Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

LTM-Team
Mai 2019
Bildinformationen anzeigen

Prof. Dr. Rolf Mahnken, M.Sc.

Kontakt
Publikationen
Prof. Dr. Rolf Mahnken, M.Sc.

Institut für Leichtbau mit Hybridsystemen (ILH)

Vorstand - Professor - Vorstand ILH und FK LEM

Profilbereich Nachhaltige Werkstoffe, Prozesse und Produkte

Mitglied - Professor

Fakultät für Maschinenbau > Technische Mechanik

Leiter - Professor

Telefon:
+49 5251 60-2283
Fax:
+49 5251 60-3483
Büro:
P1.2.11.5
Besucher:
Pohlweg 47-49
33098 Paderborn

Liste im Research Information System öffnen

2021

Fuzzy and stochastic approach applied to rubber like materials

E. Penner, I. Caylak, R. Mahnken, A. Dridger, Safety and Reliability (2021), pp. 1-19

DOI


Microstructure transformations in a press hardening steel during tailored thermo‐mechanical processing

H. Westermann, A. Reitz, R. Mahnken, M. Schaper, O. Grydin, steel research international (2021)

Microstructure transformation due to thermo-mechanical processing have an acute effect the macroscopic properties of low carbon steels. This effect includes visco-plastic deformation and phase transformations. Hot forming processes such as press hardening are particularly affected. Most engineering applications require a combination of high strength and sufficient residual ductility, which can be achieved by the development of graded microstructures. In the present work, the evolution of phase transformations is investigated by linking experiments and simulations to produce graded microstructures. For this purpose, an extended material model is proposed to represent the evolution of phase transformations under inhomogeneous heating and cooling strategies. On the experimental side, phase transformations are identified during thermo-mechanical treatment of flat steel specimens using digital image correlation and thermal imaging. Based on the experimental results, the material parameters are identified, and the simulation model is validated. On the numerical side an algorithm for the finite-element simulation of phase transformations in low carbon steels is proposed. The evolution of phase transformations is presented for the simulation of tensile specimen employing the finite-element-method.


Non-linear mean-field modelling of UD composite laminates accounting for average asymmetric plasticity of the matrix, debonding and progressive failure

C. Cheng, Z. Wang, Z. Jin, X. Ju, S. Schweizer, T. Tröster, R. Mahnken, Composites Part B: Engineering (2021), 224

As an effective and accurate method for modelling composite materials, mean-field homogenization is still not well studied in modelling non-linear and damage behaviours of UD composites. Investigated micro FE-simulations show that the matrix of UD composites exhibits different average plastic behaviour, named as average asymmetric matrix plasticity (AAMP), when the composite behaves different under shear, longitudinal and transverse loadings. In this study, a non-linear mean-field debonding model (NMFDM) combining a mean-field model and a fibre–matrix interface debonding model, is developed to simulate UD composites under consideration of AAMP, fibre–matrix interface damage and progressive failure. AAMP is considered by using so-called stress mode factor, which is expressed in terms of basic invariants of the matrix deviatoric stress tensor and is used as an indicator for detection of differences in the loading mode. The material behaviour of UD composites with imperfect interface is assumed identical as for perfect interface and stiffness reduced fibres. Progressive failure criteria are established with consideration of fibre breakage and matrix crack for different fibre orientations. As a representative example for the NMFDM, a C30/E201 UD composite is studied. To verify the model, experiments are conducted on polymers, carbon fibres and UD CFRPs. Finally, the model is applied to simulate a perforated CFRP laminate, which shows excellent prediction ability on deformation, debonding and progressive failure.


A deep learning driven pseudospectral PCE based FFT homogenization algorithm for complex microstructures

A. Henkes, I. Caylak, R. Mahnken, Computer Methods in Applied Mechanics and Engineering (2021)

DOI


A non-equilibrium thermodynamic framework for viscoplasticity incorporating dynamic recrystallization at large strains

R. Mahnken, H. Westermann, International Journal of Plasticity (2021)

DOI


On the Thermodynamics of Dynamic Recrystallization for Viscoplasticity at Large Strains

H. Westermann, R. Mahnken, in: 14th WCCM-ECCOMAS Congress, 2021

DOI


A general framework for mean-field homogenization of multi-layered linear elastic composites subjected to thermal and curing induced strains

