Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

LTM-Team
Mai 2019
Bildinformationen anzeigen

Dr. Ismail Caylak

Kontakt
Publikationen
Dr. Ismail Caylak

Institut für Leichtbau mit Hybridsystemen (ILH)

Mitglied - Wissenschaftlicher Mitarbeiter - ILH-Beauftragter der Fachgruppe für Technische Mechanik

Technische Mechanik

Akademischer Oberrat

Telefon:
+49 5251 60-2285
Büro:
P1.2.11.7
Sprechzeiten:

nach Vereinbarung

Besucher:
Pohlweg 47-49
33098 Paderborn

Liste im Research Information System öffnen

2023

Experimental Investigations of Carbon Fiber Reinforced Polymer Composites and Their Constituents to Determine Their Elastic Material Properties and Complementary Inhomogeneous Experiments with Local Strain Considerations

E. Penner, I. Caylak, R. Mahnken, Fibers and Polymers (2023)

<jats:title>Abstract</jats:title><jats:p>Composite materials, such as fiber reinforced polymers, become increasingly important due to their excellent mechanical and lightweight properties. In this respect, this paper reports the characterization of a unidirectional carbon fiber reinforced polymer composite material. Particularly, the mechanical behavior of the overall composite and of the individual constituents of the composite is investigated. To this end, tensile and shear tests are performed for the composite. As a result, statistics for five transversely isotropic material parameters can be established for the composite. For the description of the mechanical properties of the constituents, tensile tests for the carbon fiber as well as for the polymer matrix are carried out. In addition, the volume fraction of fibers in the matrix is determined experimentally using an ashing technique and Archimedes’ principle. For the Young’s modulus of the fiber, the Young’s modulus and transverse contraction of the matrix, as well as the volume fraction of the constituents, statistics can be concluded. The resulting mechanical properties on both scales are useful for the application and validation of different material models and homogenization methods. Finally, in order to validate the obtained properties in the future, inhomogeneous tests were performed, once a flat plate with a hole and a flat plate with semicircular notches.</jats:p>


2022

Effects on Process Forces of Individual Milling Tool Edges Depending on the Cutting Angle and Cutting Speed When Milling Cfrp

R. Clemens, E. Barth, E. Uhlmann, Y. Zhan, I. Caylak, R. Mahnken, SSRN Electronic Journal (2022)

DOI


A polymorphic uncertainty model for the curing process of transversely fiber-reinforced plastics

E. Penner, I. Caylak, R. Mahnken, Mathematics and Mechanics of Complex Systems (2022), 10(1), pp. 21-50

DOI


2021

An uncertainty model for the curing process of transversely fiber reinforced plastics

E. Penner, I. Caylak, R. Mahnken, PAMM (2021)

DOI


A deep learning driven uncertain full‐field homogenization method

A. Henkes, I. Caylak, R. Mahnken, PAMM (2021)

DOI


Fuzzy and stochastic approach applied to rubber like materials

E. Penner, I. Caylak, R. Mahnken, A. Dridger, Safety and Reliability (2021), pp. 1-19

DOI


A deep learning driven pseudospectral PCE based FFT homogenization algorithm for complex microstructures

A. Henkes, I. Caylak, R. Mahnken, Computer Methods in Applied Mechanics and Engineering (2021), 114070

DOI


2020

Mean-field and full-field homogenization with polymorphic uncertain geometry and material parameters

I. Caylak, E. Penner, R. Mahnken, Computer Methods in Applied Mechanics and Engineering (2020), 113439

DOI


2019

A possibilistic finite element method for sparse data

A. Dridger, I. Caylak, R. Mahnken, E. Penner, Safety and Reliability (2019), pp. 58-82

DOI


Optimization with constraints considering polymorphic uncertainties

M. Mäck, I. Caylak, P. Edler, S. Freitag, M. Hanss, R. Mahnken, G. Meschke, E. Penner, GAMM-Mitteilungen (2019), e201900005

DOI


A polynomial chaos expanded hybrid fuzzy-stochastic model for transversely fiber reinforced plastics

E. Penner, I. Caylak, A. Dridger, R. Mahnken, Mathematics and Mechanics of Complex Systems (2019), pp. 99-129

DOI


A fuzzy uncertainty model for analytical and numerical homogenization of transversely fiber reinforced plastics

I. Caylak, E. Penner, R. Mahnken, PAMM (2019)

DOI


2018

On the connection between possibility theory and probability box theory in structural mechanics

A. Dridger, I. Caylak, R. Mahnken, E. Penner, in: 13th World Congress in Computational Mechanics , 2018


Stochastic hyperelastic modeling considering dependency of material parameters

I. Caylak, E. Penner, A. Dridger, R. Mahnken, Computational Mechanics (2018), pp. 1273-1285

DOI


A fuzzy‐stochastic model for transversely fiber reinforced plastics

I. Caylak, E. Penner, A. Dridger, R. Mahnken, PAMM (2018)

DOI


Possibilistic and stochastic analysis using for rubber‐like materials

E. Penner, I. Caylak, A. Dridger, R. Mahnken, PAMM (2018)

DOI


A multivariate stochastic material model with correlated material parameters

E. Penner, I. Caylak, R. Mahnken, PAMM (2018), pp. 67-68

DOI


2017

MULTIDIMENSIONAL STOCHASTIC MATERIAL MODELING AT LARGE DEFORMATIONS CONSIDERING PARAMETER CORRELATIONS

E. Penner, I. Caylak, R. Mahnken, in: Proceedings of the 2nd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2017), 2017

DOI


2016

A Stochastic Finite Element Method with a Deviatoric-volumetric Split for the Stochastic Linear Isotropic Elasticity Tensor

