Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Info-Icon This content is not available in English
LTM-Team
May 2019
Show image information

Prof. Dr. Rolf Mahnken, M.Sc.

Contact
Publications
Prof. Dr. Rolf Mahnken, M.Sc.

Institute for Lightweight Design with Hybrid Systems

Committee - Professor - ILH Board

Key research area Sustainable Materials, Processes and Products

Member - Professor

Engineering Mechanics

Head - Professor

Phone:
+49 5251 60-2283
Fax:
+49 5251 60-3483
Office:
P1.2.11
Visitor:
Pohlweg 47-49
33098 Paderborn

Open list in Research Information System

2023

Experimental Investigations of Carbon Fiber Reinforced Polymer Composites and Their Constituents to Determine Their Elastic Material Properties and Complementary Inhomogeneous Experiments with Local Strain Considerations

E. Penner, I. Caylak, R. Mahnken, Fibers and Polymers (2023)

<jats:title>Abstract</jats:title><jats:p>Composite materials, such as fiber reinforced polymers, become increasingly important due to their excellent mechanical and lightweight properties. In this respect, this paper reports the characterization of a unidirectional carbon fiber reinforced polymer composite material. Particularly, the mechanical behavior of the overall composite and of the individual constituents of the composite is investigated. To this end, tensile and shear tests are performed for the composite. As a result, statistics for five transversely isotropic material parameters can be established for the composite. For the description of the mechanical properties of the constituents, tensile tests for the carbon fiber as well as for the polymer matrix are carried out. In addition, the volume fraction of fibers in the matrix is determined experimentally using an ashing technique and Archimedes’ principle. For the Young’s modulus of the fiber, the Young’s modulus and transverse contraction of the matrix, as well as the volume fraction of the constituents, statistics can be concluded. The resulting mechanical properties on both scales are useful for the application and validation of different material models and homogenization methods. Finally, in order to validate the obtained properties in the future, inhomogeneous tests were performed, once a flat plate with a hole and a flat plate with semicircular notches.</jats:p>


Non-local integral-type damage combined to mean-field homogenization methods for composites and its parallel implementation

P. Lenz, R. Mahnken, Composite Structures (2023), 116911

DOI


Thermo‐chemo‐mechanical modelling of a curing process combined with mean‐field homogenization methods at large strains

P. Lenz, R. Mahnken, PAMM (2023), 22(1)

DOI



A thermodynamic framework for the phase‐field approach considering carbide precipitation during phase transformations

H. Westermann, R. Mahnken, PAMM (2023), 22(1)

DOI


A finite strain gradient theory for viscoplasticity by means of micromorphic regularization

A. Hamdoun, R. Mahnken, PAMM (2023), 22(1)

DOI


Goal‐oriented adaptivity based on a model hierarchy of mean‐field and full‐field homogenization methods in elasto‐plasticity

A. Tchomgue Simeu, R. Mahnken, PAMM (2023), 22(1)

DOI


2022

Multiscale analysis of composite structures with goal-oriented mesh adaptivity and reduced order homogenization

X. Ju, R. Mahnken, Y. Xu, L. Liang, C. Cheng, W. Zhou, Composite Structures (2022), 115699

DOI


Strain mode-dependent weighting functions in hyperelasticity accounting for verification, validation, and stability of material parameters

R. Mahnken, Archive of Applied Mechanics (2022), 92(3), pp. 713-754

<jats:title>Abstract</jats:title><jats:p>Optimized material parameters obtained from parameter identification for verification wrt a certain loading scenario are amenable to two deficiencies: Firstly, they may lack a general validity for different loading scenarios. Secondly, they may be prone to instability, such that a small perturbation of experimental data may ensue a large perturbation for the material parameters. This paper presents a framework for extension of hyperelastic models for rubber-like materials accounting for both deficiencies. To this end, an additive decomposition of the strain energy function is assumed into a sum of weighted strain mode related quantities. We propose a practical guide for model development accounting for the criteria of verification, validation and stability by means of the strain mode-dependent weighting functions and techniques of model reduction. The approach is successfully applied for 13 hyperelastic models with regard to the classical experimental data on vulcanized rubber published by Treloar (Trans Faraday Soc 40:59–70, 1944), showing both excellent fitting capabilties and stable material parameters.</jats:p>


