion in the liquid.
Otherwise, Widom’s insertion method was used. The number in parentheses
indicates the statistical uncertainty in the last decimal digit.

T ∗ p∗σ ρ′∗ ρ′′∗ ∆hv *

L∗ = 0.2, γ = 30◦

2.88 0.0058 (3) 0.7428 (2) 0.0021 (1) 28.9 (1)
3.14 0.0132 (5) 0.7138 (2) 0.0044 (2) 27.7 (1)
3.4 0.0270 (4) 0.6839 (2) 0.0087 (1) 26.2 (1)
3.66 0.0490 (5) 0.6521 (3) 0.0153 (2) 24.6 (1)
3.93 0.0838 (6) 0.6157 (4) 0.0259 (2) 22.6 (1)
4.19 0.1295 (7) 0.5753 (5) 0.0404 (2) 20.2 (1)
4.45 0.198 (1) 0.5301 (7) 0.0654 (4) 17.2 (1)
4.71 0.277 (1) 0.468 (2) 0.0982 (5) 13.6 (1)
4.97 0.381 (2) 0.387 (4) 0.1587 (8) 8.2 (2)
L∗ = 0.4, γ = 30◦

1.97 0.0013 (1) 0.6215 (1) 0.00065 (6) 23.1 (1)
2.15 0.0032 (2) 0.6001 (1) 0.0015 (1) 22.2 (1)
2.33 0.0073 (2) 0.5787 (2) 0.00330 (9) 21.3 (1)
2.51 0.0144 (3) 0.5555 (2) 0.0062 (1) 20.2 (1)
2.69 0.0250 (3) 0.5306 (3) 0.0105 (1) 19.0 (1)
2.87 0.0421 (3) 0.5039 (3) 0.0175 (1) 17.7 (1)
3.05 0.0664 (5) 0.4746 (4) 0.0279 (2) 16.0 (1)
3.23 0.1001 (6) 0.4412 (4) 0.0437 (2) 13.9 (1)
3.41 0.142 (1) 0.396 (1) 0.0667 (5) 11.4 (1)
L∗ = 0.6, γ = 30◦

1.54 † 0.00064 (3) 0.5253 (3) 0.00042 (2) 19.2 (1)
1.7 0.0020 (1) 0.5045 (1) 0.00122 (7) 18.4 (1)
1.84 0.0044 (2) 0.4860 (1) 0.0026 (1) 17.5 (1)
1.98 0.0090 (2) 0.4664 (2) 0.0049 (1) 16.6 (1)
2.12 0.0151 (3) 0.4450 (2) 0.0080 (2) 15.7 (1)
2.27 0.0273 (3) 0.4203 (2) 0.0145 (1) 14.4 (1)
2.41 0.0444 (3) 0.3946 (3) 0.0241 (2) 12.8 (1)
2.55 0.0663 (4) 0.3649 (6) 0.0376 (3) 11.1 (1)
2.69 0.0946 (5) 0.3266 (8) 0.0584 (3) 8.9 (1)
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Table 1: continued.

T ∗ p∗σ ρ′∗ ρ′′∗ ∆hv *

L∗ = 0.8, γ = 30◦

1.27 † 0.00022 (1) 0.4710 (3) 0.00017 (1) 17.7 (1)
1.28 0.00032 (8) 0.4692 (1) 0.00026 (6) 17.7 (1)
1.4 0.0010 (1) 0.4527 (1) 0.0007 (1) 16.9 (1)
1.51 0.0020 (2) 0.4365 (1) 0.0014 (2) 16.2 (1)
1.63 0.0043 (2) 0.4182 (1) 0.0028 (1) 15.3 (1)
1.75 0.0085 (3) 0.3992 (2) 0.0054 (2) 14.3 (1)
1.86 0.0145 (3) 0.3801 (2) 0.0091 (2) 13.3 (1)
1.98 0.0249 (2) 0.3570 (3) 0.0158 (2) 12.0 (1)
2.1 0.0397 (3) 0.3309 (4) 0.0263 (2) 10.6 (1)
2.21 0.0573 (3) 0.3008 (4) 0.0402 (2) 8.8 (1)
L∗ = 1, γ = 30◦