R. Mahnken, I. Caylak, A. Dridger, A Stochastic Finite Element Method with a Deviatoric-volumetric Split for the Stochastic Linear Isotropic Elasticity Tensor (2016)

This paper presents a numerical method for solution of a stochastic partial differential equation (SPDE) for a linear elastic body with stochastic coefficients (random variables and/or random fields). To this end the stochastic finite element method (SFEM) is employed, which uses W IENER’S polynomial chaos expansion in order to decompose the coefficients into deterministic and stochastic parts. As a special case, we consider isotropic material behavior with two fluctuating parameters. Computational approaches involving GALERKIN projection are applied to reduce the SPDE into a system of deterministic PDEs. Furthermore, we consider normally distributed random variables, which are assumed to be stochastically independent, and which establish the number of stochastic dimensions. Subsequently, the resulting finite element equation is solved iteratively. Finally, in a representative example for a plate with a ring hole we study the influence of different variances for material parameters on the variances for the finite element results.


PC expansion for material parameters using artificial data and statistical methods

I. Caylak, N. Nörenberg, R. Mahnken, PAMM (2016), pp. 191-192

DOI


A linear elastic Fuzzy Finite Element Method with two fuzzy input parameters

A. Dridger, I. Caylak, R. Mahnken, PAMM (2016), pp. 667-668

DOI


SFEM for rubber-like materials at large deformations

E. Penner, I. Caylak, N. Nörenberg, R. Mahnken, PAMM (2016), pp. 675-676

DOI


2015

Uncertainty quantification for linear elastic bodies with two fluctuating input parameters

A. Dridger, I. Caylak, R. Mahnken, PAMM (2015), pp. 551-552

DOI


Non-linear Stochastic Finite Element

I. Caylak, A. Dridger, R. Mahnken, PAMM (2015), pp. 179-180

DOI


2014

Experimental Investigation of PC-Films Using Optical Measurements

C. Dammann, I. Caylak, R. Mahnken, International Polymer Processing (2014), pp. 260-271

<jats:title>Abstract</jats:title> <jats:p>The alignment of polymer chains is a well known microstructural evolution effect due to straining of polymers. This has a drastic influence on the macroscopic properties of the initially isotropic material. In this work, cold forming is performed at room temperature on a tensile testing machine. Polycarbonate films are examined in two loading phases. In the first phase, the specimen is loaded to induce anisotropy, and in the second, it is re-loaded, while the material direction is varied. The investigations are supported by an optical measurement system to gain knowledge about the inhomogeneous material behavior in the initial loading phase and about the anisotropic homogeneous behavior during the re-loading phase. Two dimensional strain contours are obtained from the test data. Additionally, we propose a method for approximation of the macroscopic true stress and compare the results with a common approach based on volume consistency. In the future, the test data will set a basis for parameter identification of constitutive equations taking into account a combination of inhomogenous and homogenous material behavior, exhibiting strain induced anisotropy.</jats:p>


Stabilized mixed triangular elements with area bubble functions at small and large deformations

I. Caylak, R. Mahnken, Computers & Structures (2014), pp. 172-182

DOI


2012

Modeling of induced anisotropy at large deformations for polymers

I. Caylak, R. Mahnken, PAMM (2012), pp. 319-320

DOI


2011


Mixed finite element formulations with volume bubble functions for triangular elements

I. Caylak, R. Mahnken, Computers & Structures (2011), pp. 1844-1851

DOI


Stabilized mixed triangular finite elements at large deformations using area bubble functions

I. Caylak, R. Mahnken, K. Widany, PAMM (2011), pp. 201-202

DOI


Optical Measurements for a Cold-Box Sand and Aspects of Direct and Inverse Problems for Micropolar Elasto-Plasticity

R. Mahnken, I. Caylak, in: Advances in Extended and Multifield Theories for Continua, 2011

DOI


Stabilization of mixed tetrahedral elements at large deformations

I. Caylak, R. Mahnken, International Journal for Numerical Methods in Engineering (2011), pp. 218-242

DOI


2010

Thermomechanical characterisation of cold box sand including optical measurements

I. Caylak, R. Mahnken, International Journal of Cast Metals Research (2010), pp. 176-184

DOI


Stabilized Mixed Tetrahedrals with Volume and Area Bubble Functions at Large Deformations

K. Widany, I. Caylak, R. Mahnken, PAMM (2010), pp. 227-228

DOI


2008

On the stabilization of tetrahedral finite elements using volume and area bubble functions

I. Caylak, R. Mahnken, PAMM (2008), pp. 4040013-4040014

DOI


2007

Stabilization of bi‐linear mixed finite elements for tetrahedra with enhanced interpolation using volume and area bubble functions

R. Mahnken, I. Caylak, International Journal for Numerical Methods in Engineering (2007), pp. 377-413

DOI


Two mixed finite element formulations with area bubble functions for tetrahedral elements

R. Mahnken, I. Caylak, G. Laschet, Computer Methods in Applied Mechanics and Engineering (2007), pp. 1147-1165

DOI


Liste im Research Information System öffnen

Seit dem 01.05.2005 ist Ismail Caylak wissenschaftlicher Mitarbeiter am Lehrstuhl für Technische Mechanik

Forschung

  • Kontinuumsmechanik
  • Finite Elemente Methode / Numerische Mechanik
  • Stochastische Finite Elemente Methode
  • Parameteridentifikation
  • Optische Messtechnik

Lehre

  • FEM in der Werkstoffsimulation
  • FEM in der Festigkeitslehre
  • Bruchmechanik
  • Simulation of Materials

Projekte

  • Stochastische Finite Element Methode

Veröffentlichungen

Die Universität der Informationsgesellschaft