Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Bildinformationen anzeigen
Bildinformationen anzeigen
Lehrstuhl für Technische Mechanik (LTM)

Publikationen


Liste im Research Information System öffnen

2019

"A possibilistic finite element method for sparse data"

A. Dridger, I. Caylak, R. Mahnken, E. Penner, Safety and Reliability (2019), pp. 58-82


"Goal-oriented h-type adaptive finite elements for micromorphic elastoplasticity"

X. Ju, R. Mahnken, Computer Methods in Applied Mechanics and Engineering (2019), pp. 297-329


Goal‐oriented adaptivity based on a model hierarchy of mean‐field and full‐field homogenization methods in linear elasticity

R. Mahnken, X. Ju, International Journal for Numerical Methods in Engineering (2019)


Simulation of a resin transfer molding process using a phase field approach within the theory of porous media

C. Dammann, R. Mahnken, Composites Part A: Applied Science and Manufacturing (2019), 120, pp. 147-160


"Damage simulation of fiber reinforced composites using mean-field homogenization methods"

P. Lenz, R. Mahnken, PAMM (2019), 19


"Optimization with constraints considering polymorphic uncertainties"

M. Mäck, I. Caylak, P. Edler, S. Freitag, M. Hanss, R. Mahnken, G. Meschke, E. Penner, GAMM-Mitteilungen (2019)


"Goal-oriented adaptivity on mean-field and full-field homogenization methods considering hierarchical unit cells"

X. Ju, R. Mahnken, PAMM (2019), 19


2018

"A coupled phase transformation and solute diffusion model for bainitic transformation"

M. Düsing, R. Mahnken, PAMM (2018), pp. 505-506


"A fuzzy-stochastic model for transversely fiber reinforced plastics"

I. Caylak, E. Penner, A. Dridger, R. Mahnken, PAMM (2018)


„A coupled phase field/diffusion model for upper and lower bainitic transformation”

M. Düsing, R. Mahnken, International Journal of Solids and Structures (2018), 135, pp. 172-183

Bainite is a steel microstructure consisting of three phases, bainitic ferrite, austenite and carbides. It forms in two different morphologies, upper and lower bainite, where different diffusion mechanisms are dominant. The aim of this work is to simulate both transformations within a unified model. To this end, we extend an own previously published model for lower bainite with diffusion across the phase interface. As a central idea we introduce weighted Helmholtz energy functions and a weighted mobility tensor, respectively. The individual Helmholtz energy functions and mobility terms are related to the different diffusion mechanisms which are responsible for the formation of both morphologies. Two representative examples illustrate the capability of the coupled phase field/diffusion model and show the expected behaviour.


    "A least squares approach for effective shear properties in an n-layered sphere model"

    R. Mahnken, P. Lenz, C. Dammann, Archive of Applied Mechanics (2018), pp. 2081-2099


    "Shear strength and failure behaviour of laser nano-structured and conventionally pre-treated interfaces in intrinsically manufactured CFRP-steel hybrids"

    C. Zinn, M. Bobbert, C. Dammann, Z. Wang, T. Tröster, R. Mahnken, G. Meschut, M. Schaper, Composites Part B: Engineering (2018), pp. 173-185


    "A fuzzy finite element method for sparse experimental data based on a possibilistic approach"

    A. Dridger, I. Caylak, R. Mahnken, PAMM (2018), pp. 55-56


    "Stochastic hyperelastic modeling considering dependency of material parameters"

    I. Caylak, A. Dridger, R. Mahnken, Computational Mechanics (2018), 62(6), pp. 1273-1285


    „Goal-oriented adaptivity on mean-field and full-field homogenization methods with a view to hierarchical unit cells“

    X. Ju, R. Mahnken, in: 31st International Workshop on Research in Mechnanics of Composite, 2018


    "Possibilistic and stochastic analysis using for rubber-like materials"

    E. Penner, I. Caylak, A. Dridger, R. Mahnken, PAMM (2018)


    "Sequential biaxial stretching of polycarbonate-films for characterization of strain-induced anisotropy"

    C. Dammann, I. Caylak, R. Mahnken, GAMM-Mitteilungen (2018)


    "Goal-oriented adaptivity for parameter identification in linear micromorphic elasticity"

    X. Ju, R. Mahnken, PAMM (2018)


    Goal-oriented adaptivity for linear elastic micromorphic continua based on primal and adjoint consistency analysis