1.17 † 0.00012 (1) 0.4466 (3) 0.00010 (1) 18.6 (1)
1.2 0.00023 (9) 0.4412 (1) 0.00020 (8) 18.3 (1)
1.31 0.0005 (1) 0.4220 (1) 0.00038 (9) 17.3 (1)
1.42 0.0016 (5) 0.4029 (1) 0.0011 (4) 16.1 (1)
1.53 0.0040 (4) 0.3826 (1) 0.0028 (3) 14.9 (1)
1.64 0.0077 (6) 0.3619 (2) 0.0053 (4) 13.8 (1)
1.75 0.0159 (4) 0.3396 (3) 0.0111 (3) 12.3 (1)
1.85 0.0258 (3) 0.3164 (3) 0.0186 (2) 10.9 (1)
1.96 0.0390 (5) 0.2857 (6) 0.0291 (4) 9.2 (1)
2.07 0.0611 (4) 0.246 (1) 0.0535 (3) 6.6 (1)
L∗ = 0.2, γ = 60◦

2.82 0.0039 (3) 0.7548 (2) 0.0014 (1) 30.1 (1)
3.08 0.0096 (3) 0.7261 (2) 0.0032 (4) 28.8 (1)
3.34 0.0206 (4) 0.6978 (2) 0.0066 (1) 27.3 (1)
3.59 0.0377 (4) 0.6682 (3) 0.0117 (1) 25.9 (1)
3.85 0.0656 (6) 0.6348 (4) 0.0200 (2) 24.1 (1)
4.11 0.1038 (6) 0.5968 (5) 0.0315 (2) 22.0 (1)
4.36 0.1567 (8) 0.5578 (5) 0.0488 (3) 19.5 (1)
4.62 0.235 (1) 0.5083 (9) 0.0790 (4) 16.1 (1)
4.88 0.332 (2) 0.434 (3) 0.1307 (7) 11.0 (1)
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Table 1: continued.

T ∗ p∗σ ρ′∗ ρ′′∗ ∆hv *

L∗ = 0.4, γ = 60◦

2.09 0.0012 (2) 0.6210 (1) 0.0006 (1) 24.5 (1)
2.28 0.0032 (4) 0.5989 (2) 0.0014 (2) 23.5 (1)
2.47 0.0089 (3) 0.5762 (2) 0.0038 (1) 22.4 (1)
2.67 0.0174 (4) 0.5502 (2) 0.0071 (2) 21.1 (1)
2.7 0.0190 (2) 0.5454 (4) 0.0078 (1) 20.8 (1)
2.8 0.0256 (3) 0.5317 (4) 0.0103 (1) 20.1 (1)
2.86 0.0314 (4) 0.5242 (3) 0.0127 (1) 19.7 (1)
2.9 0.0351 (5) 0.5196 (5) 0.0141 (2) 19.4 (1)
3.0 0.0453 (6) 0.5034 (6) 0.0182 (2) 18.5 (1)
3.05 0.0522 (5) 0.4953 (4) 0.0210 (2) 18.0 (1)
3.24 0.0807 (6) 0.4615 (4) 0.0331 (2) 16.0 (1)
3.43 0.1201 (6) 0.4225 (7) 0.0518 (2) 13.6 (1)
3.62 0.173 (1) 0.370 (4) 0.0838 (5) 10.2 (1)
L∗ = 0.6, γ = 60◦

1.54 0.00007 (6) 0.5458 (1) 0.00005 (4) 22.7 (1)
1.68 0.0002 (2) 0.5287 (1) 0.00012 (1) 21.8 (1)
1.82 0.0019 (2) 0.5110 (1) 0.0011 (1) 20.7 (1)
1.96 0.0043 (4) 0.4929 (1) 0.0023 (2) 19.8 (1)
2.1 0.0078 (3) 0.4734 (2) 0.0040 (1) 18.8 (1)
2.24 0.0146 (3) 0.4531 (2) 0.0074 (1) 17.6 (1)
2.38 0.0247 (4) 0.4316 (2) 0.0123 (2) 16.4 (1)
2.5 0.0360 (4) 0.4114 (5) 0.0180 (2) 15.2 (1)
2.52 0.0395 (3) 0.4065 (4) 0.0200 (2) 14.9 (1)
2.6 0.0473 (5) 0.3903 (7) 0.0237 (2) 14.0 (1)
2.66 0.0587 (4) 0.3785 (8) 0.0304 (2) 13.2 (1)
2.7 0.0624 (7) 0.3682 (9) 0.0319 (3) 12.7 (1)
2.8 0.0851 (6) 0.3426 (9) 0.0472 (3) 10.9 (1)
L∗ = 0.8, γ = 60◦

1.43 † 0.00017 (1) 0.4881 (3) 0.00012 (1) 23.5 (1)
1.54 0.0012 (3) 0.4718 (1) 0.0008 (2) 22.1 (1)
1.68 0.0014 (5) 0.4510 (1) 0.0009 (3) 20.8 (1)
1.82 0.0055 (4) 0.4300 (1) 0.0033 (3) 19.0 (1)
1.96 0.0093 (6) 0.4074 (2) 0.0054 (4) 17.6 (1)
2.1 0.018 (1) 0.3826 (2) 0.0100 (6) 16.0 (1)
2.24 0.0310 (7) 0.3553 (7) 0.0179 (4) 14.0 (1)
2.38 0.0503 (7) 0.322 (2) 0.0305 (4) 11.6 (1)
2.52 0.0794 (8) 0.284 (4) 0.0549 (5) 8.7 (1)
2.66 0.115 (1) 0.244 (8) 0.0955 (9) 5.3 (1)
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Table 1: continued.