Goal-oriented error estimation and h-adaptive finite elements for hyperelastic micromorphic continua

X. Ju, R. Mahnken, Y. Xu, L. Liang, Computational Mechanics (2022), 69(3), pp. 847-863

DOI


Physics informed neural networks for continuum micromechanics

A. Henkes, H. Wessels, R. Mahnken, Computer Methods in Applied Mechanics and Engineering (2022), 393, 114790

DOI


A statistically based strain energy function for polymer chains in rubber elasticity

R. Mahnken, J. Mirzapour, Archive of Applied Mechanics (2022), 92(11), pp. 3295-3323

DOI


Effects on Process Forces of Individual Milling Tool Edges Depending on the Cutting Angle and Cutting Speed When Milling Cfrp

R. Clemens, E. Barth, E. Uhlmann, Y. Zhan, I. Caylak, R. Mahnken, SSRN Electronic Journal (2022)

DOI


NTFA-enabled goal-oriented adaptive space–time finite elements for micro-heterogeneous elastoplasticity problems

X. Ju, R. Mahnken, Y. Xu, L. Liang, Computer Methods in Applied Mechanics and Engineering (2022), 398, 115199

DOI


A polymorphic uncertainty model for the curing process of transversely fiber-reinforced plastics

E. Penner, I. Caylak, R. Mahnken, Mathematics and Mechanics of Complex Systems (2022), 10(1), pp. 21-50

DOI


New low order Runge–Kutta schemes for asymptotically exact global error estimation of embedded methods without order reduction

R. Mahnken, Computer Methods in Applied Mechanics and Engineering (2022), 401, 115553

DOI


Microstructure transformations in a press hardening steel during tailored thermo‐mechanical processing

H. Westermann, A. Reitz, R. Mahnken, M. Schaper, O. Grydin, steel research international (2022)


2021

Hybridprofile für Trag- und Crashstrukturen

W. Drossel, M. Bobbert, M. Böhme, C. Dammann, A. Dittes, M. Gießmann, C. Hühne, J. Ihlemann, R. Kießling, T. Lampke, P. Lenz, R. Mahnken, G. Meschut, R. Müller, M. Nier, R. Prussak, M. Riemer, S. Sander, M. Schaper, I. Scharf, M. Scholze, S. Schwöbel, S. Sharafiev, M. Sinapius, D. Stefaniak, T. Tröster, M.F.-. Wagner, Z. Wang, C. Zinn, in: Intrinsische Hybridverbunde für Leichtbautragstrukturen, 2021

DOI


Constitutive modeling of viscoplasticity including phase transformations for graded thermo‐mechanical processing

H. Westermann, A. Reitz, R. Mahnken, O. Grydin, M. Schaper, PAMM (2021)

DOI


Damage simulation of thermo‐chemo‐elasto‐plastic fibre reinforced composites using mean‐field homogenization methods

P. Lenz, R. Mahnken, PAMM (2021)

DOI


An uncertainty model for the curing process of transversely fiber reinforced plastics

E. Penner, I. Caylak, R. Mahnken, PAMM (2021)

DOI


Constitutive modeling of dynamic recrystallization coupled to viscoplasticity

H. Westermann, R. Mahnken, PAMM (2021)

DOI


A deep learning driven uncertain full‐field homogenization method

A. Henkes, I. Caylak, R. Mahnken, PAMM (2021)

DOI


A non-equilibrium thermodynamic framework for viscoplasticity incorporating dynamic recrystallization at large strains

R. Mahnken, H. Westermann, International Journal of Plasticity (2021), 102988

DOI


Fuzzy and stochastic approach applied to rubber like materials

E. Penner, I. Caylak, R. Mahnken, A. Dridger, Safety and Reliability (2021), pp. 1-19

DOI


On the Thermodynamics of Dynamic Recrystallization for Viscoplasticity at Large Strains

H. Westermann, R. Mahnken, in: 14th WCCM-ECCOMAS Congress, 2021

DOI


Non-linear mean-field modelling of UD composite laminates accounting for average asymmetric plasticity of the matrix, debonding and progressive failure

C. Cheng, Z. Wang, Z. Jin, X. Ju, S. Schweizer, T. Tröster, R. Mahnken, Composites Part B: Engineering (2021), 224, 109209

