Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Experimentelle Untersuchungen am Bondautomaten Bildinformationen anzeigen
Qualitätsbeurteilung von Kupferbondverbindungen am Schertester Bildinformationen anzeigen
Verlässlichkeitsanalyse an einer Reibkupplung Bildinformationen anzeigen
Schwingungsmessung und -analyse in der Lehre Bildinformationen anzeigen
Transport feiner Pulver mittels Ultraschall Bildinformationen anzeigen

Experimentelle Untersuchungen am Bondautomaten

Qualitätsbeurteilung von Kupferbondverbindungen am Schertester

Verlässlichkeitsanalyse an einer Reibkupplung

Schwingungsmessung und -analyse in der Lehre

Transport feiner Pulver mittels Ultraschall

Lehrstuhl für Dynamik und Mechatronik (LDM)

Mitarbeiter des Lehrstuhls für Dynamik und Mechatronik

Jan Schütte

Kontakt
Publikationen
 Jan Schütte

Lehrstuhl für Dynamik und Mechatronik (LDM)

Wissenschaftlicher Mitarbeiter - Teamleiter "Nichtlineare Dynamik, Kontaktmechanik und Reibung"

Telefon:
+49 5251 60-1807
Fax:
+49 5251 60-1803
Büro:
P1.3.32.1
Sprechzeiten:

Nach Vereinbarung

Web:
Besucher:
Pohlweg 47-49
33098 Paderborn

Liste im Research Information System öffnen

2021

Tire Wear Reduction Based on an Extended Multibody Rear Axle Model

J. Schütte, W. Sextro, Vehicles (2021), pp. 233-256

<jats:p>To analyze the influence of suspension kinematics on tire wear, detailed simulation models are required. In this study, a non-linear, flexible multibody model of a rear axle system is built up in the simulation software MSC Adams/View. The physical model comprises the suspension kinematics, compliance, and dynamics as well as the non-linear behavior of the tire using the FTire model. FTire is chosen because it has a separate tire tread model to compute the contact pressure and friction force distribution in the tire contact patch. To build up the simulation model, a large amount of data is needed. Bushings, spring, and damper characteristics are modeled based on measurements. For the structural components (e.g., control arms), reverse engineering techniques are used. The components are 3D-scanned, reworked, and included as a modal reduced finite element (FE)-model using component mode synthesis by Craig–Bampton. Finally, the suspension model is validated by comparing the simulated kinematic and compliance characteristics to experimental results. To investigate the interaction of suspension kinematics and tire wear, straight line driving events, such as acceleration, driving with constant velocity, and deceleration, are simulated with different setups of wheel suspension kinematics. The influence of the setups on the resulting friction work between tire and road is examined, and an exemplarily calculation of tire wear based on a validated FTire tire model is carried out. The results demonstrate, on the one hand, that the chosen concept of elasto-kinematic axle leads to a relatively good match with experimental results and, on the other hand, that there are significant possibilities to reduce tire wear by adjusting the suspension kinematics.</jats:p>


Identification of joints for a load-adapted shape in a body in white using steady state vehicle simulations

S. Martin, J. Schütte, C. Bäumler, W. Sextro, T. Tröster, Forces in Mechanics (2021), 6, 100065

DOI


2020

Model-Based Investigation of the Influence of Wheel Suspension Characteristics on Tire Wear

J. Schütte, W. Sextro, in: Lecture Notes in Mechanical Engineering, 2020

DOI


2019

Halbachsprüfstand zur kinematischen, elastokinematischen und dynamischen Charakterisierung von Radaufhängungen

J. Schütte, W. Sextro, S. Kohl, in: Fachtagung Mechatronik 2019, Universitätsbibliothek Paderborn, 2019, 2019

Die Achse als einzige Verbindung zwischen Fahrzeugaufbau und Rad hat die Hauptaufgabe das Rad auf der Straße zuführen. Kinematisch betrachtet übernimmt die Radaufhängung, als Teil der Achse, die Funktion, zwischen Rad und Fahrzeugaufbaueinen vertikalen Freiheitsgrad zur Aufnahme von Fahrbahnunebenheiten zu realisieren. Die aus der RadhubundElastokinematik resultierenden Radstellungsänderungen bestimmen dabei maßgeblich die Fahrdynamik. Zur objektivenBeurteilung von Radaufhängungen ist eine genaue Charakterisierung der Radhub- und Elastokinematik erforderlich.Daher wurde zur Identifikation der kinematischen, elastokinematischen und dynamischen Radaufhängungseigenschaftenam Lehrstuhl für Dynamik und Mechatronik der Universität Paderborn ein Halbachsprüfstand entwickelt. Bei der Auslegungwurde Wert auf ein möglichst breites Einsatzspektrum gelegt. Es können verschiedene Typen von Einzelradaufhängungenin Serien- oder Prototypenkonfiguration am Prüfstand analysiert werden. Er ermöglicht eine Identifikation derdynamischen Radstellungsänderungen unter verschiedenen fahrdynamischen Lastfällen und regellosen Anregungen.


Liste im Research Information System öffnen

Die Universität der Informationsgesellschaft