P. Lenz, R. Mahnken, International Journal of Solids and Structures (2021)

DOI


Damage simulation of thermo‐chemo‐elasto‐plastic fibre reinforced composites using mean‐field homogenization methods

P. Lenz, R. Mahnken, PAMM (2021)

DOI


Constitutive modeling of dynamic recrystallization coupled to viscoplasticity

H. Westermann, R. Mahnken, PAMM (2021)

DOI


An uncertainty model for the curing process of transversely fiber reinforced plastics

E. Penner, I. Caylak, R. Mahnken, PAMM (2021)

DOI


A deep learning driven uncertain full‐field homogenization method

A. Henkes, I. Caylak, R. Mahnken, PAMM (2021)

DOI


2020

Mean-field and full-field homogenization with polymorphic uncertain geometry and material parameters

I. Caylak, E. Penner, R. Mahnken, Computer Methods in Applied Mechanics and Engineering (2020)

DOI


2019


Die technische Biegetheorie

R. Mahnken, in: Lehrbuch der Technischen Mechanik - Band 2: Elastostatik, 2019

DOI


Energiemethoden der Elastostatik

R. Mahnken, in: Lehrbuch der Technischen Mechanik - Band 2: Elastostatik, 2019

DOI


A fuzzy uncertainty model for analytical and numerical homogenization of transversely fiber reinforced plastics

I. Caylak, E. Penner, R. Mahnken, PAMM (2019)

DOI


Einführung in Hybridstrukturen

R. Mahnken, in: Lehrbuch der Technischen Mechanik - Band 2: Elastostatik, 2019

DOI


Damage simulation of fiber reinforced composites using mean‐field homogenization methods

P. Lenz, R. Mahnken, PAMM (2019)

DOI


Schubspannungen in Biegebalken

R. Mahnken, in: Lehrbuch der Technischen Mechanik - Band 2: Elastostatik, 2019

DOI


A polynomial chaos expanded hybrid fuzzy-stochastic model for transversely fiber reinforced plastics

E. Penner, I. Caylak, A. Dridger, R. Mahnken, Mathematics and Mechanics of Complex Systems (2019), pp. 99-129

DOI


Model adaptivity on mean‐field and full‐field homogenization methods considering hierarchical unit cells

X. Ju, R. Mahnken, PAMM (2019)

DOI


Die technische Torsionstheorie

R. Mahnken, in: Lehrbuch der Technischen Mechanik - Band 2: Elastostatik, 2019

DOI


Mehrdimensionale Spannungs- und Verzerrungszustände

R. Mahnken, in: Lehrbuch der Technischen Mechanik - Band 2: Elastostatik, 2019

DOI


Einleitung

R. Mahnken, in: Lehrbuch der Technischen Mechanik - Band 2: Elastostatik, 2019

DOI


Zug und Druck in Stäben

R. Mahnken, in: Lehrbuch der Technischen Mechanik - Band 2: Elastostatik, 2019

DOI


Flächenmomente 2. Ordnung

R. Mahnken, in: Lehrbuch der Technischen Mechanik - Band 2: Elastostatik, 2019

DOI



2018

The effective shear modulus for ann-layered composite sphere

P. Lenz, C. Dammann, R. Mahnken, PAMM (2018), pp. 609-610

DOI


Transformation strains for bainitic variant evolution in steel

U. Ehlenbröker, M. Petersmann, T. Antretter, R. Mahnken, PAMM (2018), pp. 587-588

DOI


A multi-mechanism model for cutting simulation: A Ginzburg-Landau type phase gradient and numerical implementations

C. Cheng, R. Mahnken, International Journal of Solids and Structures (2018), pp. 1-17

DOI


Derivation of an n-layered composite sphere model for thermo-chemo-mechanical effective properties

C. Dammann, R. Mahnken, P. Lenz, PAMM (2018), pp. 581-582

DOI


A least squares approach for effective shear properties in an n-layered sphere model

R. Mahnken, P. Lenz, C. Dammann, Archive of Applied Mechanics (2018), pp. 2081-2099

DOI


Unschärfe in der Simulation im Kontext von Sicherheitsdiskursen

A. Dridger, R. Mahnken, in: Wissenschaft im Angesicht »großer gesellschaftlicher Herausforderungen«, 2018

DOI


2017

(n)- AND (n + 1)-LAYERED COMPOSITE SPHERE MODELS FOR THERMO-CHEMO-MECHANICAL EFFECTIVE PROPERTIES

R. Mahnken, C. Dammann, P. Lenz, International Journal for Multiscale Computational Engineering (2017), pp. 295-322

DOI


MULTIDIMENSIONAL STOCHASTIC MATERIAL MODELING AT LARGE DEFORMATIONS CONSIDERING PARAMETER CORRELATIONS

E. Penner, I. Caylak, R. Mahnken, in: Proceedings of the 2nd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2017), 2017