As an effective and accurate method for modelling composite materials, mean-field homogenization is still not well studied in modelling non-linear and damage behaviours of UD composites. Investigated micro FE-simulations show that the matrix of UD composites exhibits different average plastic behaviour, named as average asymmetric matrix plasticity (AAMP), when the composite behaves different under shear, longitudinal and transverse loadings. In this study, a non-linear mean-field debonding model (NMFDM) combining a mean-field model and a fibre–matrix interface debonding model, is developed to simulate UD composites under consideration of AAMP, fibre–matrix interface damage and progressive failure. AAMP is considered by using so-called stress mode factor, which is expressed in terms of basic invariants of the matrix deviatoric stress tensor and is used as an indicator for detection of differences in the loading mode. The material behaviour of UD composites with imperfect interface is assumed identical as for perfect interface and stiffness reduced fibres. Progressive failure criteria are established with consideration of fibre breakage and matrix crack for different fibre orientations. As a representative example for the NMFDM, a C30/E201 UD composite is studied. To verify the model, experiments are conducted on polymers, carbon fibres and UD CFRPs. Finally, the model is applied to simulate a perforated CFRP laminate, which shows excellent prediction ability on deformation, debonding and progressive failure.


A general framework for mean-field homogenization of multi-layered linear elastic composites subjected to thermal and curing induced strains

P. Lenz, R. Mahnken, International Journal of Solids and Structures (2021), 111266

DOI


A nonuniform transformation field analysis for composites with strength difference effects in elastoplasticity

X. Ju, R. Mahnken, Y. Xu, L. Liang, W. Zhou, International Journal of Solids and Structures (2021), 111103

DOI


A deep learning driven pseudospectral PCE based FFT homogenization algorithm for complex microstructures

A. Henkes, I. Caylak, R. Mahnken, Computer Methods in Applied Mechanics and Engineering (2021), 114070

DOI


A modified Zerilli–Armstrong model as the asymmetric visco-plastic part of a multi-mechanism model for cutting simulations

C. Cheng, R. Mahnken, Archive of Applied Mechanics (2021), pp. 3869-3888

DOI


Goal-oriented mesh adaptivity for inverse problems in linear micromorphic elasticity

X. Ju, R. Mahnken, L. Liang, Y. Xu, Computers & Structures (2021), 106671

DOI


Integral‐type non‐local damage simulation of composites using mean‐field homogenization methods

P. Lenz, R. Mahnken, PAMM (2021)

DOI


Physics informed neural networks for continuum micromechanics

A. Henkes, H. Wessels, R. Mahnken, PAMM (2021)

DOI


2020

Mean-field and full-field homogenization with polymorphic uncertain geometry and material parameters

I. Caylak, E. Penner, R. Mahnken, Computer Methods in Applied Mechanics and Engineering (2020), 113439

DOI


2019

A polynomial chaos expanded hybrid fuzzy-stochastic model for transversely fiber reinforced plastics

E. Penner, I. Caylak, A. Dridger, R. Mahnken, Mathematics and Mechanics of Complex Systems (2019), pp. 99-129

DOI


A fuzzy uncertainty model for analytical and numerical homogenization of transversely fiber reinforced plastics

I. Caylak, E. Penner, R. Mahnken, PAMM (2019)

DOI


Model adaptivity on mean‐field and full‐field homogenization methods considering hierarchical unit cells

X. Ju, R. Mahnken, PAMM (2019)

DOI


Damage simulation of fiber reinforced composites using mean‐field homogenization methods

P. Lenz, R. Mahnken, PAMM (2019)

DOI



2018

A least squares approach for effective shear properties in an $${{\varvec{n}}}$$ n -layered sphere model

R. Mahnken, P. Lenz, C. Dammann, Archive of Applied Mechanics (2018), pp. 2081-2099

DOI


Derivation of an n-layered composite sphere model for thermo-chemo-mechanical effective properties

