Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Das Versuchsfeld des LUF Bildinformationen anzeigen
Temperaturüberwachung der Ölhydraulik einer Umformpresse Bildinformationen anzeigen
Thermomechanische Behandlung einer Stahlprobe (Presshärten) Bildinformationen anzeigen
Reibdrücken: Verschließen eines Rohres Bildinformationen anzeigen
Werkzeug zum Innendrückwalzen Bildinformationen anzeigen
Spanende Bearbeitung eines Umformwerkzeuges (Vorlesung Werkzeugtechnologie) Bildinformationen anzeigen

Das Versuchsfeld des LUF

Temperaturüberwachung der Ölhydraulik einer Umformpresse

Thermomechanische Behandlung einer Stahlprobe (Presshärten)

Reibdrücken: Verschließen eines Rohres

Werkzeug zum Innendrückwalzen

Spanende Bearbeitung eines Umformwerkzeuges (Vorlesung Werkzeugtechnologie)

Mitarbeiter des LUF

Bahman Arian, M.Sc.

Kontakt
Publikationen
 Bahman Arian, M.Sc.

Umformende und Spanende Fertigungstechnik

Wissenschaftlicher Mitarbeiter

Telefon:
+49 5251 60-5341
Büro:
IW1.860
Besucher:
Pohlweg 53
33098 Paderborn

Liste im Research Information System öffnen

2022

Produktkennzeichnung durch lokal definierte Einstellung von ferromagnetischen Eigenschaften beim Drückwalzen von metastabilen Stahlwerkstoffen

B. Arian, W. Homberg, L. Kersting, A. Trächtler, J. Rozo Vasquez, in: 36. Aachener Stahlkolloquium – Umformtechnik “Ideen Form geben“, 2022, pp. 333-347


Innovative Online Measurement and Modelling Approach for Property-Controlled Flow Forming Processes

L. Kersting, B. Arian, J.R. Vasquez, A. Trächtler, W. Homberg, F. Walther, Key Engineering Materials (2022), 926, pp. 862-874

<jats:p>The production of complex multi-functional, high-strength parts is becoming increasingly important in the industry. Especially with small batch size, the incremental flow forming processes can be advantageous. The production of parts with complex geometry and locally graded material properties currently depicts a great challenge in the flow forming process. At this point, the usage of closed-loop control for the shape and properties could be a feasible new solution. The overall aim in this project is to establish an intelligent closed-loop control system for the wall thickness as well as the α’-martensite content of AISI 304L-workpieces in a flow forming process. To reach this goal, a novel sensor concept for online measurements of the wall thickness reduction and the martensite content during forming process is proposed. It includes the setup of a modified flow forming machine and the integration of the sensor system in the machine control. Additionally, a simulation model for the flow forming process is presented which describes the forming process with regard to the plastic workpiece deformation, the induced α’-martensite fraction, and the sensor behavior. This model was used for designing a closed-loop process control of the wall thickness reduction that was subsequently realized at the real plant including online measured feedback from the sensor system.</jats:p>


Coupled microscopic and micromagnetic depth-specific analysis of plastic deformation and phase transformation of metastable austenitic steel AISI 304L by flow forming

J. Rozo Vasquez, H. Kanagarajah, B. Arian, L. Kersting, W. Homberg, A. Trächtler, F. Walther, Practical Metallography (2022), 59(11), pp. 660-675

<jats:title>Abstract</jats:title> <jats:p>This paper presents the characterization of the microstructure evolution during flow forming of austenitic stainless steel AISI 304L. Due to plastic deformation of metastable austenitic steel, phase transformation from γ-austenite into α’-martensite occurs. This is initiated by the formation of shear bands as product of the external stresses. By means of coupled microscopic and micromagnetic investigations, a characterization of the microstructure was carried out. In particular, this study shows the distribution of the strain-induced α’-martensite and its influence on material properties like hardness at different depths. The microstructural analyses by means of electron backscattered diffraction (EBSD) technique, evidence a higher amount of α’-martensite (ca. 23 %) close to the outer specimen surface, where the plastic deformation and the direct contact with the forming tool take place. In the middle area (ca. 1.5 mm depth from the outer surface), the portion of transformed α’-martensite drops to 7 % and in the inner surface to 2 %. These results are well correlated with microhardness and micromagnetic measurements at different depths. EBSD and atomic force microscopy (AFM) were used to make a detailed characterization of the topography and degree of deformation of the shear bands. Likewise, the mechanisms of nucleation of α’-martensite were discussed. This research contributes to the development of micromagnetic sensors to monitor the evolution of properties during flow forming. This makes them more suitable for closed-loop property control, which offers possibilities for an application-oriented and more efficient production.</jats:p>