DOI


Thermo-Mechanical Simulation of Hard Turning with Macroscopic Models

E. Uhlmann, R. Mahnken, I.M. Ivanov, C. Cheng, in: Lecture Notes in Production Engineering, 2017

DOI


2016

A linear elastic Fuzzy Finite Element Method with two fuzzy input parameters

A. Dridger, I. Caylak, R. Mahnken, PAMM (2016), pp. 667-668

DOI


Modeling of variant-interaction during bainitic phase transformation

U. Ehlenbröker, R. Mahnken, M. Petersmann, T. Antretter, IOP Conference Series: Materials Science and Engineering (2016)

DOI


Extension of a multi-mechanism model: Hardness-based flow and transformation induced plasticity for austenitization

C. Cheng, R. Mahnken, International Journal of Solids and Structures (2016), pp. 127-141

DOI


An NTFA-based homogenization framework considering softening effects

X. Ju, R. Mahnken, Mechanics of Materials (2016), pp. 106-125

DOI


Schwerpunkte

R. Mahnken, in: Lehrbuch der Technischen Mechanik - Band 1: Starrkörperstatik, 2016

DOI



A three-scale framework for fibre-reinforced-polymer curing Part I: Microscopic modeling and mesoscopic effective properties

R. Mahnken, C. Dammann, International Journal of Solids and Structures (2016), pp. 341-355

DOI


Two accuracy improvements on nonuniform transformation field analysis for plasticity coupled to softening

X. Ju, R. Mahnken, PAMM (2016), pp. 527-528

DOI



Macromodelling of Transformation Induced Plasticity combined with Viscoplasticity for Low-Alloy Steels

A. Schneidt, R. Mahnken, steel research international (2016), pp. 116-123

DOI


A Stochastic Finite Element Method with a Deviatoric-volumetric Split for the Stochastic Linear Isotropic Elasticity Tensor

R. Mahnken, I. Caylak, A. Dridger, A Stochastic Finite Element Method with a Deviatoric-volumetric Split for the Stochastic Linear Isotropic Elasticity Tensor (2016)

This paper presents a numerical method for solution of a stochastic partial differential equation (SPDE) for a linear elastic body with stochastic coefficients (random variables and/or random fields). To this end the stochastic finite element method (SFEM) is employed, which uses W IENER’S polynomial chaos expansion in order to decompose the coefficients into deterministic and stochastic parts. As a special case, we consider isotropic material behavior with two fluctuating parameters. Computational approaches involving GALERKIN projection are applied to reduce the SPDE into a system of deterministic PDEs. Furthermore, we consider normally distributed random variables, which are assumed to be stochastically independent, and which establish the number of stochastic dimensions. Subsequently, the resulting finite element equation is solved iteratively. Finally, in a representative example for a plate with a ring hole we study the influence of different variances for material parameters on the variances for the finite element results.


A three-scale framework for fibre-reinforced-polymer curing part II: Mesoscopic modeling and macroscopic effective properties

R. Mahnken, C. Dammann, International Journal of Solids and Structures (2016), pp. 356-375

DOI


Kinematik von Starrkörpersystemem in der Ebene

R. Mahnken, in: Lehrbuch der Technischen Mechanik - Band 1: Starrkörperstatik, 2016

DOI


Axiome, Gesetze und Idealisierungen

R. Mahnken, in: Lehrbuch der Technischen Mechanik - Band 1: Starrkörperstatik, 2016

DOI


On the Design, Characterization and Simulation of Hybrid Metal-Composite Interfaces

R. Kießling, J. Ihlemann, M. Pohl, M. Stommel, C. Dammann, R. Mahnken, M. Bobbert, G. Meschut, F. Hirsch, M. Kästner, Applied Composite Materials (2016), pp. 251-269