C. Dammann, R. Mahnken, P. Lenz, PAMM (2018), pp. 581-582

DOI


Unschärfe in der Simulation im Kontext von Sicherheitsdiskursen

A. Dridger, R. Mahnken, in: Wissenschaft im Angesicht »großer gesellschaftlicher Herausforderungen«, 2018

DOI


Transformation strains for bainitic variant evolution in steel

U. Ehlenbröker, M. Petersmann, T. Antretter, R. Mahnken, PAMM (2018), pp. 587-588

DOI


The effective shear modulus for ann-layered composite sphere

P. Lenz, C. Dammann, R. Mahnken, PAMM (2018), pp. 609-610

DOI


A multi-mechanism model for cutting simulation: A Ginzburg-Landau type phase gradient and numerical implementations

C. Cheng, R. Mahnken, International Journal of Solids and Structures (2018), pp. 1-17

DOI


Possibilistic and stochastic analysis using for rubber‐like materials

E. Penner, I. Caylak, A. Dridger, R. Mahnken, PAMM (2018)

DOI


A multivariate stochastic material model with correlated material parameters

E. Penner, I. Caylak, R. Mahnken, PAMM (2018), pp. 67-68

DOI


Shear strength and failure behaviour of laser nano-structured and conventionally pre-treated interfaces in intrinsically manufactured CFRP-steel hybrids

C. Zinn, M. Bobbert, C. Dammann, Z. Wang, T. Tröster, R. Mahnken, G. Meschut, M. Schaper, Composites Part B: Engineering (2018), pp. 173-185

DOI


2017

MULTIDIMENSIONAL STOCHASTIC MATERIAL MODELING AT LARGE DEFORMATIONS CONSIDERING PARAMETER CORRELATIONS

E. Penner, I. Caylak, R. Mahnken, in: Proceedings of the 2nd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2017), 2017

DOI


(n)- AND (n + 1)-LAYERED COMPOSITE SPHERE MODELS FOR THERMO-CHEMO-MECHANICAL EFFECTIVE PROPERTIES

R. Mahnken, C. Dammann, P. Lenz, International Journal for Multiscale Computational Engineering (2017), pp. 295-322

DOI


Thermo-chemo-mechanical Effective Properties for Homogeneous and Heterogeneous n -Phase Mixtures with Application to Curing

C. Dammann, P. Lenz, R. Mahnken, Procedia CIRP (2017), pp. 51-56

DOI


Thermo-Mechanical Simulation of Hard Turning with Macroscopic Models

E. Uhlmann, R. Mahnken, I.M. Ivanov, C. Cheng, in: Lecture Notes in Production Engineering, 2017

DOI



2016

A Stochastic Finite Element Method with a Deviatoric-volumetric Split for the Stochastic Linear Isotropic Elasticity Tensor

R. Mahnken, I. Caylak, A. Dridger, A Stochastic Finite Element Method with a Deviatoric-volumetric Split for the Stochastic Linear Isotropic Elasticity Tensor (2016)

This paper presents a numerical method for solution of a stochastic partial differential equation (SPDE) for a linear elastic body with stochastic coefficients (random variables and/or random fields). To this end the stochastic finite element method (SFEM) is employed, which uses W IENER’S polynomial chaos expansion in order to decompose the coefficients into deterministic and stochastic parts. As a special case, we consider isotropic material behavior with two fluctuating parameters. Computational approaches involving GALERKIN projection are applied to reduce the SPDE into a system of deterministic PDEs. Furthermore, we consider normally distributed random variables, which are assumed to be stochastically independent, and which establish the number of stochastic dimensions. Subsequently, the resulting finite element equation is solved iteratively. Finally, in a representative example for a plate with a ring hole we study the influence of different variances for material parameters on the variances for the finite element results.


Modeling of variant-interaction during bainitic phase transformation

U. Ehlenbröker, R. Mahnken, M. Petersmann, T. Antretter, IOP Conference Series: Materials Science and Engineering (2016), 012016

DOI


Extension of a multi-mechanism model: Hardness-based flow and transformation induced plasticity for austenitization

C. Cheng, R. Mahnken, International Journal of Solids and Structures (2016), pp. 127-141

DOI


Macromodelling of Transformation Induced Plasticity combined with Viscoplasticity for Low-Alloy Steels

A. Schneidt, R. Mahnken, steel research international (2016), pp. 116-123

DOI


Determination of effective properties for CFRP curing coupled to viscoleasticity based on a three-scale framework