    X. Ju, R. Mahnken, International Journal for Numerical Methods in Engineering (2018), pp. 472-473


    „On the connection between possibility theory and probability box theory in structural mechanics“

    A. Dridger, I. Caylak, R. Mahnken, E. Penner, in: 13th World Congress in Computational Mechanics , 2018


    A coupled phase field/diffusional/mechanical framework for simulation of upper and lower bainitic transformation

    M. Düsing, R. Mahnken, International Journal of Solids and Structures (2018), 162, pp. 45-59


    A multivariate stochastic material model with correlated material parameters

    E. Penner, I. Caylak, R. Mahnken, PAMM (2018), pp. 67-68


    „Mean-field homogenization of multi-layered thermo-chemo-elastic composites including damage“

    P. Lenz, R. M, in: 31st International Workshop on Research in Mechnanics of Composite, 2018


    "Simulation of upper and lower bainitic transformation with a coupled phase field/diffusion/deformation framework"

    M. Düsing, R. Mahnken, PAMM (2018), 18



    "Error-controlled homogenization for a class of linear elastic composite problems"

    X. Ju, R. Mahnken, PAMM (2018), pp. 601-602


    2017

    (n)- AND (n + 1)-LAYERED COMPOSITE SPHERE MODELS FOR THERMO-CHEMO-MECHANICAL EFFECTIVE PROPERTIES

    R. Mahnken, C. Dammann, P. Lenz, International Journal for Multiscale Computational Engineering (2017), 15(4), pp. 295-322


    "A variational formulation for fuzzy analysis in continuum mechanics"

    R. Mahnken, Mathematics and Mechanics of complex systems (2017), 5(3-4)

    In order to improve the credibility of modern simulation tools, uncertainties of different kinds have to be considered. This work is focused on epistemic uncertainties in the framework of continuum mechanics, which are taken into account by fuzzy analysis. The underlying min-max optimization problem of the extension principle is approximated by α-discretization, resulting in a separation of minimum and maximum problems. To become more universal, so-called quantities of interest are employed, which allow a general formulation for the target problem of interest. In this way, the relation to parameter identification problems based on least-squares functions is highlighted. The solutions of the related optimization problems with simple constraints are obtained with a gradient-based scheme, which is derived from a sensitvity analysis for the target problem by means of a variational formulation. Two numerical examples for the fuzzy analysis of material parameters are concerned with a necking problem at large strain elastoplasticity and a perforated strip at large strain hyperelasticity to demonstrate the versatility of the proposed variational formulation.


    "Fuzzy and stochastic analysis of rubber like materials"

    E. Penner, I. Caylak, R. Mahnken, in: Proceedings of the 2nd International Conference on Uncertainty Quantification in Computational Sciences and Engineering, Rhode Island, 15.-17.06.2017, 2017, pp. 554-564


    "A coupled phase field/diffusion model for upper and lower bainitic transformation"

    M. Düsing, R. Mahnken, International Journal of Solids and Structures (2017), pp. 172-183


    "Model adaptivity on effective elastic properties coupled with adaptive FEM"

    X. Ju, R. Mahnken, Computer Methods in Applied Mechanics and Engineering (2017), 322, pp. 208-237


    "A POSSIBILISTIC APPROACH FOR LINEAR ISOTROPIC ELASTICITY USING THE FUZZY FINITE ELEMENT METHOD"

    A. Dridger, I. Caylak, R. Mahnken, in: Proceedings of the 2nd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2017), 2017


    "Goal-oriented adaptivity for linear elastic micromorphic continua based on primal and adjoint consistency analysis"

    X. Ju, R. Mahnken, International Journal for Numerical Methods in Engineering (2017), pp. 1017-1039


    ,,Identification of Material Parameters for Constitutive Equations “

    R. Mahnken, in: Encyclopedia of Computational Mechanics, 2nd ed., John Wiley & Sons, 2017, pp. 1165


    "Thermo-chemo-mechanical Effective Properties for Homogeneous and Heterogeneous n -Phase Mixtures with Application to Curing"

    C. Dammann, P. Lenz, R. Mahnken, Procedia CIRP (2017), 66, pp. 51-56


    Liste im Research Information System öffnen

    Die Universität der Informationsgesellschaft