DOI


SFEM for rubber-like materials at large deformations

E. Penner, I. Caylak, N. Nörenberg, R. Mahnken, PAMM (2016), pp. 675-676

DOI


A thermodynamic framework for coupled multiphase Ginzburg-Landau/Cahn-Hilliard systems for simulation of lower bainitic transformation

M. Düsing, R. Mahnken, Archive of Applied Mechanics (2016), pp. 1947-1964

DOI


A thermodynamic framework for coupled multiphase field and diffusion models for lower bainite transformation

M. Düsing, R. Mahnken, PAMM (2016), pp. 321-322

DOI


Gleichgewicht von Balkentragwerken

R. Mahnken, in: Lehrbuch der Technischen Mechanik - Band 1: Starrkörperstatik, 2016

DOI


Einleitung

R. Mahnken, in: Lehrbuch der Technischen Mechanik - Band 1: Starrkörperstatik, 2016

DOI


PC expansion for material parameters using artificial data and statistical methods

I. Caylak, N. Nörenberg, R. Mahnken, PAMM (2016), pp. 191-192

DOI


On the Design, Characterization and Simulation of Hybrid Metal-Composite Interfaces

R. Kießling, J. Ihlemann, M. Pohl, M. Stommel, C. Dammann, R. Mahnken, M. Bobbert, G. Meschut, F. Hirsch, M. Kästner, Applied Composite Materials (2016), pp. 251-269

DOI


The concept of generalized stresses for computational manufacturing and beyond

R. Mahnken, C. Cheng, M. Düsing, U. Ehlenbröker, T. Leismann, GAMM-Mitteilungen (2016), pp. 229-265

DOI


Determination of effective properties for CFRP curing coupled to viscoleasticity based on a three-scale framework

C. Dammann, R. Mahnken, PAMM (2016), pp. 517-518

DOI


Arbeit, Potenzial und Stabilität

R. Mahnken, in: Lehrbuch der Technischen Mechanik - Band 1: Starrkörperstatik, 2016

DOI


Gleichgewicht von Fachwerken

R. Mahnken, in: Lehrbuch der Technischen Mechanik - Band 1: Starrkörperstatik, 2016

DOI


2015

Non-linear Stochastic Finite Element

I. Caylak, A. Dridger, R. Mahnken, PAMM (2015), pp. 179-180

DOI


Stabilität elastischer Stäbe

R. Mahnken, in: Lehrbuch der Technischen Mechanik - Elastostatik, 2015

DOI


Evaluation of different approaches for modeling phase transformations in machining simulation

V. Schulze, E. Uhlmann, R. Mahnken, A. Menzel, D. Biermann, A. Zabel, P. Bollig, I.M. Ivanov, C. Cheng, R. Holtermann, T. Bartel, Production Engineering (2015), pp. 437-449

DOI


Simulation of lower bainitic transformation with the phase-field method considering carbide formation

M. Düsing, R. Mahnken, Computational Materials Science (2015), pp. 91-100

DOI


A Novel Finite Element Approach to Modeling Hard Turning in Due Consideration of the Viscoplastic Asymmetry Effect

E. Uhlmann, R. Mahnken, I.M. Ivanov, C. Cheng, Procedia CIRP (2015), pp. 471-476

DOI


A multi-mechanism model for cutting simulations based on the concept of generalized stresses

C. Cheng, R. Mahnken, Computational Materials Science (2015), pp. 144-158

DOI


Comparison of hyperelastic micromorphic, micropolar and microstrain continua

T. Leismann, R. Mahnken, International Journal of Non-Linear Mechanics (2015), pp. 115-127

DOI


A coupled phase-field - Cahn-Hilliard model for lower bainitic transformation

M. Düsing, R. Mahnken, PAMM (2015), pp. 285-286

DOI


Uncertainty quantification for linear elastic bodies with two fluctuating input parameters

A. Dridger, I. Caylak, R. Mahnken, PAMM (2015), pp. 551-552

DOI


Adaptive FEM with goal-oriented error estimation and an approximation of the dual problem for inelastic problems

K. Widany, R. Mahnken, PAMM (2015), pp. 607-608

DOI


Transition from hyperelastic micromorphic to micropolar and microstrain continua

T. Leismann, R. Mahnken, PAMM (2015), pp. 329-330

DOI


Dual-based adaptive FEM for inelastic problems with standard FE implementations

K. Widany, R. Mahnken, International Journal for Numerical Methods in Engineering (2015), pp. 127-154

DOI


Parameter identification for rubber materials with artificial spatially distributed data