C. Dammann, R. Mahnken, PAMM (2016), pp. 517-518

DOI


A thermodynamic framework for coupled multiphase field and diffusion models for lower bainite transformation

M. Düsing, R. Mahnken, PAMM (2016), pp. 321-322

DOI


Two accuracy improvements on nonuniform transformation field analysis for plasticity coupled to softening

X. Ju, R. Mahnken, PAMM (2016), pp. 527-528

DOI


A thermodynamic framework for coupled multiphase Ginzburg-Landau/Cahn-Hilliard systems for simulation of lower bainitic transformation

M. Düsing, R. Mahnken, Archive of Applied Mechanics (2016), pp. 1947-1964

DOI


A three-scale framework for fibre-reinforced-polymer curing part II: Mesoscopic modeling and macroscopic effective properties

R. Mahnken, C. Dammann, International Journal of Solids and Structures (2016), pp. 356-375

DOI


A three-scale framework for fibre-reinforced-polymer curing Part I: Microscopic modeling and mesoscopic effective properties

R. Mahnken, C. Dammann, International Journal of Solids and Structures (2016), pp. 341-355

DOI


An NTFA-based homogenization framework considering softening effects

X. Ju, R. Mahnken, Mechanics of Materials (2016), pp. 106-125

DOI


The concept of generalized stresses for computational manufacturing and beyond

R. Mahnken, C. Cheng, M. Düsing, U. Ehlenbröker, T. Leismann, GAMM-Mitteilungen (2016), pp. 229-265

DOI


PC expansion for material parameters using artificial data and statistical methods

I. Caylak, N. Nörenberg, R. Mahnken, PAMM (2016), pp. 191-192

DOI


A linear elastic Fuzzy Finite Element Method with two fuzzy input parameters

A. Dridger, I. Caylak, R. Mahnken, PAMM (2016), pp. 667-668

DOI


SFEM for rubber-like materials at large deformations

E. Penner, I. Caylak, N. Nörenberg, R. Mahnken, PAMM (2016), pp. 675-676

DOI



On the Design, Characterization and Simulation of Hybrid Metal-Composite Interfaces

R. Kießling, J. Ihlemann, M. Pohl, M. Stommel, C. Dammann, R. Mahnken, M. Bobbert, G. Meschut, F. Hirsch, M. Kästner, Applied Composite Materials (2016), pp. 251-269

DOI


Influences of interface and surface pretreatment on the mechanical properties of metal-CFRP hybrid structures manufactured by resin transfer moulding

T. Tröster, M. Schaper, G. Meschut, R. Mahnken, M. Bobbert, C. Lauter, C. Zinn, Z. Wang, C. Dammann, International Journal of Automotive Composites (2016), 2, pp. 272-298

DOI


Intrinsische Herstellung hybrider Strukturkomponenten in einen modifizierte RTM-Prozess

M. Bobbert, C. Dammann, Z. Wang, C. Zinn, R. Mahnken, M. Schaper, T. Tröster, 2016


Laserbehandlung intrinsisch gefertigter Hybride - strukturelle, mechanische und korrosive Eigenschaften

C. Zinn, M. Bobbert, C. Dammann, Z. Wang, M. Schaper, G. Meschut, R. Mahnken, T. Tröster, 2016


Influences of interface and surface pretreatment on the mechanical properties of metal-CFRP hybrid structures manufactured by resin transfer moulding

T. Tröster, M. Schaper, G. Meschut, R. Mahnken, M. Bobbert, C. Lauter, C. Zinn, Z. Wang, C. Dammann, International Journal of Automotive Composites (2016), 272

DOI


2015

A multi-mechanism model for cutting simulations based on the concept of generalized stresses

C. Cheng, R. Mahnken, Computational Materials Science (2015), pp. 144-158

DOI


Comparison of hyperelastic micromorphic, micropolar and microstrain continua

T. Leismann, R. Mahnken, International Journal of Non-Linear Mechanics (2015), pp. 115-127

DOI



Dual-based adaptive FEM for inelastic problems with standard FE implementations

K. Widany, R. Mahnken, International Journal for Numerical Methods in Engineering (2015), pp. 127-154

DOI


Adaptive FEM with goal-oriented error estimation and an approximation of the dual problem for inelastic problems