T ∗ p∗σ ρ′∗ ρ′′∗ ∆hv *

L∗ = 0.2, γ = 90◦

2.86 0.0038 (2) 0.7535 (2) 0.00137 (8) 30.4 (1)
3.12 0.0104 (4) 0.7250 (2) 0.0035 (1) 29.0 (1)
3.38 0.0223 (4) 0.6962 (2) 0.0071 (1) 27.6 (1)
3.64 0.0394 (4) 0.6654 (3) 0.0121 (1) 26.0 (1)
3.9 0.0684 (7) 0.6319 (4) 0.0207 (2) 24.2 (1)
4.16 0.1089 (7) 0.5943 (5) 0.0330 (2) 22.0 (1)
4.42 0.1672 (9) 0.5510 (7) 0.0524 (3) 19.3 (1)
4.68 0.242 (1) 0.499 (2) 0.0816 (5) 15.7 (1)
L∗ = 0.4, γ = 90◦

2.15 0.0014 (3) 0.6213 (1) 0.0007 (2) 25.3 (1)
2.34 0.0043 (3) 0.5996 (2) 0.0019 (1) 24.3 (1)
2.54 0.0091 (4) 0.5748 (2) 0.0038 (2) 23.0 (1)
2.73 0.0169 (8) 0.5506 (2) 0.0068 (3) 21.7 (1)
2.93 0.0327 (3) 0.5233 (3) 0.0129 (1) 20.2 (1)
3.12 0.0549 (4) 0.4946 (3) 0.0218 (2) 18.5 (1)
3.31 0.0832 (5) 0.4617 (5) 0.0335 (2) 16.5 (1)
3.51 0.1274 (9) 0.420 (1) 0.0553 (4) 13.7 (1)
3.7 0.178 (1) 0.363 (5) 0.0850 (1) 10.2 (1)
L∗ = 0.6, γ = 90◦

1.70 † 0.00044 (3) 0.5389 (4) 0.00026 (2) 23.9 (1)
1.76 0.0009 (1) 0.5304 (1) 0.00054 (8) 23.4 (1)
1.92 0.0027 (2) 0.5103 (1) 0.0015 (1) 22.1 (1)
2.08 0.0055 (4) 0.4898 (2) 0.0028 (2) 20.9 (1)
2.24 0.0110 (4) 0.4676 (2) 0.0055 (2) 19.6 (1)
2.40 0.0194 (4) 0.4432 (2) 0.0093 (2) 18.1 (1)
2.56 0.0332 (5) 0.4165 (4) 0.0159 (2) 16.4 (1)
2.72 0.0546 (6) 0.3868 (9) 0.0270 (3) 14.4 (1)
2.88 0.0848 (7) 0.351 (2) 0.0454 (4) 11.8 (1)
3.04 0.1260 (7) 0.313 (5) 0.0787 (4) 8.5 (1)
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Table 1: continued.

L∗ = 0.8, γ = 90◦

1.56 0.0012 (8) 0.4985 (2) 0.0009 (6) 27.9 (1)
1.69 0.0031 (8) 0.4795 (2) 0.0022 (6) 25.4 (1)
1.95 0.0067 (7) 0.4394 (2) 0.0039 (4) 22.7 (1)
2.08 0.009 (1) 0.4175 (2) 0.0049 (7) 21.0 (1)
2.21 0.015 (1) 0.3938 (2) 0.0080 (5) 19.1 (1)
2.34 0.0302 (9) 0.3691 (3) 0.0169 (5) 16.5 (1)
2.47 0.043 (1) 0.3387 (5) 0.0233 (6) 14.5 (1)
2.6 0.0685 (8) 0.3047 (8) 0.0423 (5) 11.5 (1)
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Table 2: Gas phase MP2/aug-cc-pVDZ//B3LYP/TZVP dipole and
quadrupole moments, effective multipole moments and PC-SAFTP1 param-
eters.