N. Nörenberg, R. Mahnken, Computational Mechanics (2015), pp. 353-370

DOI


Die technische Torsionstheorie

R. Mahnken, in: Lehrbuch der Technischen Mechanik - Elastostatik, 2015

DOI


2014

Multi-scale modeling of bainitic phase transformation in multi-variant polycrystalline low alloy steels

R. Mahnken, A. Schneidt, T. Antretter, U. Ehlenbröker, M. Wolff, International Journal of Solids and Structures (2014), pp. 156-171

DOI


A macroscopic consitutive model on induced anisotropy for polymers with weighting functions

C. Dammann, R. Mahnken, PAMM (2014), pp. 387-388

DOI



Experimental Investigation of PC-Films Using Optical Measurements

C. Dammann, I. Caylak, R. Mahnken, International Polymer Processing (2014), pp. 260-271

<jats:title>Abstract</jats:title> <jats:p>The alignment of polymer chains is a well known microstructural evolution effect due to straining of polymers. This has a drastic influence on the macroscopic properties of the initially isotropic material. In this work, cold forming is performed at room temperature on a tensile testing machine. Polycarbonate films are examined in two loading phases. In the first phase, the specimen is loaded to induce anisotropy, and in the second, it is re-loaded, while the material direction is varied. The investigations are supported by an optical measurement system to gain knowledge about the inhomogeneous material behavior in the initial loading phase and about the anisotropic homogeneous behavior during the re-loading phase. Two dimensional strain contours are obtained from the test data. Additionally, we propose a method for approximation of the macroscopic true stress and compare the results with a common approach based on volume consistency. In the future, the test data will set a basis for parameter identification of constitutive equations taking into account a combination of inhomogenous and homogenous material behavior, exhibiting strain induced anisotropy.</jats:p>


Macroscopic and mesoscopic modeling based on the concept of generalized stresses for cutting simulation

C. Cheng, R. Mahnken, E. Uhlmann, I.M. Ivanov, PAMM (2014), pp. 419-420

DOI


Parameter identification for rubber materials with artificial higher dimensional data

R. Mahnken, N. Nörenberg, PAMM (2014), pp. 427-428

DOI


Approximation of the dual problem for error estimation in inelastic problems

K. Widany, R. Mahnken, PAMM (2014), pp. 273-274

DOI


Stabilized mixed triangular elements with area bubble functions at small and large deformations

I. Caylak, R. Mahnken, Computers & Structures (2014), pp. 172-182

DOI


Bainitic variant evolution in a low-alloyed steel including numerical aspects

U. Ehlenbröker, R. Mahnken, PAMM (2014), pp. 381-382

DOI


2013

Parameter Identification in Continuum Mechanics: From Hand-Fitting to Stochastic Modelling

R. Mahnken, in: The History of Theoretical, Material and Computational Mechanics - Mathematics Meets Mechanics and Engineering, 2013

DOI


A multi-mechanism model for cutting simulations combining visco-plastic asymmetry and phase transformation

R. Mahnken, M. Wolff, C. Cheng, International Journal of Solids and Structures (2013), pp. 3045-3066

DOI


A Multi-Mechanism Model for Cutting Simulations Combining Visco-plastic Asymmetry and Phase Transformation

C. Cheng, R. Mahnken, E. Uhlmann, I.M. Ivanov, PAMM (2013), pp. 149-150

DOI


Thermodynamic consistent modeling of polymer curing coupled to visco–elasticity at large strains

R. Mahnken, International Journal of Solids and Structures (2013), pp. 2003-2021

DOI


Experimental Investigations on the Induced Anisotropy of Mechanical Properties in Polycarbonate Films

A. Wibbeke, V. Schöeppner, R. Mahnken, ISRN Materials Science (2013), pp. 1-8

<jats:p>The prime aim of this paper is to investigate, with the help of experiments, the induced anisotropy of mechanical properties in polycarbonate films. It is known that a molecular orientation in polymer materials occurs through cold-forming. In this study, cold forming is performed at room temperature on a tensile testing machine. The polycarbonate films are examined in two phases. In the first phase, the specimen is loaded, while the prestrain is varied, and in the second, it is loaded, while the material direction is varied. The main findings are that the prestrain has virtually no influence on the anisotropy and that the material direction does exert a major influence. Furthermore, this paper summarizes comparisons of anisotropic characteristic data, maximum stresses, elasticity moduli and failure strain.</jats:p>