K. Widany, R. Mahnken, PAMM (2015), pp. 607-608

DOI


Uncertainty quantification for linear elastic bodies with two fluctuating input parameters

A. Dridger, I. Caylak, R. Mahnken, PAMM (2015), pp. 551-552

DOI


A coupled phase-field - Cahn-Hilliard model for lower bainitic transformation

M. Düsing, R. Mahnken, PAMM (2015), pp. 285-286

DOI


Transition from hyperelastic micromorphic to micropolar and microstrain continua

T. Leismann, R. Mahnken, PAMM (2015), pp. 329-330

DOI


Non-linear Stochastic Finite Element

I. Caylak, A. Dridger, R. Mahnken, PAMM (2015), pp. 179-180

DOI


Evaluation of different approaches for modeling phase transformations in machining simulation

V. Schulze, E. Uhlmann, R. Mahnken, A. Menzel, D. Biermann, A. Zabel, P. Bollig, I.M. Ivanov, C. Cheng, R. Holtermann, T. Bartel, Production Engineering (2015), pp. 437-449

DOI


A Novel Finite Element Approach to Modeling Hard Turning in Due Consideration of the Viscoplastic Asymmetry Effect

E. Uhlmann, R. Mahnken, I.M. Ivanov, C. Cheng, Procedia CIRP (2015), pp. 471-476

DOI


Simulation of lower bainitic transformation with the phase-field method considering carbide formation

M. Düsing, R. Mahnken, Computational Materials Science (2015), pp. 91-100

DOI


Parameter identification for rubber materials with artificial spatially distributed data

N. Nörenberg, R. Mahnken, Computational Mechanics (2015), pp. 353-370

DOI


Intrinsische Herstellung hybrider Strukturkomponenten in einem modifizierten RTM-Prozess

M. Bobbert, C. Dammann, Z. Wang, C. Zinn, R. Mahnken, G. Meschut, M. Schaper, T. Tröster, 2015


2014

Approximation of the dual problem for error estimation in inelastic problems

K. Widany, R. Mahnken, PAMM (2014), pp. 273-274

DOI


Macroscopic and mesoscopic modeling based on the concept of generalized stresses for cutting simulation

C. Cheng, R. Mahnken, E. Uhlmann, I.M. Ivanov, PAMM (2014), pp. 419-420

DOI


A macroscopic consitutive model on induced anisotropy for polymers with weighting functions

C. Dammann, R. Mahnken, PAMM (2014), pp. 387-388

DOI


Experimental Investigation of PC-Films Using Optical Measurements

C. Dammann, I. Caylak, R. Mahnken, International Polymer Processing (2014), pp. 260-271

<jats:title>Abstract</jats:title> <jats:p>The alignment of polymer chains is a well known microstructural evolution effect due to straining of polymers. This has a drastic influence on the macroscopic properties of the initially isotropic material. In this work, cold forming is performed at room temperature on a tensile testing machine. Polycarbonate films are examined in two loading phases. In the first phase, the specimen is loaded to induce anisotropy, and in the second, it is re-loaded, while the material direction is varied. The investigations are supported by an optical measurement system to gain knowledge about the inhomogeneous material behavior in the initial loading phase and about the anisotropic homogeneous behavior during the re-loading phase. Two dimensional strain contours are obtained from the test data. Additionally, we propose a method for approximation of the macroscopic true stress and compare the results with a common approach based on volume consistency. In the future, the test data will set a basis for parameter identification of constitutive equations taking into account a combination of inhomogenous and homogenous material behavior, exhibiting strain induced anisotropy.</jats:p>


Self-Reinforced Thermoplastic Composites - Composite Materials (Part 1)

H.. Heim, A.. Ries, V. Sch {\ "o} ppner, A.. Wibbeke,, S.. Turek, .H. Damanik, R. Mahnken, C.. Dammann, .O. W {\ "u} nsch, A. Al-Baldawi, .B.{.o.r. Rohde, A. Br {\ "u} ckner-Foit, J.{.u.r. Gausemeier, .I. Gr { \ "a} {\ ss} ler, M. Petersen, Kunststoffe international} (2014), 104, pp. 31-35

With self-reinforced thermoplastics, it is possible to produce composite systems that, unlike traditional fiber composite materials, do not contain any foreign fibers for reinforcement. Instead, thermoplastic fibers or tapes, for example made of PP or PE, are used in an identical matrix. This opens up a high potential for lightweight construction and, at the same time, very good recyclability.