N2 CO C2H2 acetonitrile butanone
with gas phase multipole moments:
µx 0 0 0 0 -2.712
µy 0 0 0 0 -0.169
µz 0 0.29 0 -3.920 0.716
µ∗2 0 0.12 0 11.85 1.91
θxx 0.798 1.085 -3.22 -1.754 -5.375
θyy 0.798 1.085 -3.22 -1.754 2.250
θzz -1.596 -2.170 6.44 3.508 3.125
ǫ 98.723 100.780 167.708 122.996 244.066
4

6π
σ3 9.872 17.875 24.003 13.380 15.248

m 0.948 0.90 0.9563 1.797 2.543
with effective multipole moments:
µx 0 0 0 0 -2.807
µy 0 0 0 0 -0.175
µz 0 0.266 0 4.030 0.741
µ∗2 0 0.10 0 14.51 2.08
θxx 0.771 0.914 -2.87 -1.837 -5.536
θyy 0.771 0.914 -2.87 -1.837 2.318
θzz -1.542 -1.828 5.74 3.674 3.128
ǫ 98.248 105.255 186.877 103.357 241.265
4

6π
σ3 15.331 17.550 21.733 13.228 15.325

m 0.967 0.90 0.980 1.872 2.516
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Table 3: Accuracy of the PC-SAFTP2 model for several systems using ab
initio gas phase multipole momentes and efective ones computed using a
CSM.

pcalc−pexp

pexp
in %

vl, calc−vl, exp

vl, exp
in %

∆Hvap, calc−∆Hvap, exp

∆Hvap, exp
in %

N2, QM 0.18 0.44 —
N2, effective 0.14 0.42 —
CO, QM 3.7 1.1 4.6
CO, effective 1.7 1.0 1.7
C2H2, QM 5.3 4.1 —
C2H2, effective 2.8 2.0 —
NCCH3, QM 3.1 2.8 4.9
NCCH3, effective 3.6 3.9 4.0
butanone, QM 2.5 2.2 2.5
butanone, effective 2.2 1.9 1.3
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10 Figure Captions

Figure 1: SAFT chain with m = 8 segments and one dipole. Left: Scheme of the

PC-SAFTP1 model where, for the electrostatic interactions, the chain

is approximated by a hard sphere of equal molecular volume. Right:

The PCP-SAFT approach is based on a 2CLJ fluid with aligned multi-

pole moment for electrostatic interactions stretching over a maximum

of two segments.

Figure 2: (Left): 2CLJ particle of elongation L, dipole D and deflection angle

γ between dipole axis and the 2CLJ body axis. (Right): The mutual

arrangement of two dipolar 2CLJ particles is determined by five angles

α1, α2, ω1, ω2, φ12 and the distance r12.

Figure 3: Comparison of simulation data (symbols connected by solid lines) and

2CLJ-P1 and 2CLJ-PCP data for the vapor pressure for 2CLJ fluids

with µ∗2 = 6 and L∗ = 0.6 for different deflection angles. EOS-based

curves go up to the critical point while only the actually computed

points are shown for the simulations.

Figure 4: Comparison of simulation data (symbols connected by solid lines) and

2CLJ-P1 and 2CLJ-PCP data for the densities of coexisting phases for

2CLJ fluids with µ∗2 = 6 and L∗ = 0.6 for different deflection angles.

Figure 5: Comparison of simulation data (symbols connected by solid lines) and

2CLJ-P1 and 2CLJ-PCP data for the enthalpy of evaporation for 2CLJ
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fluids with µ∗2 = 6 and L∗ = 0.6 for different deflection angles.

Figure 6: Dipole interaction and spacial hindrance for three mutual particle ori-

entations. The shaded region indicates the interaction strength and the

solid straight line the symmetry axis of the 2CLJ body.

Figure 7: Deviation of vapor pressure results of the 2CLJ-P1 model from simula-

tion results based on the original multipole moments and effective ones

computed via a CSM.

Figure 8: Deviation of saturated liquid density results of the 2CLJ-P1 model

from simulation results based on the original multipole moments and

effective ones computed via a CSM.

Figure 9: Comparison of the modified PCP model to molecular simulation data

for the vapor pressure of 2CLJ fluids with L∗ = 0.6 at various dipole-

angles.

Figure 10: Comparison of the modified PCP model to molecular simulation data

for the vapor pressure of 2CLJ fluids with L∗ = 0.6 at various dipole-

angles.

Figure 11: Effective reduced multipole moments used in the P1 model. The solid

lines are obtained by adjusting D∗

eff to simulated VLE data, the dashed

lines are computed from the dielectric screening energies.
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