Goal-oriented adaptive refinement for phase field modeling with finite elements

R. Mahnken, International Journal for Numerical Methods in Engineering (2013), pp. 418-440

DOI


Simulation of strain-induced anisotropy for polymers with weighting functions

R. Mahnken, C. Dammann, Archive of Applied Mechanics (2013), pp. 21-41

DOI


2012

Multi-phase transformations at large strains – Thermodynamic framework and simulation

R. Mahnken, M. Wolff, A. Schneidt, M. Böhm, International Journal of Plasticity (2012), pp. 1-26

DOI


Modeling of induced anisotropy at large deformations for polymers

I. Caylak, R. Mahnken, PAMM (2012), pp. 319-320

DOI


Finite elasto-viscoplastic modeling of polymers including asymmetric effects

R. Mahnken, A. Shaban, Archive of Applied Mechanics (2012), pp. 53-71

DOI


Adaptive FEM with Stabilized Elements for Parameter Identification of Incompressible Hyperelastic Materials

K. Widany, R. Mahnken, PAMM (2012), pp. 213-214

DOI


A stochastic model for the direct and inverse problem of adhesive materials

N. Nörenberg, R. Mahnken, PAMM (2012), pp. 317-318

DOI


Micromechanical modeling of bainitic phase transformation

A. Schneidt, T. Antretter, R. Mahnken, PAMM (2012), pp. 341-342

DOI


A stochastic model for parameter identification of adhesive materials

N. Nörenberg, R. Mahnken, Archive of Applied Mechanics (2012), pp. 367-378

DOI


Adaptivity for parameter identification of incompressible hyperelastic materials using stabilized tetrahedral elements

K. Widany, R. Mahnken, Computer Methods in Applied Mechanics and Engineering (2012), pp. 117-131

DOI


Die maximale Anzahl anzuzeigender Publikationen wurde erreicht - alle Publikationen finden Sie im Research Infomation System.

Liste im Research Information System öffnen

Prof. Dr.-Ing. habil. Rolf Mahnken wurde im November 2002 auf den Lehrstuhl für Technische Mechanik der Fakultät für Maschinenbau an der Universität Paderborn berufen.
Nach dem Ingenieurstudium an der Universität Hannover hat er an der Universität Uxbridge, England im Jahre 1986 den Master Abschluss im Fach Numerical Analysis erworben. Von 1986 bis 1997 war er als wissenschaftlicher Mitarbeiter an der Universität Hannover und am Division of Solid Mechanics, Chalmers University of Göteborg, Schweden tätig.
In den Jahren 1997-1999 übernahm er eine Vertretungsprofessur für Materialwissenschaft an der Universität Hannover, und war danach in der Abteilung für Berechnung und Entwicklung bei der Firma Alstom in der Schweiz im Gasturbinenbau beschäftigt.
Ein wesentliches Arbeitsgebiet ist die Computersimulation komplexen Materialverhaltens. Simulationsverfahren gewinnen in vielen Bereichen, vom Maschinen- und Fahrzeugbau bis hin zur Mikroelektronik, immer mehr an Bedeutung. Als Beispiel sei der Autocrash im Fahrzeugbau genannt, der bei der Neu- und Weiterentwicklung von Automobilen unumgänglich ist. Berücksichtigt man, dass die im Prüfstand zu Schrott gefahrenen Autos mit hohen Kosten verbundene Einzelanfertigungen sind, so werden durch Simulationsverfahren enorme Kosteneinsparungen für die Firmen möglich.
In der Lehre wird den Studierenden des Grundstudiums das Handwerkszeug für eine sichere Beherrschung der physikalischen Gesetze in Kinematik, Statik und Kinetik bereitgestellt. Im Hauptstudium werden weiterführende Methoden zur Modellierung komplexen Materialverhaltens vermittelt, wobei, unter Ausnutzung der immer noch zunehmenden Leistungsfähigkeiten von Computern, vertiefte Kenntnisse über Simulationsverfahren im Vordergrund stehen. Mit der Verknüpfung von Ausbildung, Simulation, Experiment und Anwendung wird der angehende Ingenieur somit mehrschichtig auf die in der Industrie ständig steigenden Herausforderungen bei der Berechnung von Bauteilen vorbereitet.

Die Universität der Informationsgesellschaft