Multi-scale modeling of bainitic phase transformation in multi-variant polycrystalline low alloy steels

R. Mahnken, A. Schneidt, T. Antretter, U. Ehlenbröker, M. Wolff, International Journal of Solids and Structures (2014), pp. 156-171

DOI



Parameter identification for rubber materials with artificial higher dimensional data

R. Mahnken, N. Nörenberg, PAMM (2014), pp. 427-428

DOI


Bainitic variant evolution in a low-alloyed steel including numerical aspects

U. Ehlenbröker, R. Mahnken, PAMM (2014), pp. 381-382

DOI


Self-Reinforced Thermoplastic Composites - Composite Materials (Part 2)

H.. Heim, A.. Ries, V. Sch {\ "o} ppner, A.. Wibbeke, S.. Turek, H.. Damanik, R. Mahnken, .C.. Dammann, .O.. W {\ "u} nsch, A.. Al-Baldawi, B.{.o.r.. Rohde, A. Br {\ "u} ckner-Foit, J.{.u.r. Gausemeier, .I.. Gr { \ "a} {\ ss} ler, M. Petersen, Kunststoffe international (2014)

Based on research results from the Collaborative Research Center Transregio 30, it is shown how composites made of self-reinforced, partially crystalline or highly stretched amorphous foils and fabrics for lightweight construction applications can be produced and which properties can be achieved. A locally differential, thermo-mechanical process control can be varied very efficiently, and thus graded properties can be set in the sense of functionalization.


Stabilized mixed triangular elements with area bubble functions at small and large deformations

I. Caylak, R. Mahnken, Computers & Structures (2014), pp. 172-182

DOI


Max number of publications reached - all publications can be found in our Research Infomation System.

Open list in Research Information System

Prof. Dr.-Ing. habil. Rolf Mahnken wurde im November 2002 auf den Lehrstuhl für Technische Mechanik der Fakultät für Maschinenbau an der Universität Paderborn berufen.
Nach dem Ingenieurstudium an der Universität Hannover hat er an der Universität Uxbridge, England im Jahre 1986 den Master Abschluss im Fach Numerical Analysis erworben. Von 1986 bis 1997 war er als wissenschaftlicher Mitarbeiter an der Universität Hannover und am Division of Solid Mechanics, Chalmers University of Göteborg, Schweden tätig.
In den Jahren 1997-1999 übernahm er eine Vertretungsprofessur für Materialwissenschaft an der Universität Hannover, und war danach in der Abteilung für Berechnung und Entwicklung bei der Firma Alstom in der Schweiz im Gasturbinenbau beschäftigt.
Ein wesentliches Arbeitsgebiet ist die Computersimulation komplexen Materialverhaltens. Simulationsverfahren gewinnen in vielen Bereichen, vom Maschinen- und Fahrzeugbau bis hin zur Mikroelektronik, immer mehr an Bedeutung. Als Beispiel sei der Autocrash im Fahrzeugbau genannt, der bei der Neu- und Weiterentwicklung von Automobilen unumgänglich ist. Berücksichtigt man, dass die im Prüfstand zu Schrott gefahrenen Autos mit hohen Kosten verbundene Einzelanfertigungen sind, so werden durch Simulationsverfahren enorme Kosteneinsparungen für die Firmen möglich.
In der Lehre wird den Studierenden des Grundstudiums das Handwerkszeug für eine sichere Beherrschung der physikalischen Gesetze in Kinematik, Statik und Kinetik bereitgestellt. Im Hauptstudium werden weiterführende Methoden zur Modellierung komplexen Materialverhaltens vermittelt, wobei, unter Ausnutzung der immer noch zunehmenden Leistungsfähigkeiten von Computern, vertiefte Kenntnisse über Simulationsverfahren im Vordergrund stehen. Mit der Verknüpfung von Ausbildung, Simulation, Experiment und Anwendung wird der angehende Ingenieur somit mehrschichtig auf die in der Industrie ständig steigenden Herausforderungen bei der Berechnung von Bauteilen vorbereitet.

The University for the Information Society