A flow forming process model to predict workpiece properties in AISI 304L

B. Arian, A. Oesterwinter, W. Homberg, J. Rozo Vasquez, F. Walther, L. Kersting, A. Trächtler, in: 19th Int. Conference on Metal Forming 2022, 2022


Echtzeitfähige Modellierung eines innovativen Drückwalzprozesses für die eigenschaftsgeregelte Herstellung gradierter Bauteile.

L. Kersting, A. Trächtler, B. Arian, W. Homberg, J. Rozo Vasquez, F. Walther, Diedrich, 2022


Soft sensor concept for micromagnetic depth-specific analysis of phase transformation during flow forming of AISI 304L steel.

J. Rozo Vasquez, F. Walther, B. Arian, W. Homberg, L. Kersting, A. Trächtler, in: Proceedings of the 14th International Conference on Barkhausen Noise and Micromagnetic Testing, 2022


2021

Forming of metastable austenitic stainless steel tubes with axially graded martensite content by flow-forming

B. Arian, W. Homberg, M. Riepold, A. Trächtler, J. Rozo Vasquez, F. Walther, ULiège Library, 2021


Model approaches for closed-loop property control for flow forming

M. Riepold, B. Arian, J.R. Vasquez, W. Homberg, F. Walther, A. Trächtler, Advances in Industrial and Manufacturing Engineering (2021), 100057

The implementation of control systems in metal forming processes improves product quality and productivity. By controlling workpiece properties during the process, beneficial effects caused by forming can be exploited and integrated in the product design. The overall goal of this investigation is to produce tailored tubular parts with a defined locally graded microstructure by means of reverse flow forming. For this purpose, the proposed system aims to control both the desired geometry of the workpiece and additionally the formation of strain-induced α′-martensite content in the metastable austenitic stainless steel AISI 304 L. The paper introduces an overall control scheme, a geometry model for describing the process and changes in the dimensions of the workpiece, as well as a material model for the process-induced formation of martensite, providing equations based on empirical data. Moreover, measurement systems providing a closed feedback loop are presented, including a novel softsensor for in-situ measurements of the martensite content.


Magnetic Barkhausen noise analysis for microstructural effects separation during flow forming of metastable austenite 304L.

J. Rozo Vasquez, B. Arian, M. Riepold, F. Walther, W. Homberg, A. Trächtler, in: Proceedings of the 11th International Work­shop NDT in Progress, 2021


Forming of Parts with Locally Defined Mechanical and Ferromagnetic Properties by Flow-Forming

E. Wiens, W. Homberg, B. Arian, K. Möhring, F. Walther, in: Forming the Future, Springer International Publishing, 2021

DOI


Forming of metastable austenitic stainless steel tubes with axially graded martensite content by flow-forming

B. Arian, W. Homberg, J.R. Vasquez, F. Walther, M. Riepold, A. Trächtler, 24th International Conference on Material Forming, 2021


Model approaches for closed-loop property control for flow forming

M. Riepold, B. Arian, J. Rozo Vasquez, W. Homberg, F. Walther, A. Trächtler, Advances in Industrial and Manufacturing Engineering (2021), 3


2020

Microstructural investigation on phase transformation during flow forming of the metastable austenite AISI 304

J. Rozo Vasquez, B. Arian, M. Riepold, W. Homberg, A. Trächtler, F. Walther, in: 54. Metallographie-Tagung, 2020, pp. 75-81


Liste im Research Information System öffnen

Die Universität der Informationsgesellschaft